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Abstract 
Symmetric key cryptography is one of the most critical 
computing problems that need high performance computing 
power resources. The use of large key sizes and complex 
encryption/decryption algorithms to achieve unbreakable state 
has led to an increased time computational complexity. 
Traditionally, this problem is solved in the grid environment by 
partitioning data streams into several blocks of a predefined size. 
This is done while sequentially reading the data from the raw 
data file. The grid manager node then takes the responsibility of 
passing these blocks to the executer nodes where different blocks 
are processed separately and simultaneously. Although this 
technique allows parallel processing to speed up the 
encryption/decryption process, creating blocks by sequentially 
reading the data file and distributing these blocks on executers 
synchronously by the central manager node is a poor technique 
and a source of delay. In this paper, we present a novel approach 
that tackles this problem by allowing executers to access data file 
at random and asynchronously exchange the blocks among them, 
thereby, delay is significantly reduced and data size can be scaled 
up. In order to show the merit of our approach experiments have 
been conducted through a system-level middleware for grid 
computing called Alchemi. The results show a remarkable 
performance enhancement in our approach over traditional 
approaches in terms of speed. 
Keywords: Grid computing, Grid Middleware, Alchemi, Data 
Encryption/Decryption, Symmetric Key Cryptography. 

1. Introduction 

The concept of grid computing is gaining popularity with 
the emergence of the Internet as a medium for global 
communication and the wide spread availability of 
powerful computers and networks as low-cost commodity 
components [1]. The computing resources and special 
class of scientific devices or instruments are located across 
various organizations around the globe. These resources 

could be computational systems (such as traditional 
supercomputers, clusters [2], or even powerful desktop 
machines), special class of devices (such as sensors, radio 
telescope, and satellite receivers), visualization platforms, 
or storage devices. A number of applications need more 
computing power than can be offered by a single 
resource/reasonable time and cost. This promoted the 
exploration of logically coupling geographically 
distributed high-end computational resources and using 
them for solving large-scale problems. Such emerging 
infrastructure is called computational (power) grid [3]. 
Computational grids are expected to offer dependable, 
consistent, pervasive, and inexpensive access to high-end 
resources irrespective of their physical location and the 
location of access points [3]. 
 
The grid must be designed and created in such a way that 
their components (fabric, middleware, and higher-level 
tools) and applications handle the key design issues in a 
coordinated manner. For instance, grid middleware offers 
services for handling heterogeneity, security, information, 
allocation, and so on. Higher level tools, such as resource 
brokers, support dynamic adaptability through automatic 
resource discovery, trading for economy of resources, 
resource acquisition, scheduling, the staging of data and 
programs, initiating computations, and adapting to changes 
in the grid status [4]. In addition, they also need to make 
sure that domain autonomy is honored but still meets user 
requirements such as quality of service in coordination 
with other components. 
 
Symmetric key cryptography is one of those complex 
large-scale problems that need high computing power to 
be solved efficiently. Cryptanalysis on this problem is 
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encouraging the use of larger key sizes and complex 
algorithms to achieve an unbreakable state [5]. However, 
this leads to an increase in computational complexity. 
Therefore, many researchers investigated the deployment 
of high performance computing approaches such as grid 
computing, cluster computing and Peer-to-Peer (P2P) to 
develop efficient and cost-effective symmetric key 
cryptography schemes. By utilizing these approaches, the 
performance of symmetric key cryptography can be 
improved through parallel execution [5]. 
 
Traditionally, this problem is solved in the Grid 
environment by partitioning data streams into several 
blocks of a predefined size [5, 14]. This is done while 
sequentially reading the data from the raw data file. The 
grid manager node then takes the responsibility of 
assigning these blocks to the executer nodes where 
different blocks are processed separately and 
simultaneously. Although this technique allows parallel 
processing to speed up the encryption/decryption process, 
creating blocks by sequentially reading the data file and 
distributing these blocks on executers synchronously by 
the central manager node is poor technique and a source of 
delay. In this paper, we present a novel approach that 
tackles this problem by allowing executers to access data 
file at random and asynchronously exchange data blocks 
among them.  The proposed approach is faster and more 
scalable than traditional approaches since it avoids the 
delay occurs due to partitioning the data into blocks by the 
grid application while reading the file and  passing large 
sets of data by the manager to the executers. The validity 
and the feasibility of the proposed approach is examined 
through a system level middleware for creating grid 
computing environment called Alchemi. Experiments 
show a remarkable performance enhancement in our 
approach over traditional approaches. 
 
