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Abstract.  
 

This paper describes image processing techniques 
for Diffusion Tensor Magnetic Resonance. In Diffusion 
Tensor MRI, a tensor describing local water diffusion is 
acquired for each voxel. The geometric nature of the 
diffusion tensors can quantitatively characterize the local 
structure in tissues such as bone, muscles, and white 
matter of the brain. The close relationship between local 
image structure and apparent diffusion makes this image 
modality very interesting for medical image analysis. 

 
We present a decomposition of the diffusion 

tensor based on its symmetry properties  
resulting in useful measures describing the geometry of the 
diffusion ellipsoid. A simple anisotropy measure follows 
naturally from this analysis. We describe how the 
geometry, or shape, of the tensor can be visualized using a 
coloring scheme based on the derived shape measures. We 
show how filtering of the tensor data of a human brain can 
provide a description of macro structural diffusion which 
can be used for measures of fiber-tract organization. We 
also describe how tracking of white matter tracts can be 
implemented using the introducedmethods. These methods 
offers unique tools for the in vivo demonstration of neural 
connectivity in healthy and diseased brain tissue. 

 
 
1 Introduction 
 
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) 
is a recent MR imaging modality. In Diffusion Tensor 

MRI, a tensor describing local water diffusion is acquired 
for each voxel. Diffusion in tissue can be anisotropic 
depending on the characteristics of the tissue. For example 
in the white matter fiber tracts the diffusion is mainly in 
the direction of the fibers. In areas with fluid, such in the 
CSF filled ventricles, the diffusion is spherical, i.e. 
isotropic. The advent of robust diffusion tensor imaging 
techniques has prompted the development of quantitative 
measures for describing the diffusion anisotropy. A good 
review by Basser and Pierpaoli can be found in [1]. 
Since MRI methods in general always obtain a 
macroscopic measure of a microscopic quantity which 
necessarily entails intravoxel averaging, the voxel 
dimensions influence the measured diffusion tensor at any 
particular location in the brain. 
Factors which would affect the shape of the apparent 
diffusion tensor (shape of the diffusion ellipsoid) in the 
white matter include the density of fibers, the degree of 
myelination, the average fiber diameter and the directional 
similarity of the fibers in the voxel. The geometric nature 
of the measured diffusion tensor within a voxel is thus a 
meaningful measure of fiber tract organization. 
With current conventional proton magnetic resonance 
imaging (MRI) techniques, the white matter of the brain 
appears to be a remarkably homogeneous tissue without 
any suggestion of the complex arrangement of fiber tracts. 
Although the individual axons and the surrounding myelin 
sheaths cannot be revealed with the limited spatial 
resolution of in vivo imaging, distinct bands of white 
matter fibers with parallel orientation may be distinguished 
from others running in different directions if MRI 
techniques are sensitized to water diffusion and the 
preferred direction of diffusion is determined. 
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Water diffusion in tissue due to Brownian motion is 
random but some structural characteristics of tissues may 
limit diffusion. In the white matter, the mobility of the 
water is restricted in the directions perpendicular to the 
axons which are oriented along the fiber tracts. This 
anisotropic diffusion is due to the presence of tightly 
packed multiple myelin membranes encompassing the 
axon. Myelination is not essential for diffusion anisotropy 
of nerves as shown in studies of nonmyelinated garfish 
olfactory nerves [3] and anisotropy exists in brains of 
neonates before the histological appearance of myelin [16] 
but myelin is widely assumed to be the major barrier to 
diffusion in myelinated fiber tracts. Therefore the 
demonstration of anisotropic diffusion in brain by 
magnetic resonance has opened the way to explore 
noninvasively the structural anatomy 
of the white matter in vivo [8, 4, 1, 10]. 
2 Materials and Methods 
 
In this work we applied a modified version of the recently 
proposed Line Scan Diffusion Imaging (LSDI) technique 
[7]. This method, like the commonly used diffusion 
sensitized,  
ultrafast, echo-planar imaging (EPI) technique [12] is 
relatively insensitive to bulk motion and physiologic 
pulsations of vascular origin. But unlike EPI, LSDI 
exhibits minimal image distortion, does not require cardiac 
gating, head restraints or post-processing image correction, 
and can be implemented without specialized hardware on 
all standard MRI scanners. 
 
Here, we present a quantitative characterization of the 
geometric nature of the diffusion tensors, a method for 
characterization of marcostructural diffusion properties, 
and a display method for showing clear and detailed in 
vivo images of human white matter tracts. The orientation 
and distribution of most of the known major fiber tracts 
can be identified using these methods. 
 
