
EQNM2L: Towards a Metamodel for Extended Queuing
Networks

Abdelhabib Bourouis1 and Brahim Belattar2

 1 Department of Mathematics and Computer Science, University of Oum El Bouaghi,
Oum El Bouaghi, 4000, Algeria

2 Department of Computer Science, University of Batna
Batna, 5000, Algeria

Abstract
Queuing theory is the mathematical study of waiting phenomena
that allows several performance measures derivation and
calculation. Furthermore, queueing systems could be simulated,
especially in case of complex models including non-classical
concepts. The theory has been applied successfully in diverse
fields and the development of a Domain Specific Modeling
Language (DSML) for extended queueing systems seems to be a
necessity and of great interest. This paper focuses on the
cornerstone of this process by providing a minimal but clear and
extensible metamodel called EQNM2L. Our aim is to induce
discussion on and contributions for elaborating a whole mature
DSML. The proposed metamodel and the XML-based exchange
format are the first step in enhancing interoperability between
analytical solvers and simulation tools. Based on the Model
Driven Engineering (MDE) approach principles and tools,
modeling environments and simulation/analytical code are
generated automatically and could be maintained easily.
Keywords: Extended Queueing Systems, Metamodeling,
Domain Specific Modeling Language, Discrete Event Simulation,
Interoperability.

1. Introduction

Several Domain Specific Modeling Languages (DSMLs)
have been developed in the last decade. Their use gained a
lot of success and a growing popularity. However,
developing a DSML is still a challenging and time-
consuming task. Generally, Domain specific modeling
(DSM) includes also automating the code generation
directly from models. Automatic construction and
maintenance of source code increases significantly
developer’s productivity. The reliability of automatic
generation compared to manual coding reduces notably
the number of defects in the resulting code thus improving
quality.

Queueing network models have been used extensively as a
modeling paradigm for deriving analytical as well as
simulation based performance measures. They are
commonly used to model a wide range of discrete-event
systems. The Kendall notation is a mean for describing
queueing networks especially in case of simple systems.
For complex ones, a graphical notation with textual
annotations is used instead. To analyze a model either by
simulation or by mathematical analytic tools, the model is
commonly coded and saved directly in a proprietary tool
file format. Although it is the same formalism, there are
always some ambiguities and disagreements on a number
of concepts as well as on the exchange format. Therefore,
tools are not interoperable and models can’t be reused nor
interchanged easily. In addition to rebuilding models from
scratch every time the tool is changed, the development of
modeling environments and model transformations,
including code generation, are time-consuming, very
expensive and hard to validate and maintain. The best
solution to these problems seems to be based on MDE
concepts including metamodeling and models
manipulation in a generative manner.

The next section addresses key motivations and
objectives of our work. A clear development methodology
is presented in section 3. Section 4 discusses the basic
domain concepts used for building the metamodel
presented itself in section 5. The concrete syntax and the
exchange format are discussed in section 6 while
implementation is addressed in section 7. Finally,
conclusions and improvements are given in section 8.

2. Motivations and objectives

The development and use of a common metamodel and a
file exchange format is motivated by:

1. Lack of interoperability: performance evaluation
tools of discrete event systems based on queueing

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 139

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

networks use different file formats for describing their
models. There is no standard to ensure interoperability and
reuse of conceptual models. Importing and exporting
models is still hard to achieve due to the multitude of file
formats. The problem is beyond simple technical solutions.
XML-based standard exchange format seems to be the
best solution.

2. Lack of expressiveness: unfortunately the
expressive power of modeling languages depends on the
tool purposes and capabilities. Tools don’t model what
they can’t handle. In our opinion, a modeling language
must be tool independent and focuses particularly on
offering all necessary constructs for describing the largest
possible range of systems.

3. Difficulty of the design and development of
modeling environments: building modeling environments
from scratch is hard, complex and time consuming. It is
also difficult to maintain as the modeling language
evolves. MDE seems offering the solution by automating
the development based on metamodels.

4. Difficulty of code generation: the translation of the
conceptual model into a simulation model is complicated
and needs careful verification in addition to programming
skills. Besides the manual translation, the classical
automatic translation alternative is barely coded in
simulation environments using programming languages.
So translation rules used in this case are not clear and not
easy to modify as the used formalism evolve.

The first initiative for developing such a metamodel
and an XML-based exchange format named QNML was
undertaken by the Center for Computer integrated
Manufacturing enterprises [1]. It focuses only on
analytical resolution of queueing networks and simulation
was not considered. In addition, the expressiveness power
of the formalism is limited and notably identical to that of
the analysis tool RAQS developed at the same laboratory
[2], so only concepts supported by this tool are considered.