The rest of this paper is organized as follows: in section 2 
we outline background information. Section 3 presents the 
open source, Alchemi, which provides the middleware for 
creating an enterprise grid-computing environment. 
Section 4 presents DES (Data Encryption Standard); 
Encryption and Decryption using Alchemi grid computing 
framework. Our proposed approach is presented in Section 
5. Section 6 presents performance evaluation experiments 
conducted through Alchemi and discusses the results. 
Finally, section 7 gives our conclusions. 

2. Background 

In order to meet the increasing demand of large-scale 
scientific computation in the fields of life sciences, 
biology, physics, and astronomy, the notion of 
"computational grid" was proposed in mid 1990s [6]. It 
has been observed that computers (such as PCs, work-
stations, and clusters) in the Internet are often idle. Grid 
computing aims to integrate idle computational power over 
the Internet and provide powerful computation capability 
for users all over the world [7]. Since a grid connects 
numerous geographical distributed computers fashion, an 
important issue is how to evenly distribute submitted tasks 
to nodes. This is a load balancing problem, one of the 
scheduling problems on the grid. By solving this problem, 
the computational resources of the grid can optimally be 
utilized. To perform grid computation, the process must be 
divisible into several sub-processes and run in parallel. 
The following are some of famous projects that have been 
designed for grid computation. 
 
The human genome is composed of 24 distinct 
chromosomes with about 3 billion DNA base pairs 
organized into 20,000~25,000 genes [8]. To identify these 
genes and determine the sequences of 3 billion DNA base 
pairs, running a computer simulation would be expensive 
and time consuming. Based on computational grid, the 
Human Genome Project was completed in 2003, three 
years ahead of the target goal. After the Human Genome 
Project was completed, scientists wanted to understand the 
function of human proteins, which affect human health, to 
discover the cure for diseases such as AIDS and cancer.  
Human Proteome Folding (HPF) project was started and 
ran on two computational grids [9].   
 
Chemical reactions or molecular behavior can be huge and 
complicated processes. Some chemistry problems, like 
quantum mechanics, would take hundreds of years to 
simulate on a personal computer. Computational 
Chemistry Grid [10] is one of the most important virtual 
organizations, which provides all necessary software and 
resources for computational chemistry. Searching for 
extraterrestrial intelligence (SETI), is a compelling 
scientific research that utilizes grid computation 
technology to analyze space-based radio signals collected 
from a radio telescope, at Arecibo, Puerto Rico [12].   
 
Grid computation is not only used in science, but also in 
business computation, where all corporate resources can 
be pooled so they can be processed efficiently in parallel, 
according to the business demand. The Oracle 10g [11] 
runs all database systems in a virtual environment (grid) 
where all systems are considered a resource pool, using 
resources efficiently and dynamically for business needs. 
Grid computation can also be used in financial modeling, 
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earthquake simulation, and climate/weather modeling, 
which are complex processes requiring an intricate 
infrastructure. A dynamic grid environment, which can 
perform parallel processing under a collaborative network, 
must be created to deliver the information. A number of 
projects worldwide are actively exploring the development 
of grid computing technology. They include Globus [13], 
Legion [15], NASA Information power grid [16], and 
Condor [17].  

3. Windows-based grid computing framework 
(Alchemi) 

The Alchemi grid-computing framework was conceived 
with the aim of making grid construction and development 
of grid software as easy as possible without sacrificing 
flexibility, scalability, reliability and extensibility. The key 
features supported by Alchemi are [18,19]:  
• Windows based machine with .NET grid computing 

framework; 
• Internet-based clustering of desktop computers without a 

shared file system 
• Federation of clusters to create hierarchical, cooperative 

grids 
• Dedicated or non-dedicated (voluntary) execution by 

clusters and individual nodes 
• Object-oriented grid thread programming model (fine-

grained abstraction) 
• Web services interface supporting a grid job model 

(coarse-grained abstraction) for cross-platform 
interoperability (e.g., for creating a global and cross-
platform grid environment via a custom resource broker 
component). 
 

