
An Analysis of MIPS Group Based Job Scheduling Algorithm with
other Algorithms in Grid Computing

Abstract
 Two major problems in grid computing applications are, resource

management and job scheduling. These problems do occur due to

distributed and heterogeneous nature of the resources. This paper

introduces a model in job scheduling in grid computing

environments. A dynamic scheduling algorithm is proposed to

maximize the resource utilization and minimize processing time of

the jobs. The proposed algorithm is based on job grouping. The

results show that the proposed scheduling algorithm efficiently

utilizes resources at its best and reduces the processing time of

jobs.

Keywords- Grid computing; Job grouping; Job scheduling;

Dynamic scheduling; First come first served (FCFS) algorithm.

1. INTRODUCTION
 Grid computing refers to the cooperation of multiple processors

and its aim is to use the computational power in the areas which

need high capacity of the CPU. The Grid is concerned with the

exchange of computer power, data storage, and access to large

databases, without users searching for these resources manually.

Grid computing is based on large scale resources sharing in an

Internet. Computational Grids are emerging as a new computing

paradigm for solving challenging applications in science,

engineering, economics and econometrics [1]. Computational Grid

can be defined as large-scale high-performance distributed

computing environments that provide access to high-end

computational resources. And also it is defined as a type of parallel

and distributed system that enables the sharing, selection, and

aggregation of geographically distributed autonomous resources

dynamically at runtime depending on their availability,

performance, capability, cost, and user’s quality-of-service

requirements.

 Grid scheduling is the process of scheduling jobs over grid

resources. A grid scheduler is in-charge of resource discovery,

grid scheduling (resource allocation and job scheduling) and job

execution management over multiple administrative domains. In

heterogeneous grid environment with its multitude of resources, a

proper scheduling and efficient load balancing across the grid can

lead to improved overall system performance and a lower turn-

around time for individual jobs. There are two types of scheduling

namely static scheduling and dynamic scheduling in grid

computing system. For static scheduling, jobs are assigned to

suitable resources before their execution begin. For the dynamic

scheduling, reevaluation is assigned to already taken assignment

decisions during job execution.

 In grid computing system, resources are not under the central

control and can enter and leave the grid environment at any time.

An effective grid resource management with good job and

resource scheduling algorithm is needed to manage the grid

computing system. In grid computing environment, there exists

more than one resource to process jobs. One of the main

challenges is to find the best or optimal resources to process a

particular job in term of minimizing the job computational time.

Optimal resources refer to resources having high CPU speeds and

large memory spaces. Computational time is a

 S. Gomathi, Dr.D.Manimegalai,
 A.P,FXEC, Prof & Head, IT Dept,NEC,
 Tirunelveli, Kovilpatti,

Tamilnadu,India Tamilnadu,India
 Mobile: 9944866629 Mobile: 9442636698

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 335

measure of how long that resource takes to complete the job.

 In a Grid computing environment, the scheduler is responsible

for selecting the best suitable machines or computing resources for

processing jobs to achieve high system

throughput [2]. The scheduler must use coarse-grained jobs

instead of light weight jobs so as to reduce communication and

processing time. This paper focuses on grouping based job

scheduling and how they are grouped as coarse grained jobs. The

grouped jobs are allocated to resources in dynamic grid

environment taking into account memory constraint, processing

capabilities ,and the bandwidth of the resources.

 This paper is organized as follows. In Section II, related work

is surveyed, in section III basic grouping based job scheduling

model is discussed, in section IV analyses experimental evaluation

using GridSim toolkit [6] and section V concludes the paper with

future work.

 2. RELATED WORK
 In the field of grid resource management and job scheduling,

researchers have done much valuable work. Various algorithms

have been proposed in recent years and each one has particular

features and capabilities. In this section we review several

scheduling algorithms which have been proposed in grid

environment. Jobs submitted to a grid computing system need to

be processed by the available resources. Best resources in terms of

processing speed, memory and availability status are more likely

to be selected for the submitted jobs during the scheduling process.