2.1 Imaging Parameters 
 
Our data were acquired at the Brigham andWomen’s 
Hospital on a GE Signa 1.5 Tesla Horizon Echospeed 5.6 
system with standard 2.2 Gauss/cm field gradients. The 
time required for  acquisition of the diffusion tensor data 
for one slice was 1 min; no averaging was performed. 
Imaging parameters were: effective TR=2.4 s, TE=65 ms, 
bhigh=750 s/mm2, blow=5 s/mm2, field of view 22 cm, 
effective voxel size 4.8_1.6_1.5 mm2, 6 kHz readout 
bandwidth, acquisition matrix 128_128. 
 
The gradient cycle in the LSDI interleaving scheme was 
modified to provide acquisition of more gradient directions 
and to allow elimination of the crusher gradients. Instead 

of alternating merely between high and low gradient 
strengths, the modified sequence cycled through eight 
configurations of the diffusion gradients. In all other 
respects it was identical to the sequence described in [7]. 
2.2 Calculation of Tensors 
 
For each slice, eight images are collected with different 
diffusion weightings and noncollinear 
gradient directions. If S0 represents the signal intensity in 
the absence of a diffusion-sensitizing field gradient and S 
the signal intensity in the presence of gradient g = (gx; gy; 
gz)T , the equation for the loss in signal intensity due to 
diffusion is given by the Stejskal-Tanner formula: 
  

ln(S)=ln(S0)−γ
2δ2(Δ−δ ⁄3)gTDg, 

 
 
where  γ is the gyromagnetic ratio of hydrogen 1H 
(protons), δ is the duration of the diffusion sensitizing 
gradient pulses and Δ is the time between the centers of 
the two gradient pulses. The eight images provide eight 
equations for S in each voxel which are solved in a least-
squares sense for the 6+1 unknowns: the six independent 
components of the symmetric diffusion tensor, D, and S0. 
In the LSDI sequence, it is easy to show that cross terms 
between the slice select gradient for the 1800 pulse and the 
diffusion sensitizing gradients account for less than 0.1% 
of the diffusion weighting, and have therefore been 
neglected here. Diffusion attenuation due to imaging 
gradients is already factored into S0, as is T2 weighting. 
2.3 Geometrical Measures of Diffusion 
 
In order to relate the measure of diffusion anisotropy to the 
structural geometry of the tissue a mathematical 
description of diffusion tensors and their quantification is 
necessary [1]. First, a complete diffusion tensor, D, is 
calculated (Equation 1) for each voxel. Using the 
symmetry properties of the diffusion ellipsoid we 
decomposed the diffusion tensor, and from the tensor basis 
assigned scalar measures, describing the linearity and the 
anisotropy, to each voxel [15]. 
 
The diffusion tensor can be visualized using an ellipsoid 
where the principal axes correspond to the directions of the 
eigenvector system. Let λ1 ≥  λ2 ≥ λ3 ≥ 0 be the eigenvalues 
of the symmetric tensor D, and let êi be the normalized 
eigenvector corresponding to λi. 
 

D = λ1ê1ê1
T + λ2ê2ê2

T + λ3ê3ê3
T 

 
 
Diffusion can be divided into three basic cases depending 
on the rank, of the representation tensor:Linear case 
ଵߣ) ଶߣ	≪ ≃ 	  ଷ ): diffusion is mainly in the direction corߣ
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1) Linear case (ߣଵ ଶߣ	≪ ≃ 	  ଷ ): diffusion is mainly inߣ
the direction corresponding to the largest eigenvalue, 

D ≃ λ1 Dt = λ1ê1ê1
T 

 

 

 
2) Planar case (ߣଵ	 ≃ 	 ଶߣ ≫  ଷ ): diffusion is restricted toߣ

a plane spanned by the two eigenvectors 
corresponding to the two largest eigenvalues, 

 
D ≃ 2λ1Dp = λ1 (ê1ê1

T + ê2ê2
T) 

 
3) Spherical case (ߣଵ	 ≃ ଶߣ	 ≃  ,ଷ): isotropic diffusionߣ	

 
D ≃ 3λ1D8 = λ1 (ê1ê1

T + ê2ê2
T + ê3ê3

T). 
 