Our aims behind this work are to explore basic
concepts of Queueing theory, extract common
terminology and clear semantics for designing a
metamodel and an XML-based exchange format. An
XML-schema will serve as a mean to define the markup
language for describing queueing networks. Designing of
an UML metamodel based on considered concepts that
will serve as a basis for applying MDE techniques,
especially, creating an integrated modeling environment
and generating low level code from conceptual models.
Taking into account the language extensibility, since this
work constitutes only the starting version, other new
concepts may be included. Modeling environment and
automatic simulation code generation would evolve easily
also. The A large acceptance of this formalism facilitates
greatly the task of experts and researchers in the domain of
systems performance evaluation.

3. Development methodology

Several methodologies for developing Domain Specific
Languages (DSLs) have been proposed in [3], [4], [5] and
[6]. A study conducted in [7], identified clearly and in
detail the development process of DSLs independently of
the used tools and languages. We can summarize the
different stages of development:
1. Decision: the adoption of an existing DSL is the best

solution and the decision to create a new one must be
justified. The developing of a new DSL will have an
economic impact to be considered (tools used, time
spent, effort to develop, learning … etc.).

2. Analysis: the domain is clearly identified and basic
concepts are collected. This requires the cooperation
of domain experts and computer scientists. The
domain analysis is often done informally, but clear
methodologies have been proposed and can
effectively serve as DARE [8] DSSA [9] and FODA
[10].

3. Design: two important elements in this phase are
considered, the relationship of the new DSL with an
existing language and the degree of formality of the
design description. The second element is the design
specification. Once the image of the DSL is clear, it
can be done informally using natural language for
example, easy to produce but more difficult to handle,
or formally, using known techniques such as regular
expressions and formal grammars to specify syntax
and rewrite systems, finite state machines and
attribute grammars to specify the semantics.

4. Implementation: the implementation of the design is
subject to various choices made about the nature of
execution of the DSL. A non-exhaustive list of
alternatives includes interpretation, compilation, pre-
processor, embedding and extension (as a library of
modifications made to the compiler/interpreter for the
host language, etc...).

5. Deployment: the effort devoted to the deployment of
the DSL and its acceptance is reduced by the success
of the previous phases. In addition, the ease of use,
adaptation to the domain, efficiency, expressiveness,
access to the DSL, involvement of a large community
for testing and the impact on productivity are key
points to consider.
The first step towards the development of the

Extended Queueing Networks Modeling and Markup
Language (EQNM2L) has been presented in the previous
section where motivations and objectives are discussed.
The analysis of the domain knowledge is the critical phase
that guides the design and implementation which are
discussed in the next sections. For the deployment stage,
an online and open source project has been created to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 140

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

involve a large community and easing access to this
DSML.

4. Domain knowledge

Most of basic concepts discussed in this paper are based
on [11], [12] and [13] where a queueing network is
considered as a set of service stations that are visited by
jobs. Terms as transaction, customer, client and job refer
to the same concept which characterizes any entity that
moves through the network, from one station to another to
acquire services.

4.1 Job classes and priorities

In queueing networks, jobs could belong to different
classes. Job classes may differ in their service and arrival
distributions, the number of resource units needed to
accomplish services and in their routing schemes leading
to different life cycles.

A class independent priority mechanism may be
considered to organize the whole population of jobs.
Hence, jobs may be scheduled according to their priorities.
Within the same priority category, another scheduling
discipline could be indicated to distinguish between
multiple jobs with equal priorities. It is possible also to
consider High Value First (HVF) or Low Value First
(LVF). A priority may also be static or dynamic. While a
dynamic priority changes its value over time, a static one
assigned to a job remains unchanged. A dynamic priority
may be time-dependent in the form of Pr(t) or be a
function of some system parameters. It is also possible that
a job changes its class or priority when it moves inside the
system.

4.2 Service stations

Service centers, nodes, stations refer to the same concept.
Each station is distinguished by a unique identifier and
characterized by a number of parallel servers, usually
identical, a waiting queue with limited or unlimited
capacity, class independent scheduling disciplines, and a
service probability distribution for each job class. For a
particular class of jobs the service is identified by a
probability distribution. Rates are generally static, but it is
also possible to apply dynamic rates varying over time,
especially in terms of some system indicators.

Several service disciplines are used to serve jobs
including FCFS (First Come First Served), LCFS (Last
Come First Served), Service in Random Order (SIRO),
Processor Sharing (PS), Shortest Job First (SJF), Round
Robin, and Shortest Remaining Time First (SRTF). If
Round Robin is used, a time slice is indicated. A variant of
this discipline called Weighted Round Robin; consider job

classes with weighted slices. Other specific disciplines
may be considered.

