
Operating System Performance Analyzer for Low-End
Embedded Systems

Shahzada Khayyam Nisar†, Maqsood Ahmed††, Huma Ayub†, and Iram Baig††

†Department of Software Engineering, University of Engineering & Technology, Taxila 47050 –Pakistan

†† Department of Computer Engineering, University of Engineering & Technology, Taxila 47050 –Pakistan

Abstract: RTOS provides a number of services to an embedded
system designs such as case management, memory management,
and Resource Management to build a program.
Choosing the best OS for an embedded system is based on the
available OS for system designers and their previous knowledge
and experience. This can cause an imbalance between the OS and
embedded systems.
RTOS performance analysis is critical in the design and integration
of embedded software to ensure that limits the application meet at
runtime. To select an appropriate operating system for an
embedded system for a particular application, the OS services to be
analyzed. These OS services are identified by parameters to
establish performance metrics. Performance Metrics selected
include context switching, Preemption time and interrupt latency.
Performance Metrics are analyzed to choose the right OS for an
embedded system for a particular application.

Key Terms: Embedded Systems, Metrics Number,
Performance Analysis, RTOS.

1. Real-time Operating Systems
An operating system is said to be real time when it
schedules the execution of programs in time, handles system
resources and gives a reliable basis for the development of
software code. [1][2]

1.1 Components of RTOS
Most RTOS kernels consist of the following components:

Figure 1: The normal component of the RTOS

i. Scheduler
ii. Objects

iii. Services

1.1.1 Scheduler

Scheduler is at the center of each kernel. A scheduler allows
algorithms that are needed to determine what role do when.

1.1.2 Objects
The most common RTOS kernel objects are:
• Information --- is simultaneous and independent threads of
execution that can compete for CPU execution time.
• Semaphores --- is a token-like object that can be raised or
charged by information for synchronization or mutual
exclusion.
• Message Queues --- are buffers that data structures that
can be used, mutual exclusion, synchronization and
communication by sending messages between tasks. [3]

Figure 2: The Objects of the RTOS

1.1.3 Services
Most kernels provide services to assist developers

for creation of real-time embedded applications. These
services comprise of API calls that can be used to perform

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 341

operations on kernel objects and can be used in general to
facilitate the following services:
• Timer Management
• Interrupt Handling
• Device I / O
• Memory Management

 Embedded systems are used for different applications.
These applications can be proactive or reactive, depends on
the interface requirements, scalability, connectivity, etc.
Selecting OS for an embedded system is based on an
analysis of the operating system itself and the requirements
of the application. [4]

2. Embedded Systems:
Embedded systems for a particular purpose are strictly
monitored by the device consists of its inclusion. Embedded
systems have specific requirements and pre-defined tasks
unlike general purpose personal computers.
Embedded systems are programmed hardware devices. A
programmable hardware chip the 'raw material' is
programmed for specific applications. This is understood in
comparison to older systems with hardware or systems fully
functional hardware and general purpose software loaded
externally. Embedded systems are a combination of
hardware and software that facilitates the mass production
and variety of applications. [5]

Figure 3: Schematic Embedded System

3. Selected Performance Measures for
RTOS

There is a set of performance parameters that are used to
analyze an operating system.

In this research, Performance Metrics consists of the
following features:

i. Context Switching
ii. Preemption Time

iii. Interrupt Latency

3.1 Context Switching
It is the average time the system takes to switch between
two independent active (i.e. not suspended) tasks of equal
priority. Task switching is synchronous and non-
anticipatory implements real-time control software for some
time for slice algorithm multiplexing equal priority tasks.
[6]

Task switching is fundamental performance measure of a
multitasking system. Measurement attempts to assess the
efficiency. The executive manipulates data structures in
saving and restoring context. Data exchange is also affected
by the host CPU architecture, instructions and functions.

In addition, the task is to change a measure of the manager's
competence list management, as an executive normally
organize their data structures in ordered lists and mixes
nodes depending on the circumstances.