Best resources are categorized as optimal resources.

 A scheduling optimization method should consider the

following two aspects, one is the application characteristics, and

the other is the resource characteristics [6]. Taking the

characteristics of lightweight job, into account there are some

researches on the fine-grained job scheduling problem.

 A dynamic job grouping-based scheduling algorithm groups

the jobs according to MIPS of the available resources. This model

reduces the processing and communication time of the job, but

this algorithm doesn't take the dynamic resource characteristics

into account and the grouping strategy may not utilize resource

sufficiently [3].

 A Bandwidth-Aware Job Grouping-Based scheduling strategy

schedules the jobs according to the MIPS and bandwidth of the

selected resource, and sends job group to the resource whose

network bandwidth has highest communication or transmission

rate. But, the strategy does not ensure that the resource having a

sufficient bandwidth will be able to send the job group within

required time [5].

 Scheduling framework for Bandwidth-aware strategy

schedules jobs in grid systems by taking of their computational

capabilities and the communication capabilities of the resource’s

into consideration. It uses network bandwidth of resources to

determine the priority of each resource. The job grouping

approach is used in the framework where the scheduler retrieves

information of the resources processing capability. The scheduler

selects the first resource and groups independent fine-grained jobs

together based on chosen resources processing capability. These

jobs are grouped in such a way that maximizes the utilization of

the resource’s and reduces the total processing time. After

grouping, all the jobs are sent to the corresponding resource’s

whose connection can be finished earlier which implies that the

smallest request is issued through the fastest connection giving

best transmission rate or bandwidth. However, this strategy does

not take dynamic characteristics of the resources into account, and

preprocessing time of job grouping and resource selection are also

high [4].

 The above analysis of various grouping based job scheduling

strategy presents some of their advantages and

disadvantages .However, there are some defects in the above

scheduling algorithms. First, the algorithms doesn’t take the

dynamic resource characteristics into account. Second, the

grouping strategy can’t utilize resource sufficiently. And finally, it

doesn’t pay attention to the network bandwidth and memory size.

To solve the problems mentioned above, an adaptive fine grained

job scheduling mechanism is presented in this paper.

3. JOB SCHEDULING MECHANISM
 The job scheduler is a service that resides in a user machine.

Therefore, when the user creates a list of jobs in the user machine,

these jobs are sent to the job scheduler for scheduling arrangement.

The job scheduler obtains information about the available

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 336

resources from the Grid Information Service (GIS). Based on this

information, the job scheduling algorithm is used to determine the

job grouping and resource selection for grouped jobs. The size of a

grouped job depends on the processing requirement length

expressed in Million Instructions, Bandwidth expressed in MHz/s

and Memory size requirement expressed in MB, expected

execution time in seconds. As soon as the jobs are put into a group

with a matching selected resource, the grouped job is dispatched

to the selected resource for computation.

 The grouping strategy should be based on the characteristics of

resources. In grid computing, there are two approaches for

obtaining dynamic resource characteristics for job execution. One

is that a user directly searches the resources for job execution

using an information service. The other is to use a resource

manager. With a resource manager, users can obtain information

about the grid through an interactive set of services, which

consists of an information service that is responsible for providing

information about the current availability and capability of

resources. The resource monitoring mechanism used in the

proposed algorithm belongs to the second one.

 Grouping strategy is done based on the resource’s status

according to processing capabilities (in MIPS), bandwidth (in

MHz/s), and memory size (in MB) of the available resources.

After gathering the details of user jobs and the available resources,

the system selects jobs in FCFS order to form different job groups.