The study of a system is influenced by its initial state
which is described by the number of jobs in each station.
In contrast to the case where the system is initially empty,
realistic cases take into account the exact number of jobs
in the system. This is important especially for closed
systems where jobs are permanent components.

4.3 Asymmetric stations

If servers are identical, the station is qualified to be simple,
ordinary or symmetric. Otherwise, it is said to be
asymmetric where parallel servers present different
characteristics. We consider here those having different
service distributions or various vacation/failure schemes.
In real world, the heterogeneity models, for example,
machines with different ages or manufacturers. This
category of stations requires more information about job
affectation in case of multiple idle servers. For example:
1. Random: the task is assigned to a free server at

random.
2. Fastest Service: the task is assigned to the fastest free

server (the greatest service rate or the smallest
average time of service calculated from the log).

3. Longest idle time: the task is assigned to the server
which remained idle for the longest period of time
from the free servers set.
It is possible to define other allocation strategies. In

addition, sometimes the allocation process can’t
distinguish a single server and the use of another criterion
is required.

4.4 Passive stations

If we consider a computer system, then a job (a process or
a program) may use two or more resources at the same
time, memory space and CPU for example. We consider
here passive resources which are simple stations with a
number of tokens (identical units) and allocate queues. A
passive station has no service to offer except allocating its
tokens, so the service duration is generally assumed to be
nil. These passive nodes are of two types. The first is
devoted to allocation of tokens and the other for release.

When arriving at an allocate station, a job requests a
number of tokens. If it gets them, it can continue visiting
other nodes of the network; otherwise it must wait at this
node. When arriving at the corresponding release node, it
releases all its tokens. These tokens are then available for
other jobs [11].

4.5 Decision stations

A task, during its life cycle, may have to make decisions
based on the state of the system. Since a discrete event

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 141

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

system is described by a set of variables known as state
variables, a choice structure may be assimilated to a
service station in which the task takes a decision. The
decision is based on a Boolean expression containing one
or more state variables of the system among those
predefined or user-defined.

The evaluation of the Boolean expression can have
only two possible values. Hence, a decision structure has
only two directions or issues. The task is then directed
upon the result of the evaluation. This process is not time
consuming.

4.6 Service types

Service could be performed in several ways including:
1. Batch processing: the simplest way is to serve only

one job at time, but it is possible to do so with a batch.
Class dependent batch processing is possible by
indicating the minimum and the maximum batch sizes.
In this case, the whole batch is treated as one job. It is
clear that jobs of a batch are homogeneous and belong
to the same class.

2. Pre-emption: Some scheduling disciplines may cause
preemption of the processed job when a new job
arrives. A preempted job returns to the queue and may
resume later starting at the point where it was stopped
(preemptive resume) or restarting its service from the
beginning (preemption without resume or preemptive
repeat). For example, with Priority or LIFO
scheduling, preemption could be enabled or disabled.
It is also possible to use preemption in case of server
failure. Generally, preempted job returns to the front
of the queue, but other strategies may be considered.

3. Blocking: it may arise in a station when its queue has
a limited capacity. Several blocking models could be
distinguished such as:
a) Rejection: the blocked job is forced to leave the

system.
b) Blocking after service (BAS): the blocked job

will be forced to wait in its origin station until the
next station is able to accept it. Hence, the origin
station will be blocked (still busy) and stops
servicing other jobs.

c) Repetitive service (RS): the blocked job is forced
to repeat service by joining an Orbit until the next
station is able to accept it. The blocked job may
also choose a different destination according to
the routing probability.

d) Waiting queue (WQ): The job that has just been
served from a station is rooted to a temporary
waiting queue until next station can accept it.
This method doesn’t block the origin station.

4. Load dependent service: In some situations, service
duration may depend on the station load, expressed by
the number of jobs inside the station. In this case, for

each range of the station load, a service distribution is
indicated.