Figure 4: Context Switch Time

3.2 Preemption Time
It is the average time for a task of higher priority to wrest
control of the system produces a running task a lower
priority. Preemption usually occurs when the higher priority
task is related to a sleep mode to a ready state in response to
some external event such as when a connected device
generates an interrupt, the ISR effort to wake up to the task
to service the request. Preemption Time is the average time
it takes the President to recognize an external event and
switch control of the system produces a running lower
priority task to an idle task with higher priority. [7]

Although conceptually similar to the task switch, takes first
refusal usually longer. This is because the executive must
first recognize waking measures and assess the relative
priorities started and asked details and only then change
position if necessary. Virtually all multi-use / multitasking
executives assign task priorities and many allow the
program designer priorities change dynamically. For this
reason, together with the interrupt latency preemption is the
most important real-time performance parameter. [9]

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 342

Figure 5: Preemption Time

3.3 Interrupt Latency
It is the time between the CPU receiving an interrupt request
and the implementation of the first instruction in interrupt
service routine. Interrupt latency reflects only the delay
introduced by the executive and the processor and does not
include delays on the bus or external devices. [8]

Figure 6: Interrupt Latency

4. Aims & Objectives
To choose the right operating system for an embedded
system selected performance metrics are analyzed. The
performance parameters are actually related to the services
provided by the operating system. Improving the services
provided is better operating system. In this research a
Metrics Number is generated for the grade of the operating
system by measuring time required for each service to occur
and the number of times the service units in a complete
loop. That Metrics code helps to choose the right operating
system for an embedded system for a particular application.

5. Research Platform
To identify and analyze performance parameters, the
environment of software and hardware is created. Three
RTOS for embedded systems have been selected.

(i) SALVO
(ii) PICOS18

(iii) FREERTOS

These RTOS have free version available and also used same
compiler, simulator, language and hardware platform.

6. How one RTOS differs from the other?

(i) RTOS’ differ in main architechure.

(ii) Type of scheduling algorithm used in it. (Pre-
emptive scheduling or co-operative scheduling).

(iii) Number of instructions of kernel without any task
written to it formed after compilation of complete
code. It will ultimately occupy space in ROM and
RAM, so it effects memory and execution speed .

(iv) Number of tasks it can run without degrading the
performace like response time. [9]

(v) Performance metrices that we have choosen i.e.
Context switching Time, Preemption time and
Interrupt Latency.

Applications are generated to perform multitasking. The
application is analyzed in real time and monitored to extract
the desired results.

In testing the performance of RTOS on 8 bit microcontroller
we choose the most commonly used microcontroller family,
microchip PIC 18Fxxxx class. And created a scenario in
which maximum number of hardware module connected
with it. The PIC18 family is being used in tremendous
marketable products. So in order to check its efficiency in
managing the modules controlled through the RTOS a
comparison is done between different RTOS running on the
same platform i.e. PIC18f452 / PIC18F4620
microcontroller, hardware modules and MPLAB simulator
and PIC-C18 Compiler [10].

These modules consisting of Temperature sensor, Real Time
CLOCK, UART Communication, LCD and Keypad user
interfaces. This allows the 8 bit microcontroller to test the
effective utilization of these resources mostly when modules
are used in parallel under RTOS.

Real Time Clock and keypad working on interrupt may have
same or different priorities. As this PIC range can support
up to two level of interrupt handling. TIME is updated on
LCD after each second through interrupt and displayed on
LCD. On keypad when key is pressed interrupt is generated;
shows button is pressed on LCD. Temperature sensor
module and SERIAL UART running in parallel displaying
data on LCD.

On hardware level the notable parameters that affect the
working of RTOS in handling different modules are as
follow:

7. Microcontroller
(i) Processor Clock Speed determines execution

speed of RTOS.
(ii) Amount of ROM available specify the number

of instructions can be stored including RTOS
and task instructions.

(iii) RAM size allows the number of processes that
can be run for given RTOS. [11]

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 343

(iv) STACK size provides the process local
variable to accommodate.

(v) Timer used in interrupt handling and in
calculating task execution time during
multitasking. Timer depends upon the clock
speed. [12]

(vi) That microcontroller which has no cache has
RTOS architecture which is free from cache at
design time.