 

Fig. 1 Distributed components and their relationships [19] 

Alchemi's distributed components consist of four types of 
nodes (or hosts) that take part in enterprise grid 
construction and application execution. These nodes 
include: User node, Manager node, Executer node and 

Cross platform Manger node, Fig. 1. An Alchemi 
enterprise grid is constructed by deploying a Manager 
node and one or more Executor nodes configured to 
connect to the Manager. One or more Users can execute 
their applications by connecting to the Manager. An 
optional component, the Cross Platform Manager, 
provides a web service interface to custom grid 
middleware. These components allow Alchemi to be 
utilized to create different grid configurations, which are 
desktop cluster grid, multi-cluster grid, and cross-platform 
grid (global grid). According to [19], these are described 
as follows: 
 
Cluster (Desktop Grid): is the basic deployment scenario, 
a cluster (as shown in Fig. 2) consists of a single Manager 
and multiple Executors that are configured to connect to 
the Manager. One or more Owners can execute their 
applications on the cluster by connecting to the Manager. 
Such an environment is appropriate for deployment on 
Local Area Networks as well as the Internet. 
 

 

Fig. 2 Cluster (desktop grid) deployment [19] 

Multi-cluster environment: is created by connecting 
Managers in a hierarchical fashion, Fig. 3.a. As in a single-
cluster environment, any number of Executors and Owners 
can connect to a Manager at any level in the hierarchy. An 
Executor and Owner in a multi-cluster environment 
connect to a Manager in the same fashion as in a cluster 
and correspondingly their operation is no different from 
that in a cluster.  
 
Global Grid: the cross platform manager is used to 
construct a grid conforming to the classical global grid 
model, Fig. 3.b. A grid middleware component such as a 
broker can use the Cross-Platform Manager web service to 
execute cross-platform applications (jobs within tasks) on 
an Alchemi node (cluster or multi-cluster) as well as 
resources grid-enabled using other technologies such as 
Globus. 
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Fig.3: Alchemi deployment in [a] multi-cluster    [b] global grid 
environments [19] 

4. DES Encryption/Decryption using Alchemi 
grid computing framework 

In this paper, we are concerned with symmetric key 
encryption algorithms such as DES and RC4  
[5] as a grid application that runs under Alchemi 
framework. These algorithms are extremely fast 
(compared to public-key algorithms) and are well suited 
for performing cryptographic transformations on large 
streams of data. Typically, these algorithms are used to 
encrypt one block of data at a time. Block ciphers 
cryptographically transform an input block of n bytes into 
an output block of encrypted bytes. The Enterprise Grid 
Middleware (Alchemi) is used to solve the symmetric key 
cryptography problem as shown in Fig. 4. Alchemi 
provides a Software Development Kit (SDK) that can be 
used by developers to develop grid applications. The SDK 
includes a Dynamic Link Library (DLL) that supports 
object oriented programming model for multithreaded 
applications. 
 
A grid application, called GridCryptoGraphy, has been 
built on top of Alchemi middleware grid environment as 
shown in Fig. 5. In this application, three main classes 
have been developed. The first class (GridCryptForm) is 
the interface to control and monitor the progress of the 
encryption and decryption process. It is also used to 
specify the location, connect user, and configure number 
of threads to be submitted to Alchemi manager. The 
classes GridEncryptThread and GridDecryptThred are the 
thread classes that run under Alchemi and they use the 
DES algorithm.  
 
The flow of GridCryptoGraphy program starts by dividing 
the raw file into several blocks and separating these blocks 

in order to parallelize the encryption process. The block 
separation process is done by reading the data file 
sequentially according to the block size. Each part of the 
file (block) is assigned to a thread including the last block 
whose size is the remainder of the predefined block size. 
The manager node passes the threads to the executer 
nodes. After the threads return with the encrypted results, 
GridCryptoGraphy saves the encrypted data to an output 
file according to the order of the threads. 
 

 
 

Fig.4: Symmetric Key Cryptography using Alchemi Middleware 

 

Fig. 5 GridCryptoGraphy Architecture 

5. Cryptography using asynchronous data 
exchange 

Our approach modeifies GridCryptoGraphy application to 
enable every executer accesses the input data file directly 
and at random by developing two new classes in this 
application. The classes are (AssGridEncryptThread and 
AssGridDecryptThread) which are the thread classes that 
run under Alchemi. The GridCryptoGraphy application 
only passes the names of input and output files to the 
manager as strings. It also passes the block size that each 
thread will access. So each thread will access the random 
access file according to each thread id multiplied with the 
block size, so if the block size is 1000, then thread number 
(0) will access the file in byte number (0) and thread 
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number (1) will access the file in byte number (1000), and 
so on. This process is accomplished through the reading 
and writing of the file, so the whole process is 
asynchronous as shown in Fig. 6. The job of the manager 
will only be initiating the threads, and not passing large 
datasets, thereby, we avoid delays due to creating large 
data blocks and passing them to executers. 
 