5. Server failure and vacation: In practical queueing
systems, service stations are not always reliable. They
may become unavailable for a period of time for a
variety of reasons (vacation, maintenance, failure ...).
Servers failures are assumed to be independent
identically distributed random variables specified by a
distribution function, but some models requires
different types of failure and follow different
distributions. Failure may be synchronous (all servers
fail at the same time) or asynchronous (servers fail
independently). Two probability distributions are
useful for modeling the mean time between failures
(MTBF) and mean time to repair or recover (MTTR).
Vacation is slightly different from failure. While the
latter is accidental, the former is scheduled and
conscientiously undertaken [14]. It is a process
governed by a policy that explicitly specifies:
a) Staring rules: exhaustive when beginning

vacation only if queue (system) is empty,
otherwise it is non-exhaustive and can begin at
any time.

b) Termination rule: determines when resuming.
Multiple vacation policy if keeping vacation
until having a job to serve. Single vacation
policy if resuming immediately and begin
servicing if customers are waiting or stay idle
otherwise.

c) Vacation duration: symmetric (independent and
identically distributed) or asymmetric (different
distributions).

For multi-server systems, starting and termination
policies are more complicated (synchronous or
asynchronous). Other policies are also possible like
guarantee of minimum service availability.

4.7 Sources

A service station may or not receive jobs from outside of
the system (exogenous arrivals), but must have at least an
output job flow towards another station or outside the
system.

An input from outside denotes a source of jobs and
has a unique identifier. It is associated to an exogenous job
flow characterized by a probability distribution, a class
and a priority to describe the corresponding arrival process.
It is also possible to specify batch arrivals by indicating
the distribution of the batch size. Arrival rate for a specific
job class is generally static, but we may consider dynamic
rates. Some sources have a limited population which is
important to consider.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 142

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.8 Job behavior

In a queuing model, the behavior of jobs is an important
feature and three major situations may arise:
1. Balking: Some customers decide not to join the queue

because of its length or insufficient waiting space.
This behavior results in the discouragement of
customers for not joining an improper or inconvenient
queue. It could be modeled using decision stations.

2. Reneging: Once in a queue, a job may choose to leave
it if it has waited too long (“timeout reneging”). It
requests a resource and wants to leave before
acquiring it, for example because it could get quicker
service by another resource with a shorter queue
(“conditional reneging”). Reneging pertains to
impatient customers. After being in queue for some
time, few customers become impatient and may leave
the queue.

3. Jockeying: Jockeying is a phenomenon, in which
customers move from one queue to another queue
with a hope that they will receive quicker service in
the new position.
Job’s behavior is station dependent and is more suited

to be indicated for each station.

4.9 Orbits

In many situations, jobs leaving a service station join a
region called “Orbit”. After a delay they retry their queries.
So, an orbit is a source of jobs fed by the system itself and
allows its jobs to retry queries after a random amount of
time. In queueing theory, this is a key feature for retrial
queues [15].

4.10 Outputs

Each station may have one or more outputs. A routing
strategy must be defined for each job class. An output is
identified by a reference to the destination station and
routing information according to the routing strategy.

It is possible that a job changes its class after a
service. This situation is common in manufacturing
systems where a given machine transforms received
products to new ones. An output normally needs to
indicate the associated resulting job class for every
received one.

4.11 Routing strategy

After service completion, a job is routed according to a
routing strategy which may be for example:
1. Probabilistic: job moves to the next station with a

given probability.
2. Round robin: all possible destinations for a job class

are chosen in a cyclic manner.

3. Shortest queue length: job moves to the next station
having the shortest queue.

4. Smallest response time: job moves to the next station
having the smallest response time calculated from the
log.

5. Smallest utilization: job moves to the next station
having the smallest average utilization calculated
from the log.

6. Fastest service: job moves to the next station having
the smallest average service time calculated from the
log.

4.12 Regions

The concept of regions is very powerful and denotes a set
of stations in the system with controlled capacity. It allows
expressing global constraints on a group of stations as
finite capacity for specific job classes. It is also useful in
global statistics computation. Hence, a Finite Capacity
Region (FCR) is a region of the model or a set of stations,
where the number of jobs is under control [16]. It is
possible to define an FCR capacity by setting upper
bounds for the number of customers in the region for
specific classes or globally regardless of the job classes.

5. Metamodel

Models are created using a modeling language called a
metamodel. The modeling language is itself is described in
another language called meta-metamodel. The philosophy
of DSM favors the creation of a new language for a
specific task, and hence there are naturally new languages
designed as meta-metamodels. DSM environments can
considerably reduce the cost of obtaining tool support for
a DSML, since a well-designed DSM environment will
automate the creation of application modules costly to
build from scratch, such as domain-specific editors,
compilers and models transformers. The domain experts
only need to specify the domain specific constructs and
rules, and the DSM environment provides a modeling tool
tailored for the target domain.

It has been established that a language is
characterized by its syntax and semantics. The syntax
describes the different language constructs and their
arrangement rules while semantics refers to the
relationship between a signifier (program or model) and a
signified (mathematical object) to give meaning to each of
the constructs of the language. So the relationship between
semantics and syntax is the same as between the content
and the form.