In general, the diffusion tensor D will be a combination of 
these cases. Expanding the diffusion tensor using these 
cases as a basis gives: 
 

D = λ1ê1ê1
T + λ2ê2ê2

T + λ3ê3ê3
T 

 

= ( λ1 – λ2 )ê1ê1
T + ( λ2 – λ3 )(ê1 ê1

T + ê2 ê2
T) 

 
+ λ3(ê1 ê1

T + ê2 ê2
T + ê3 ê3

T) 
 

= (λ1 – λ2)Dt + (λ2 – λ3)Dp + λ3D8  
 

where (λ1 – λ2), (λ2 – λ3) and λ3 are the coordinates of D in 
the tensor basis { Dt  Dp, D8 }.  
A similar tensor shape analysis has proven to be useful in a 
number of computer vision applications [13, 14, 6]. 
As described, the relationships between the eigenvalues of 
the diffusion tensor can be used for classification of the 
diffusion tensor according to geometrically meaningful 
criteria. By using the coordinates of the tensor in our new 
basis measures are obtained of how close the diffusion 
tensor is to the generic cases of line, plane and sphere. The 
generic shape of a tensor is obtained by normalizing with a 
magnitude measure of the diffusion. Here we define this 
magnitude as the largest eigenvalues of the tensor. This 
gives for the linear, planar and spherical measures: 
 

 = 	ܥ
ሺఒభ	ି	ఒమሻ

ఒభ
 

 = 	ܥ
ሺఒమ	ି	ఒయሻ

ఒభ
 

 = ௦ܥ
ఒయ
ఒభ

 

 ௦ = 1ܥ  +  ܥ + 	ܥ
An anisotropy measure describing the deviation from the 
spherical case is achieved as follows: 

 

 − ௦ = 1ܥ −  = 1ܥ +  ܥ + 	ܥ
ఒయ
ఒభ

 

 

2.4 Relaxation of Data 
 
For many medical image analysis procedures 
preprocessing of the data in order to reduce the image 
noise level is important [5]. For diffusion data, 
regularization based on a Markov model was used to 
achieve more stable directionality information for tracking 
white matter fiber tracts [11]. 
In this paper we argue for staying in the tensor domain 
when processing simplifies cleaning up of the data. Simple 
averaging of the tensor components has proven to be a 
robust relaxation method. One reason for the usefulness of 
this approach is that tensors have more degrees of freedom 
compared to scalars and vectors. This is illustrated in 
Figure 1. Adding two vectors (a) and (b) results in a new 
vector (c). The data (a) and (b) and the result (c) are of the 
same order. However, adding two rank 1 tensors (d) and 
(e), e.g. diffusion tensors from two differently oriented 
white matter tracts, results in a rank 2 tensor (f), i.e. the 
output has more degrees of freedom than the input tensors 
and describes the plane in which diffusion is present. 
Averaging of tensors are different from averaging a vector 
field: 
 

 The average of a set of vectors gives the “mean 
event” 

 The average of a set of tensors gives the “mean 
event” and the “range of the present 
events” 

 
 

 
Fig. 1. Vector and tensor summation. Two vectors, (a) and 
(b), and their sum (c). Two diffusion tensors, (d) and (e), 
of rank close to 1 visualized as ellipsoids with 
eigenvectors forming  principal axes. The summation of 
the two tensors gives a rank 2 tensor (f). 
Figure 2 shows two stylized 2D examples illustrating the 
effect of relaxation of a diffusion tensor field. (a) 
Relaxation of a field that contains inconsistent data (left) 
gives a result of almost round ellipses (right). In (b) 
relaxation of a field containing data with a clear bias in 
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one direction resulting in a more stable estimate of the 
directionality of the field. 

 
 
 
Fig. 2. Stylized 2D examples illustrating the effect of 
relaxation of a diffusion tensor field. (a) 
Relaxation of a field that contains inconsistent data (left) 
gives a result of almost round ellipses 
(right). (b) Relaxation of a field containing data with a 
clear bias in one direction. 
2.5 Macrostructural Diffusive Similarities 
 
In the previous section we characterized diffusion isotropy 
and anisotropy within a voxel. Here, we will introduce a 
new method for examining the pattern or distribution of 
diffusion within an image volume. 
Basser and Pierpaoli proposed a scalar measure for 
macrostructural diffusive similarity based on summing 
tensor inner products between the center voxel tensor and 
its neighbors [2]. As in a vector case, the inner product 
between two tensors measures their degree of similarity. 
We will use this idea, and show that averaging the 
diffusion tensor field has a close relation to this approach. 
A weighted linear sum of tensor inner products operation 
over an image volume can be expressed as 
 
 

 〈Dሺxሻ, aሺx୩ሻDሺx୩ሻ〉 ൌ 	 〈Dሺݔሻ, ܽሺݔሻDሺx୩ሻ


〉


ൌ 	 〈Dሺݔሻ, Dୟሺxሻ〉 
 
where the brackets denote inner product, a(xk) is a spatial 
mask defining the local image volume of interest around x, 
k is an index ordering the voxel in this volume.Da is a 
weighted average of the tensors in the neighborhood under 
the mask a, ∑k a(xk)D(xk). Or, in other words, the filtered 
output from applying the filter a(xk) to the data D(xk). Note 
that averaging of a diffusion tensor field and then deriving 
a scalar measure from the averaged field is not the same as 
averaging a scalar field derived from the original field. 
 