The scheduler selects resources in FCFS order after sorting them

in descending order of their MIPS. Jobs are put into a job group

one after another until sum of the resource requirements of the

jobs in that group is less than or equal to the amount of resources

available at the selected resource site. Here, only the processing

capability and bandwidth are used to constrain the sizes of coarse-

grained jobs, but we can easily join additional constraints .Then

the fine-grained jobs can be grouped as several new jobs and these

new jobs should satisfy the following formula:

1. MI (job_group_i) ≤MIPS (i)*tp(i)
2. FSG (job_group_i) ≤BW (i)*tc(i)
3. TMR (all_group) ≤TMA(all_resources)
4. tp>tc

 In the above conditions, MI(job_group_i) is the processing

capacity of the resource i which will be allocated to the

jobgroupi , tp(i) is the expected job processing time,

FSG(job_group_i) is the file_size (in Mb) of the jobgroupi at the

resource i , tc(i) is the communication time, BW(i) is the

bandwidth of resource i, TMR denotes the total amount of

memory needed during the execution of the job j, TMA denotes

the total amount of memory available.

 Equation (1) specifies that the processing time of the coarse-

grained job shouldn’t exceed the expected time. The

communication time of the grouped jobs should not exceed

computation time of the grouped jobs and this is illustrated as (2)

& (4). Equation (3) specifies that the memory size requirement of

the jobgroup shouldn't exceed to the resource memory size. These

are the constraints in job grouping.

 This algorithm is divided into two parts. In the first part, the

scheduler receives resource status using GIS. And, it sorts job list

in descending order, and assigns a new ID for each job. In the

second part after gathering the details of user jobs and the

available resources, the system selects Jobs in FCFS order to form

different job groups. The scheduler selects resources in FCFS

order after sorting them in descending order of their MIPS. Jobs

are put into a job group one after another until sum of the resource

requirements of the jobs in that group is less than or equal to

amount of resource available at the selected resource site.

 In this way jobs are subsequently gathered or grouped one by

one according to the resulting MIPS, Memory size and Bandwidth

of the resource until the above conditions are satisfied. As soon as

a job group is formed, the scheduler submits the grouped job to

the corresponding resource for job computation setting the

resource power to zero. After execution the job group, the results

goes to the corresponding users and resource is again available to

Grid system.

Algorithm:

Begin

Part 1: Initialization

Step 1.

Direct jobs to the Scheduler.

Step 2.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 337

Direct Resource status to the scheduler

Step 3.

Sort joblist in descending order based on MIPS

Part 2: Job Scheduling

Step 1.

[Traverse Joblist] For i<-0 to joblistsize-1 do through step 2

Step 2.

[Traverse Grouplist] For j<-0 to joblistsize-1 do through step 3

Step 3

[Compare Processing Time] if MI(job_group_i)+jobi ≤

MIPS(i)*tp(i)

And

[Compare File Size] (jobgroup_ file_ sizej + job_ file_ sizei) /

baud_ ratej <tp(i)) or MI(jobgroup_j) = 0,

And

[CompareMemory] jobi/MIPSj > job_file_size /baud_ratej)

Step 4 [Construct job group] add job i to job group j;

Step 5 [Loop Break] break;

Step 6 [End Compare] endif

Step 7 [Increment j] j++;

Step 8 [End Loop] endfor

Step 9 [Compare Status of i] if job i can’t join any job_group then

Step 10 [Construct joblist2] add job i to joblist2;

Step 11 [Compare End] endif

Step 12 [Increment i] i++;

Step 13 [End Loop] endfor

Step14[Travese jobgrouplist_size] for i:<-0 to jobgrouplist_size-1

Step 15[Allocate jobgroup to resource] jobgroup I <- resource i;

Step 16[End Loop] endfor

Step 17[Compare size of joblist2] if joblist2_size<>0 then

Step 18[Assign joblist] joblist<-joblist2;

Step 19[Synchronize Process] wait a while;

Step 20[Get Resource status] get resource status from GIS;

Step 21[Receive jobgroup] receive computed jobgroup from

resources;

Step 22 [Loop part2] repeat part2;

Step 23[Compare End] endif

Step24 [Receive Computed Jobgroup] receive computed job group

from resources.

Step 25 [End of Algorithm] Ends

There are disadvantages in the above discussed algorithm. One of

the major disadvantages is that there are some specific set of jobs

that require only to a specific set of resources for assignment. For

an instance, the job jx can be done only by the resource rx.