8. Compiler and Coding Benefits
(i) For efficiency most tasks to be written in

assembly.
(ii) If C language is used then optimized then good

and efficient compiler that maps the C
language to assembly in minimum no. of
instruction is the ultimate goal.

(iii) Optimized coding technique used in defining
tasks. [13]

9. Hardware Information
(i) PIC18F452 has Harvard architecture (has a

separate instruction and data bus).
(ii) 40 pin IC.

(iii) 1536 BYTES on chip RAM.
(iv) 32KBYTES FLASH memory for Program

storage.
(v) Maximum 16384 single word instructions can

be placed in FLASH memory.
(vi) 2 interrupt priority levels.

(vii) 8MHZ internal oscillator or up to 20 MHz
external oscillator can be used.

Block Diagram

Figure 7: Block Diagram of Hardware

10. Analysis
As the application comprises of multi tasking and
interrupts therefore, the Performance Metrics
selected comprises of three performance
parameters. These are

1. Context Switch time
2. Preemption time
3. Interrupt Latency

For measuring the Metrics Number there are two
requirements

1. Time “T” for each parameter
2. Number of times “W” the parameter is called

11. Calculation of Time for Each Parameter

In order to calculate the time required for each parameter it
is necessary to identify where these parameters are called.
To calculate the time hardware timers are used. Break
points are given to the entry and exit of a parameter. Timer
is initialized on the entry break point and terminated on the
exit. The time calculated gives us the time for a parameter.
Same procedure is followed for rest of parameters.
For Example: The Context Switch Time is calculated by
marking Breakpoints on the start and end of the context
switch service of the operating system. Hardware Timer is
used for calculating the time. Timer is initialized at the start
break point and terminated at the exit break point. This will
give us the time required by the operating system for
context switch for two tasks.

12. Calculation of Weight of Each Parameter
To find out the number of times the parameter is called a
variable is defined in each parameter. For each time the
parameter is called that variable is incremented. The
incremented value is displayed on the Display screen. For
each parameter that variable is defined and measured for
one complete iteration of the application.
RTOS was made working in this WAY For testing of
performance:

Figure 8: RTOS Scheduling Policy

To find the time necessary to provide the required service
timers are initiated at the beginning and end when the loop

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 344

is complete. This will allow time an operating system to
provide the service that is their own ability. A variable is
initialized for each service for which time is expected to
learn that the number of times that the service has been
called. This will give the following values:

Time T are the observed values of Performance Parameters
in microseconds. Number of times the performance
parameter occur is given by the Weight W, the product of
T and W is given by TxW and total sum of all the three
product is given by ΣTxW in microsecond.

13. Metrics Number

For understanding we did comparison by analyzing the real
functionalities / usage of context switching, preemption and
interrupt latency in applications and compared accordingly.

14. Generation of Metrics Number for Free
RTOS

• Context Switching is measured by using yield()
functions. It means to give control to other task
when both tasks have the same priorities.
Execution time of task yield() has to be considered
because it is the part of kernel or scheduler.

Figure 9: Context switching for Free RTOS

• PreemptionTtime is measured when task priority
change or giving execution time to higher priority
task by changing the task priority to higher level.
we also include the time of
maketask_priorityhigh() function.

Figure 10: Preemption Time for Free RTOS

• Interrupt Latency is the measured time between
when external interrupt came and ISR related to
that interrupt start executing.

Figure 11: Interrupt Latency for Free RTOS

Table 1: Generation of Metrics Number for FREE RTOS

Performanc
e Parameter

Time

T

(µ sec)

Weight

W

T X W ΣTxW

(µ sec)

METRIC
S

NUMBER

1/ ΣTxW

Context
Switching
Time

TCS =7 WCS =
55 385

5359 186.60 Preemption
Time TP =15 WP = 67 1005

Interrupt
Latency

TIL=
3.5

WIL=
1134 3969

 Generation of Metrics Number for PICOS18

• Context Switching is measured by then each time
the task 0 sends an event to the task 1 the time to
switch from task 1 to task 0.

Figure 12: Context switching for PICOS18

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 345

• Preemption Time is measured when task priority
change or giving execution time to higher priority
task by changing the task priority to higher level.