 
 
 

Equation 11 shows that the scalar macrostructural measure 
is an inner product between a diffusion tensor with a 
blurred version of itself. This can be seen as inner products 
between tensors in a scale pyramid where the tensors with 
highest spatial resolution, and tensors at a level in the scale 
pyramid corresponding to the size of interest (scale 
obtained by blurring with mask a). Figure 4 (rightmost 
column) shows three level of such a pyramid. 

 
 
 
Fig. 3. Comparison of an ellipsoid and a composite shape 
depicting the same tensor with eigenvalues λ1 = 1, λ2 = 
0:7, and λ3 = 0:4.  
 
The rank of the average tensor Da describes the complexity 
of the macroscopic diffusion structure. If the rank is close 
to one, the structure is highly linear which will be the case 
in regions of bundles of fibers having the same direction. 
If the rank is two, fibers are crossing in a plane, or the 
underlying diffusitivity is planar. Instead of carrying out 
the inner product in Equation 11, to get a scalar value for 
similarity, we use the tensor Da as a description of 
macrostructural diffusion. 
 
2.6 Visualization of Diffusion Tensors 
 
A 3D diffusion tensor can be visualized using an ellipsoid 
where the principal axes correspond to the tensor’s 
eigenvector system. However, it is difficult to distinguish 
between an edge-on, flat ellipsoid and an oblong one using 
the surface shading information. Similar ambiguity exists 
between a face-on, flat ellipsoid and a sphere. We propose 
two techniques for the visualization of tensor fields that 
overcome the problems with ellipsoids. Figure 3 compares 
the ellipsoidal representation of a tensor with a composite 
shape whose linear, planar, and spherical components are 
scaled according to cl, cp, and cs. 
Additionally, coloring based on the shape measures cl, cp, 
and cs can be used for visualization of shape. Figure 6 
shows a coloring scheme where the color is interpolated 
between the blue linear case, the yellow planar case, and 
the red spherical case. 
 
2.7 Eigenvalue Transformations 
 
Smoothing a diffusion tensor field removes high frequency 
noise and as discussed above stabilizes the field. In this 
section we discuss methods that changes the 
eigenvalues of the tensors in a way that further 
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can stabilize the data. Let  = êkêk
T.  The first 

method is based on direct manipulation of the eigenvalues 
λk 

T = êkêk
T 

 
where fk are scalar functions. The function f can for 
example be a thresholding operator which results in 
decreased rank of the tensors when the eigenvalues are 
smaller than the specified threshold. Another method is a 
“max shape” operator, 
 

 
This operation forces the tensor into the closest of the 
three generic shapes line, plane, and sphere. 
 
 
2.8 TrackingWhite Matter Tracts 
 
This section gives a sketch of a tracking algorithm that 
uses the diffusion tensors as operators. Let x0 be the initial 
seed point, and v0 be the seed direction, e.g. the 
eigenvector corresponding to the largest eigenvalue. A 
tracking sequence {x0, x1, ….} can then be obtained by the 
following iteration formula: 

 +  

T  
 
where T(Xk+1) is the tensor in spatial position Xk+1. The 
idea here is based on that Vk will turn towards the largest 
eigenvector of the tensor T(Xk+1). When the tensor has 
lower than full rank, it will act as a projection operator. 
When rank one, the vector Vk will be projected onto 
(e1)k+1. Further, when the tensor is spherical, vk will not 
turn since all vectors are eigenvectors. 
 