The metamodel represents the abstract syntax and is
the heart of the language, since it captures the whole
domain concepts and their relationships. It acts as a pivot
between the concrete syntax description and the semantics

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 143

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

description. Concrete syntax contains information on how
the concepts in the metamodel are to be represented to the
language user. This is sometimes amended by a mapping
in which each abstract concept is related to a textual
notation or a graphical symbol.

The EQNM2L metamodel illustrated in Figure 1 is
expressed in UML class diagram. It represents the abstract
syntax and a part of the static semantics. The rest of the
static semantics could be expressed using OCL.

An extended queueing network (EQNET) is an
aggregate of nodes, decision stations, sources, orbits,
outputs, outsides, sink and finite capacity regions. It may

contain a description which consists of a set of meta-
information about the model as name, used tool, version
and author. A node is an abstract concept that models a
variety of specific stations as simple, passive and
asymmetric stations. In contrast of an open network, a
closed network does not need a sink which models the
system’s environment.

It is important to note that some domain concepts
discussed in previous sections are not considered in this
minimal metamodel. The metamodel in its actual state
lacks of many concepts but is extensible to include new
concepts in order to gain more maturity.

Fig.1 EQNM2L Metamodel.

The static semantics is part of the metamodel. It consists
of a set of rules to ensure that it is well formed (well-
formedness rules). Rules allow expressing constraints and
thus reducing the overall valid models. We present these
constraints in natural language while trying to be concise
and clear. Subsequently, these rules are expressed in OCL
during the implementation phase in respect to the chosen
implementation tool. In addition to the cardinality
constraints already present in the class diagram, the other
rules are:

1. All identifiers are strictly positive integers which
include nodes, sources, orbits and finite capacity
regions (id > 0).

2. The identifier of a node is unique in the model.
3. A source of jobs directs its job flow to only one node.
4. A job flow of the same class and priority can’t be

directed more than once from one node to another, to
the outside or to an Orbit. It means that identical job
flows from the same node could not be directed to the
same target (Node, Orbit or Outside).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 144

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. For a job class, the network of queues can be either
open or closed.

6. Sources and orbits of the same station must have
distinct identifiers.

7. A probability is a real number comprised between 0
and 1 (0 ≤ pr ≤ 1).

8. If the routing strategy in a given station for a specific
job class is probabilistic, then the sum of probabilities
is equal to one (∑ pr = 1).

9. Job classes are positive integers (for Routing,
Designation, Output and Outside), but for a Source or
an Orbit, it is strictly positive (the class number 0 is
reserved to represent any class not explicitly
mentioned).

10. Only one Sink is authorized in a model (for open
networks) for which at least one source must exist (no
sink without sources).

11. An Orbit manipulates only one job class, so it must
receive only this class from the corresponding node to
which, as a Source, it directs jobs.

12. Finite Capacity Regions have distinct identifiers
(identifiers are unique).

13. A node may belong to different finite capacity regions
and a finite capacity region may contain different
nodes.

14. The population attribute of a source of jobs is a
positive integer (population ≥ 0). Zero means
unlimited.

6. Concrete syntax and exchange format

Some DSL developers consider that in modern visual (or
graphical) language environments there is no need to be
very specific about concrete syntax. At the low level,
information can be exchanged between different tools in a
textual concrete syntax using XML, and at the high level,
humans can input linguistic utterances into a tool using
graphical components. In consequence, the only thing that
remains is the need for renderings of models which are
meaningful to humans. However, because a language is a
means of communication that must preserve
interoperability, all tools developers need to agree on the
XML schema for interchange as well as on the symbols to
be used in rendering. In addition, both the XML schema
and the set of symbols for rendering are considered
concrete syntaxes of the language. If no agreement on
concrete syntaxes is done, lack of interoperability and
confusion would arise. It is clear that a mapping from
abstract syntax to a concrete syntax is as important as the
inverse mapping.

It is possible to define several concrete syntaxes for
the same abstract syntax. We adopted the derivation
illustrated in Figure 2, matching each element of the
abstract syntax with a visual (graphic) appearance. It is

important to provide visual elements as distinct (or similar)
as their abstractions. The visual syntax must be as close as
possible to the domain graphical notation. This will
facilitate the task of domain experts, ensure large
deployment and encourage acceptance of the DSML.

Fig. 2 Mapping between abstract and visual concrete syntax.