Figure 13: Preemption Time for PICOS18

• Interrupt Latency is the measured time between
when external interrupt came and ISR related to
that interrupt start executing.

Figure 14: Interrupt Latency for PICOS18

Table 2: Generation of Metrics Number for PICOS18

15. Generation of Metrics Number for
SALVO RTOS

Co-operative context switching depends on the task that is
currently running. The current task calls for other to switch
to other for its working. But in preemptive context
switching the scheduler do not take care of the running task
when higher priority task occurs. SALVO is the only RTOS
that is not preemptive but co-operative RTOS. There are
upto 15 levels of priorities.

• Context switching is measured by Using
OS_Yield() functions. Its mean giving control to
other task when both task have the same priorities.
Execution time of task yield() has to be considered
because it’s part of kernel or scheduler.

Figure 15: Context switching for SALVO RTOS

• Preemption time is measured when task priority
change or giving execution time to higher priority
task by changing the task priority to higher level.
We also include the time of OS_SetPrio() function.

Figure 16: Preemption Time for SALVO RTOS

• Interrupt latency measured the time between when
external interrupt came and ISR related to that
interrupt start executing.

Performanc
e Parameter

Time

T

(µ sec)

Weight

W

T X W ΣTxW

(µ sec)

METRIC
S

NUMBE
R

1/ ΣTxW

Context
Switching

Time

TCS
=47

WCS =
55 2585

60290 16.58 Preemption
Time TP =15 WP = 67 1005

Interrupt
Latency

TIL=
50

WIL=
1134 56700

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 346

Figure 17: Interrupt Latency for SALVO RTOS

Table 3: Generation of Metrics Number for SALVO RTOS

In Tables, Column 1 lists performance parameters, for
which the Metrics numbers must be generated. In column 2,
the time T required for each performance parameter in
micro-seconds is listed. "T" is the measurement of time
intervals between time initialization and termination for
each performance parameter. Column 3, the number of
times the performance parameter occurred is denoted by
"W". "W" is the weight given to each performance
parameter for that specific application. Column 4 is the
weighted value of each performance parameter. Column 5 is
the summation of all weighted measurements. The inverse
of the sum of the weight measurements gives us a number
Metrics. Larger Metrics numbers are better operating
system for that specific application.

16. Conclusion
The measurement of this Metrics Number has a great
significance in selection of right operating system for a
specific application. If another operating system is selected
and same application is used with same hardware then the
weights will remain same however the time observed for
each performance parameter will be different. If the
resulting Metrics number is greater, then this operating
system is best for that environment. The Metrics Number
generated will help us in rating the operating system. This
will help us in deducing a procedure for selecting the right
Performance Metrics. Having right performance metrics will
help us to calculate metrics number which will help us in

selecting right operating system for an embedded system for
a specific application.

17. Future Directions
In this paper a method to analyse performance metrics of
operating system in real-time embedded systems is
described. For future work it is recommended that if the
methodology for the application processing time is
formulated then right processor can also be selected for the
embedded system. This will help the designer to make an
efficient embedded system with a right Real Time Operating
System.

References
[1] Wei-Tsun Sun; Zoran Salcic; , "Modeling RTOS for Reactive
Embedded Systems," VLSI Design, 2007. Held jointly with 6th
International Conference on Embedded Systems., 20th
International Conference on , pp.534-539, Jan.2007
doi:10.1109/VLSID.2007.111

[2] Su-Lim Tan; Tran Nguyen Bao Anh; , "Real-time operating
system (RTOS) for small (16-bit) microcontroller," Consumer
Electronics, 2009. ISCE '09. IEEE 13th International Symposium
on , pp.1007-1011,25-28 May 2009 doi:
10.1109/ISCE.2009.5156833

[3] Baynes, K.; Collins, C.; Fiterman, E.; Brinda Ganesh; Kohout,
P.; Smit, C.; Zhang, T.; Jacob, B.; , "The performance and energy
consumption of embedded real-time operating
systems," Computers, IEEE Transactions on , vol.52, no.11, pp.
1454- 1469, Nov. 2003
doi: 10.1109/TC.2003.1244943