Therefore the job jx cannot be assigned to any other resource.

Another disadvantage is that as it is also possible that some job

may require the processing capabilities of more than a resource.

Either a parallel assignment or sequential assignment may be

considered as a solution at times. In grid computing architecture

dynamic scheduling, the resources are not at all under central

control. A resource may enter and leave the environment at any

time. The frequency of how frequently a resource enters to grid

environment stays and moves away have to be carefully

accounted. This statistics will help in placing the jobs in queue.

The resource that most frequently enters into the grid can handle

processing of jobs without much delay. A random based

assignment could be a most ideal choice in the scheduling

structure. Resource Manager gets information about the next

entering resource into the grid environment. This in turn informs

the job scheduler to regroup jobs that can be assigned to the

entering resource. The job scheduler informs the list processor to

regroup the jobs that can be assigned to the incoming resource.

The group of jobs thus rescheduled will be made available to the

resource. If there are n numbers of resources that a processor r can

process, then the jobs within the group can be diverted to the

resource in the FCFS pattern. The factors such as bandwidth,

processing capabilities and memory size should be accounted in

listing the jobs within a group (ordering). Jobs that require

resource processing may be put on cycle till it finds a suitable

resource entering into the grid.

 4. EXPERIMENTAL EVALUATION
 GridSim [6] has been used to create the simulation of grid

computing environment. In this simulation, each resource is

characterized by its MIPS, bandwidth and memory size. The jobs

are characterized by their amount of computations, expected

execution time, memory-size requirement and expected transfer

time. In this experiment, jobs and resources are randomly

generated and the number of jobs varies from 100 to 500. Jobs in

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 338

different groups are given different amount of execution time. The

processing time is taken into account to analyze the feasibility of

the proposed scheduling algorithm. Our algorithm can reduce the

execution time and also the job completion success rate is high.

Table1: Job processing table

 Figure1.Job Processing Time.

Note: Graph numbered 1 shows the behavior of FCFS Algorithm

whereas Line segment number 3 shows the performance of Ant

Colony optimization Algorithm. The deviation shows that it

consumes comparatively lesser time than that of FCFS because of

grouping strategy applied on it. The disadvantage with the

algorithm is it has not taken care of other parameters such as

bandwidth, etc. Graph numbered 2 still shows better performance

than that of the previous two because of the application both

grouping and priority in the jobs in the group. The sum of all

priorities of the group is accounted as priority of the group. One

problem associated with this algorithm is how to handle the tie of

two or more groups having same priority. This conflict can be

overcome by introducing priority resolver. Though it is effective,

it takes account of only jobs of similar nature. Line number 4

shows the behavior of grouping based dynamic job scheduling

algorithm. Performance of grouping based job scheduling

algorithm consumes lesser processing time in comparison with the

all other algorithms accounted for because of the following facts.

Case 1: MIPS of job is much lesser than the MIPS of resource.

The resource is not fully utilized and no further assignment is

done till the MIPS of resource expires.

Case 2: MIPS of job equals to the MIPS of resource. Here the

resource is fully utilized.

Case 3: MIPS of job is greater than the MIPS of resource. This

assignment will not work because of the lesser MIPS of the

resource. A couple of strategies is suggested. The first one is to

discard the resource and wait in the queue till the job finds a

suitable resource in terms of MIPS and carry out scheduling

accordingly. The second option is to carry out the process partly

and the part of unfinished process can be assigned to another

resource subsequently.

5. CONCLUSION
 In order to utilize grid resources efficiently, an adaptive fine

grained job scheduling algorithm is proposed. The proposed

Scheduling Model in Grid Computing is a grouping based job

scheduling strategy that has taken memory constraint of individual

jobs together with expected execution time at the job level into

account rather than at the group level. The grouping algorithm

improves the processing time of fine grained jobs. Experimental

result demonstrates efficiency and effectiveness of the proposed

algorithm. Though the proposed algorithm can reduce the

execution time, its time complexity is high and some improvement

should be done in this aspect. The proposed model reduces the

waiting time of the grouped jobs. To further test and improve the

algorithm, some dynamic factors such as high priority, network

delay and QoS constraints can be taken into account. Advantages

of this algorithm compared with others are: It reduces the total

processing time of jobs. It maximizes the utilization of the

resource. Minimizing the wastage of CPU power. Grouping the

jobs fine-grained into grouping coarse grained will reduce the

network latencies.