For simple languages and in most of the current DSM
tools, concrete syntax representation is directly mapped to
the abstract syntax. Logical entities are always visualized
as nodes, and logical relationships as edges. Nevertheless
the experience has shown that using more complex
metamodels, especially those conceived for automated
model transformations, not only results in visual models
being too complicated to overview, but it can also drain
system resources heavily. Consequently, modern
approaches make use of a separate visualization
metamodels, which describe the structural appearance of
diagrams. The last technique allows hiding superfluous
details; however it is still limited in the sense that classes
can only be mapped to nodes and references to edges.

The problem with EQNM2L formalism is the
exchange and reuse of developed models between various
simulation and analysis tools. It is necessary to refer to an
exchange format which must be open and promotes
maximum interoperability.

Various textual exchange formats exist and most of
them are based on XML. For example, QNAT software
[17] uses the Mathematica format and RAQS software [2]
uses a specific ASCII format. For JMT [16], it uses XML
as a mean to describe models. The syntax is specified by
the JMTmodel schema which serves as the unique format

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 145

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

used by the simulation and the analytical engines. The
main problem here is not only the multiple used formats,
but even if XML is used, the solution suffers from the lack
of expressiveness and agreement on a standard format.
The exchange format for EQNM2L [18] is a proposed draft
which may serve as a basis for developing more adequate,
stable and mature templates. It represents a metamodel
described as an XML-schema. Each element of the
metamodel is projected as an XML element. For the
inheritance concept, XML provides restrictions and
extensions that are similar and useful. In addition, some
constraints could be expressed easily, especially those of
uniqueness.

7. Implementation

One of the advantages of using the MDE approach is the
gain in productivity where the task of developing tooling
for domain-specific languages in a cost-effective manner is
possible.

The modeling environment must offer at least visual
syntax-aware editor to assist the user in model
construction. Actually, several tools support domain
metamodeling and domain application models, such as
MetaEdit+ from the MetaCase Company [19], GME from
ISIS laboratory of Vanderbilt University [20] , Microsoft
DSL Tools [5], AToM3 [21] as well as Eclipse
EMF/Ecore [22] and Eclipse GMF [23].

Eclipse GMF and GME are appropriate tools to
implement the EQNM2L modeling environment. Main
advantages are that both are open source, freeware,
mature, well documented and offer a sufficient set of
constructs to define most aspects of the DSML including
model validation and transformation. Actually, our project
is based mainly on Eclipse platform, together with its
EMF and the GEF plugins. The latter is a basic diagram
drawing engine. In addition, the static metamodel
mapping-driven GMF platform is the solution for linking
the two previous plugins and complete tool building
environment.

The domain model illustrated in Figure 3 covers only
a subset of EQNM2L. OCL constraints are inserted in the
EMF/Ecore model as shown in Figure 5 to allow model
validation.

The Eclipse DSL Toolkit is based mainly on EMFs
capabilities, including diagram definitions, transformation
definitions and code-generation templates, in addition to
model serialization and persistence. Many of these
capabilities are developed using EMF models. For
domain-specific modeling surfaces generation, Graphical
Modeling Framework (GMF) is based on a collection of
EMF models that are considered as DSLs themselves.
GMF allows providing a graphical concrete syntax where

the proposed graphical notation is mapped to the abstract
syntax.

Fig. 3 Domain model as an Ecore diagram.

Fig. 4 EQNM2L diagram editor in Eclipse.

The EQNM2L diagram editor illustrated in Figure 4,
offers a complete environment for graphical editing and
model validation. The project is an Eclipse plugin and
could be integrated easily.

Instead of coding model transformation rules, for
code generation, directly in the programming language of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 146

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the application, as most software does, it is more practical
to separate them and to lean on hard background of a
formal theory.

Fig. 5 EQNM2L OCL constraints.

Dynamic semantics of a DSML may be specified by
the various model transformations. Operational semantics
is well suited for directly executable or simulated models.

For EQNM2L, a model is either translated into a
simulation/programming language to be executed or into
an analysis tool specific format in order to be resolved. In
the first case, the semantics domain is changed and
transformation rules specify a denotational semantics.

The code generation process is a model
transformation operation. More accurately, it is considered
as model-to-text (M2T) transformation. The Xpand
template language is an increasingly popular template
engine, used extensively by the GMF project. It is
originated with the OpenArchitectureWare component
within GMT but has graduated to the M2T project.

Transformation rules are established according to the
source and the target metamodels. EQNM2L models could
be transformed into discrete event simulation code,
expressed in a general purpose programming language
(GPL) or a simulation language.