[4] Hessel, F.; da Rosa, V.M.; Reis, I.M.; Planner, R.; Marcon,
C.A.M.; Susin, A.A.; , "Abstract RTOS modeling for embedded
systems," Rapid System Prototyping, 2004. Proceedings. 15th
IEEE International Workshop, pp. 210- 216, 28-30 June 2004
doi:10.1109/IWRSP.2004.1311119

[5] He, Z.; Mok, A.; Peng, C.; , "Timed RTOS modeling for
embedded system design," Real Time and Embedded Technology
and Applications Symposium, 2005. RTAS 2005. 11th IEEE , pp.
448- 457, 7-10 March 2005
doi:10.1109/RTAS.2005.52

[6] Suk-Hyun Seo; Sang-won Lee; Sung-Ho Hwang; Jae Wook
Jeon; , "Analysis of Task Switching Time of ECU Embedded
System ported to OSEK(RTOS),"SICE-ICASE,2006. International
Joint Conference , pp. 545-549,
18-21 Oct. 2006 doi: 10.1109/SICE.2006.315544

[7] Kavi, Krishna; Akl, Robert; Hurson, Ali; “Real-Time Systems:
An Introduction and the State-of-the-Art” John Wiley & Sons, Inc.
Wiley Encyclopedia of Computer Science and Engineering;
SN: 9780470050118; 2007;
doi: 10.1002/9780470050118.ecse344

[8] El-Haik, Basem; Shaout, Adnan; “Design Process of Real-
Time Operating Systems (RTOS)” John Wiley & Sons, Inc.
Software Design for Six Sigma; pp. 56-76; SN: 9780470877845;
2010; doi: 10.1002/9780470877845.ch3

[9] Edwards, Stephen A.; “Real-Time Embedded Software”; John
Wiley & Sons, Inc.; Wiley Encyclopedia of Electrical and

Performan
ce

Parameter

Time

T

(µ sec)

Weight

W

T X W ΣTxW

(µ sec)

METRIC
S

NUMBER

1/ ΣT xW

Context
Switching
Time

TCS
=10

WCS =
55 510

4149 241.02 Preemptio
n Time

TP
=12 WP = 67 804

Interrupt
Latency

TIL=
2.5

WIL=
1134 2835

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 347

Electronics Engineering; SN: 9780471346081; 2001; doi:
10.1002/047134608X.W8113

[10] Weiss, K.; Steckstor, T.; Rosenstiel, W.; , "Performance
analysis of a RTOS by emulation of an embedded system ," Rapid
System Prototyping, 1999. IEEE International Workshop on ,
pp.146-151, Jul 1999
doi:10.1109/IWRSP.1999.779045

[11] Stepner, D.; Rajan, N.; Hui, D.; , "Embedded application
design using a real-time OS," Design Automation Conference,
1999. Proceedings. 36th , pp. 151-156, 1999
doi:10.1109/DAC.1999.781301

[12] Elsir, M.T.; Sebastian, P.; Yap, V.V.; , "A RTOS for
educational purposes," Intelligent and Advanced Systems (ICIAS),
2010 International Conference on , pp.1-4, 15-17 June 2010
doi:10.1109/ICIAS.2010.5716166

[13] Cena G., Cesarato R., Bertolotti I.C. “An RTOS-based design
for inexpensive distributed embedded system” (2010) IEEE
International Symposium on Industrial Electronics,
art. no. 5636340, pp. 1716-1721.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 348

http://www.scopus.com.scopeesprx.elsevier.com/record/display.url?eid=2-s2.0-78650323333&origin=resultslist&sort=plfo-f&cite=2-s2.0-78650323333&src=s&imp=t&sid=p1Qux4TtzFLAA7VP72jLqc9%3a120&sot=cite&sdt=cite&sl=0
http://www.scopus.com.scopeesprx.elsevier.com/record/display.url?eid=2-s2.0-78650323333&origin=resultslist&sort=plfo-f&cite=2-s2.0-78650323333&src=s&imp=t&sid=p1Qux4TtzFLAA7VP72jLqc9%3a120&sot=cite&sdt=cite&sl=0