3 Results 
 
When applied to white matter, the linear measure, cl, 
reflects the uniformity of tract direction within a voxel 
because it will be high only if the diffusion is restricted in 
two orthogonal  directions. The anisotropy measure, ca, 
indicates the relative restriction of the diffusion in the most 
restricted direction and will emphasize white matter tracts 
which within a voxel exhibit at least one direction of 
relatively restricted diffusion. Figure 4 shows the three 
geometrical measures and the anisotropy index. Major 
white matter tracts such as the corpus callosum show high 
linearity. In Figure 5 a diffusion tensor field from an axial 
slice of the brain is shown (left) and the averaged tensor 
field (right). The window, a, used was a 5 	 5  3 

Gaussian window with standard deviation equal to 1, 
defined in the in-plane resolution of the image. Since the 

out-of-plane resolution is slightly less than half the in-
plane resolution, there is almost no smoothing 
performed between the slices. The original field (left) and 
the averaged field (right) have been weighted with their 
linear diffusion measure, cl (Equation 8), respectively. 
This procedure can be used to measure fiber tract 
organization quantitatively. The size of the filter should be 
chosen in relation to the size of the fiber tracts of interest. 
Figure 7 shows the effect of the two eigenvalue operations 
described in section 2.7. The left image shows the input 
data, a simulated tensor field of crossing white matter 
tracts. Due to partial voluming effects, the tensors in the 
area where the fibers are crossing have planar shape. The 
middle image shows the effect of smoothing the field with 
a 5  5 Gaussian kernel followed by a remapping the 

eigenvalues when f is a thresholding operator (Equation 
12). The threshold was set to 20% of the largest 
eigenvalue, 0:2λ1. The right image shows the effect of the 
max shape operator on the same input data. 
Figure 8 shows the result of tracking three crossing fiber 
tracts. A 5  5  5 Gaussian operator followed by the 

max shape operator was used to stabilize the data. Each 
trace line is a composition of the results fromboth seed 
directions e1 and –e1 joined together. 
4 Conclusions 
 
We have proposed measures classifying diffusion tensors 
into three generic cases based on a tensor basis expansion. 
When applied to white matter the linear index shows 
uniformity of tract direction within a voxel while the 
anisotropic index quantifies the deviation from spatial 
homogeneity. The non-orthogonal tensor basis chosen is 
intuitively appealing since it is based on three simple, yet 
descriptive, geometrically meaningful cases. 
We have described how tensor diffusion data can be 
processed without reverting to the use of only scalar 
measures of the tensor data. By staying in the tensor 
domain, cleaning up of the data can be done meaningfully 
with simple methods such as smoothing. We discuss 
addition of tensors geometrically and argue that adding 
tensors and vectors are different in that tensor summation 
gives more than the ”mean” event due to more degrees of 
freedom. By using the geometric diffusion measures on 
locally averaged tensors local directionality consistency 
can be determined (e.g. existence of larger fiber tracts). 
We have proposed that this averaging approach can be 
used to derive a tensor field that can be used to describe 
macrostructural features in the tensor diffusion data. The 
linear measure cl derived from the averaged tensor field 
can for example be used for quantitative evaluation of 
fiber tract organization.We also have described how non-
linear operations can be used to remap the eigenvalues of 
the diffusion tensors and 
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given a sketch of how this can be used for tracking white 
matter tracts. 

 
Fig. 4. Axial brain images showing the three geometrical 
measures and diffusion tensor maps with three different 
smoothing parameters. Top: shows the geometrical 
measures and the tensor map derived from the original 
data. Middle: shows the same measures derived from data 
that has been averaged with 9x9x3 Gaussian kernel. 
Bottom: from data averaged with a 15x15x5 Gaussian 
kernel. The rightmost column shows the tensors. The blue 
headless arrows represent the in-plane components of clê1. 
The out-of-plane components of clê1 are shown in colors 
ranging from green through yellow to red, with red 
indicating the highest value for this component. Display 
technique from [9] 

 
Fig. 5. Left: Diffusion tensors, weighted with their linear 
measure cl, from an axial slice of a 
human brain. Right: Averaged diffusion tensors using a 
5x5x3 Gaussian kernel weighted with 
their linear measure cl . 

 
 
Fig. 6. Visualization of diffusion tensors. The tensors are 
color coded according to the shape: 

linear case is blue, planar case is yellow, and spherical 
case is red. The radius of the sphere is the 
smallest eigenvalue of the diffusion tensor, the radius of 
the disk is second largest and the length 
of the rod is twice the largest eigenvalue. 
 
 

 
Fig. 7. Left: Simulated diffusion tensor data of two 
crossing white matter tracts. Middle The 
effect of thresholding the eigenvalues at 20 % of λ1. Right: 
The effect of the max shape operator. 
 

 
Fig. 8. Left: Original tensor data. Right: Tracking fibers 
after applying the max shape operator. 
10 points were randomly seeded at one end of each of the 
three branches. Note how the stream 
lines “tunnel” trough the area in the center where the 
information of directionality is uncertain. 
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