Several discrete event simulation libraries have been
developed to offer a mean to assist programmers in writing
customized and efficient simulation code. In the actual
state of the work, a Java simulation code is generated
automatically from EQNM2L conceptual models using
Xpand templates illustrated in Figure 6. The Japrosim
simulation library [24] has been chosen for code
generation.

 Fig. 6 Xpand-template For QueueNetwork class.

In order to facilitate understanding these rules, it is
necessary to have an idea of how Japrosim works. For
each model, a class named "QueueNetwork" is needed for
system initialization by creating first events and then
launching the simulation. The corresponding Xpand
template is illustrated in Figure 6. Another class named
"Transaction" which must extend the predefined "Entity"
class is required. It is the place for jobs (or transactions) to
declare needed shared resources as arrivals, services,
routing schemes, stations, queues and shared behavior.
Template in Figure 8 allows generating the previous Java
class. In addition, each source of jobs requires its own
Java class, named "Transactioni_j" that implements their
specific behavior in the system. These Java classes are
generated using the template shown in Figure 7.

Fig. 7 Xpand-template For Transactioni_j classes.

The same work has been done in [25] based on the
exchange format. The source model is expressed in XML
which allows using XSLT for expressing transformation
rules and helps maintaining and reusing the translation
software for future versions or other simulation languages.

XSLT is a powerful XML-dialect for manipulating
data in XML documents. It provides a set of operations
and manipulators, while XPath provides precision in

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 147

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

locating elements and attributes. So in order to translate
the conceptual model into an executable simulation model,
an XSLT stylesheet and an XSLT processor are used.

The XML model description is transformed into the
corresponding set of Java classes according to the

Japrosim library as discussed previously. The code
generation module is extensible for other simulation
languages or analysis tool format easily by associating the
corresponding XSLT stylesheets. The user will be free to
choose his target tool.

Fig. 8 Xpand-template For Transaction class.

8. Conclusions

We presented EQNM2L, an extended queueing networks
modeling and markup language where models are simply
queueing networks with an extension for new concepts
that help modeling more accurately a wider range of
discrete event systems. Obtained models may be suited to
analytical solutions, approximations, or simulation
techniques.

As a DSML, it is tool-independent, extensible and
well-established if we consider that it constitutes only a
starting version. Its main advantages include
interoperability enhancement at the conceptual modeling
level throw the proposed metamodel and the XML-based
exchange format. A modeling environment as an Eclipse
plugin is created guided by the proposed metamodel and
the adopted visual syntax. Based on the MDE concepts,
automation allows reducing the development time and
effort and makes validation easier.

It is possible to define a common visual (concrete)
syntax, but even if several rendering schemes are adopted
by different tools, the metamodel and the exchange format
remain unchanged.

The metamodel presented in this paper is a minimal
version and several concepts are not yet considered. It
could be extended easily, whenever a new concept has a
clear semantics. In our opinion, it is much easier to
conclude an agreement on a DSML than a specific tool.
Therefore, EQNM2L modeling environment could be
developed using any other tool that support domain
metamodeling.

Domain experts must be involved in order to improve
different aspects of this DSML. This includes more
complete metamodel, more concise semantics and more
adequate visual or concrete syntax. Furthermore the
proposed exchange format must also reflect those efforts.

To ensure acceptability and large deployment, in
addition to the adhering to the open source initiative to
imply a large community, several code and model
generators for the most used tools are to be considered.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 148

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Future work will focus also on the expressiveness
improvement by including new concepts.
References
[1] U. M. Chalavadi, "Automatic configuration of queueing

network models from business process descriptions". M. S.
thesis. Oklahoma State University, USA, 2004.

[2] M. Kamath, "Recent developments in modeling and
performance analysis tools for manufacturing systems", in
Computer Control of Flexible Manufacturing Systems, 1994,
pp. 231-263.

[3] P. Hudak, "Modular domain specific languages and tools", in
the Fifth International Conference on Software Reuse
(JCSR98), 1998, pp. 134-142.

[4] D. Spinellis, "Notable design patterns for domain-specific
languages", The Journal of Systems and Software, Vol. 56,
2001, pp. 91-99.

[5] S. Kelly, and J. P. Tolvanen, Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley and Sons,
Hoboken, New Jersey, 2008.

[6] S. Cook, G. Jones, S. Kent, and A. C. Wills, Domain-Specific
Development with Visual Studio DSLTools. Addison-Wesley,
2007.

[7] M. Mernik, J. Heering, and A. M. Sloane, "When and how to
develop domain-specific languages". Report Software
Engineering SEN-E0309, Stichting Centrumvoor
Wiskundeen Informatica (CWI), Amsterdam, the Netherlands
2003.