REFERENCES

SNO No.of

Jobs

Processing

Time(FCFS)

Processing

Time(GBDJS)

1 100 55 55

2 200 200 160

3 300 280 220

4 400 380 260

5 500 440 280

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 339

 [1] Foster, I., Kesselman, C.: The Grid: Blueprint for a New

Computing Infrastructure.Morgan Kaufmann (1998)

[2] R.Buyya and M.Murshed, “Gridsim: a toolkit for the modeling

and simulation of distributed resource management and

scheduling for grid computing,” Concurrency and Computation:

Practice and Experience, vol. 14, 2002,pp. 1175–1220.

[3] N. Muthuvelu, Junyan Liu, N.L.Soe, S.venugopal, A.Sulistio,
and R.Buyya “A dynamic job grouping-based scheduling for
deploying applications with fine-grained tasks on global grids,” in
Proc of Australasian workshop on grid computing, vol. 4, 2005,pp.
41–48.
[4] Ng Wai Keat, Ang Tan Fong, "Scheduling Framework For
Bandwidth-Aware Job Grouping-Based Scheduling In Grid
Computing", Malaysian Journal of Computer Science, vol.19, No.
2, 2006,pp. 117-126 .
[5] T.F. Ang, W.K. Ng, "A Bandwidth-Aware Job Scheduling
Based Scheduling on Grid Computing", Asian Network for
Scientific Information, vol. 8, No. 3, pp. 372-277, 2009.
[6] V. Korkhov, T. Moscicki, and V.Krzhizhanovskaya, “Dynamic
workload balancing of parallel applications with user-level
scheduling on the grid,” Future Generation Computer Systems,
vol.25, January 2009, pp.28-34,
[7] F. Dong and S. G. Akl, “Scheduling algorithm for grid

computing: state of the art and open problems,” Technical Report

of the Open Issues in Grid Scheduling Workshop, School of

Computing, University Kingston, Ontario, January 2006.

 [8] Quan Liu, Yeqing Liao, "Grouping-based Fine-grained Job

Scheduling in Grid Computing", IEEE First International

Workshop on Educational technology And Computer

Science,vol.1, 2009, pp. 556-559.

[9] Dr. G. Sudha Sadasivam, “An Efficient Approach to Task

Scheduling in Computational Grids”, International Journal of

Computer Science and Application, vol. 6, No. 1, 2009, pp. 53-69.

[10] K.Somasundaram, S.Radhakrishnan, “Node Allocation In

Grid Computing Using Optimal Resource Constraint (ORC)

Scheduling”,IJCSNS International Journal of Computer Science

and Network Security, vol.8 No.6, June 2008.

[11] C. Liu, and S. Baskiyar, “A general distributed scalable grid

scheduler for independent tasks,” J. Parallel and Distributed

Computing, vol. 69, no. 3, 2009 , pp. 307-314 .

[12] Nikolaos D. Doulamis, Emmanouel A. Varvarigos ,” Fair

Scheduling Algorithms in Grids” IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11,

NOVEMBER 2007,pp. 1630- 1648.

[13] Y. C. Liang and A. E. Smith, “An ant colony optimization

algorithm for the redundancy allocation problem (RAP),” IEEE

Trans. Reliability,vol. 53, no. 3,2004, pp. 417–423.

[14] Vishnu Kant Soni, Raksha Sharma, Manoj Kumar Mishra ,”

An Analysis of Various Job Scheduling Strategies in Grid

Computing “ , 2nd International Conference on Signal Processing

Systems (ICSPS),2010 , pp.162-166.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 340