[8] W. Frakes, R. Prieto-Diaz, and C. Fox, "DARE: Domain
analysis and reuse environment". Annals of Software
Engineering, 1998, Vol. 5, pp. 125-141.

[9] R. N. Taylor, W. Tracz, and L. Coglianese, "Software
development using domain-specific software architectures",
in ACM SIGSOFT Software Engineering Notes, 1995, Vol.
20, N° 5, pp. 27-37.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W .E. Novak, and A. S.
Peterson, "Feature-oriented domain analysis (FODA)
feasibility study". Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University
1990.

[11] G. Bolsh, S. Greiner, H. de Meer, and K. S. Trivedi,
Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications,
Second Edition. John Wiley & Sons, 2006.

[12] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik, Quantitative System Performance: Computer System
Analysis Using Queueing Network Model. Prentice-Hall Inc,
Englewood Cliffs: New Jersey, 1984.

[13] R. B. Cooper, Introduction to Queueing Theory. Elsevier
North Holland, Inc. 1981.

[14] N. Tian, and Z. G. Zhang, Vacation Queueing Models:
Theory and Applications. International Series in Operations
Research & Management Science, Frederick S. Hillier, Series
Editor, Stanford University Springer Science + Business
Media, LLC. 2006.

[15] R. Artalejo Jess, and A. Gmez-Corral, Retrial Queueing
Systems: A Computational Approach. Springer-Verlag:
Berlin Heidelberg. 2008.

[16] M. Bertoli, G. Casale, and G. Serazzi, "JMT: performance
engineering tools for system modeling", ACM SIGMETRICS

Performance Evaluation Review, 2009, Vol. 36, Issue 4, New
York, USA, March. ACM press, pp. 10-15.

[17] D. Manjunath, D. M. Bhaskar, H. Tahilramani, S. K. Bose,
and M. N. Umesh, "QNAT: A Graphical Tool for the
Analysis of Queueing Networks", in TENCON '98. 1998
IEEE Region 10 International Conference on Global
Connectivity in Energy, Computer, Communication and
Control, 1998, Vol. 2, pp. 320-323.

[18] EQNM2L: http://sourceforge.net/projects/eqnm2l/. Accessed
on November 15th 2011.

[19] M. Rossi, and S. Kelly, "Construction of a CASE tool: the
case for MetaEdit+", in Proceedings of The First
International Symposium on Constructing Software
Engineering Tools (CoSET’99), 17-18 May 1999, Los
Angeles.

[20] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. T.
IV, G. Nordstrom, J. Sprinkle, and P. Volgyesi. "The Generic
Modeling Environment", In Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

[21] J. de Lara, H. Vangheluwe, "AToM3 as a Meta-CASE
environment (DFD to SC)", in 4th International Conference
On Enterprise Information Systems. Universidad de Castilla-
La Mancha-Ciudad Real -Spain- 3-6 April, 2002.

[22] F. Budinsky, D. Steinberg, Ed.Merks, R. Ellersick, and T. J.
Grose, Eclipse Modeling Framework: A Developer’s Guide.
AddisonWesley, 2003.

[23] Gronback. Richard C. Eclipse Modeling Project: A Domain-
Specific Language Toolkit. Addison-Wesley Professional, 1st
ed, 2009.

[24] A. Bourouis, and B. Belattar. "JAPROSIM: A Java
Framework for Discrete Event Simulation". Journal of Object
Technology, Vol. 7, No. 1, January-February 2008, pp. 103-
119.

[25] A. Bourouis, and B. Belattar, "Using XML in Simulation
Modelling: automatic code generation for XML-based
models", in Proceedings of the CARI 08, Tanger, Morocco,
October 23-25, 2008, pp 101-108.

Abdelhabib BOUROUIS received his BS degree in Computer
science from the University of Constantine (Algeria) in 1999, his
MS degree and Ph.D. degree respectively in 2003 and 2011 both
from the University of Batna (Algeria). He is a Senior Lecturer at
the University of Oum El Bouaghi (Algeria) since 2003. His
research interests include Artificial intelligence, Model Driven
Engineering, performance evaluation, parallel and distributed
simulation.

Brahim BELATTAR received his BS degree in Computer science
from the University of Constantine (Algeria) in 1981 and his MS
and PhD degrees from the University Claude Bernard of Lyon
(French) respectively in 1986 and 1991. He is an Associate
professor at the University of Batna since 1992. He has also taught
at the University of Constantine from 1982 to 1985. His research
interests include simulation, databases, semantic web, Model
Driven Engineering and Artificial intelligence.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 149

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