 

Fig. 6 GridCryptoGraphy Second experiment Architecture 

6. Performance evaluation 

Two experiments on large datasets have been conducted. 
Experiment 1 is a repetition of the GridCryptoGraphy 
application in [5] for a quantitative comparison with the 
results of experiment 2 that implements our approach. 
Eight executers have been used in each experiment with 
the following specification: for experiment 1, Intel® 
Pentium® 4 CPU 2.40 GHz, 512 MB RAM. For 
experiment 2, Intel® Pentium® 4 CPU 1.60 GHz, 128 MB 
RAM. Microsoft Windows XP Professional Version 2002 
Service Pack 2. The nodes were interconnected over a 
shared LAN network of 100 Mbps. 
 
The Alchemi manager was installed on a separate 
computer together with SQL Server 2000 and has the 
following specification: Intel® Pentium®4 CPU 3.00 
GHz, 512 MB RAM. Microsoft Windows Server 2003 
Standard Edition. The executions of the 
GridCryptoGraphy application run on the same computer 
with the manager.  
 
A separate computer is used for monitoring the 
performance of the application with the following 
specification: Intel® Pentium®III CPU 731 MHz, 128 MB 
RAM. Microsoft Windows XP Professional Version 2002 
Service Pack 2. 

 

The encryption and decryption experiments were 
conducted on files of size 9645200 bytes (approximately 
10 MB), 56610116 bytes (approximately 57 MB), 
104858112 bytes (approximately 105 MB), 597393408 
bytes (approximately 598 MB) and 1060842110 bytes 
(approximately 1061 MB) with different block sizes. For 
each file the encryption and decryption was carried on 
1,2,3,4,5,6,7 and 8 executer nodes. The encryption 
experiments were conducted on file of size 104858112 
bytes (approximately 105 MB) with 1, 5 and 10 Mb block 
size, which lead to the creation of 105, 21 and 11 work 
units respectively. For each experiment, the encryption 
was carried on 1, 2, 3, 4,5,6,7 and 8 executor nodes. Some 
snapshots of the program running are illustrated in Fig. 
7(a-d).  
 
The time performance results of experiment 2 are shown in 
Table 1.a and in Fig. 8.a. The speedup performance results 
are shown in Table 1.b and in Fig. 8.b where the speedup 
calculation is based on the following formula: 
 Speedup=(((Time taken by 1 executer using 1 megabytes 
block size - Time taken by m executer using n megabytes 
block size )/ Time taken by 1 executer using 1 megabytes 
block size )*100)+100)    
 
Figure 9 and figure 10 show the comparison between the 
results of experiment 1 and experiment 2. Although 
executers used in experiment 1 have higher specifications 
(Pentium IV 2400 MHz processor and 512 MB of 
memory) than those (Pentium IV 1600 MHz processor and 
128 MB of memory) used in experiment 2,  It has been 
found that: 
 Fig. 9 and Fig. 10 show remarkable improvements in the 

performance of our approach (experiment 2) compared 
to that of the traditional approach (experiment 1). 

 In the first experiment, there is a drop in the 
performance after using 4 executers. In contrary, in the 
second experiment there was improvement in 
performance till 8 executers, therefore, larger files as the 
video file of size 1060842110 bytes (approximately 
1061 MB) could successfully be encrypted. 

 Although increasing the block size creates less work 
units and so the performance should be increased. It is 
found that the performance in experiment 1 is reduced 
compared with experiment 2. 
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Fig. 7a: GridCryptoGraphy at runtime (monitoring of finished threads) 

 

Fig.7b: GridCryptoGraphy at runtime (initializing files using 5-mega 
block size and 12 working unit) 

 

Fig. 7c: Six executers are working 

 

 

 

Fig. 7.d: Execution desktop 

Table 1.a: Encryption time Performance results of 105Mega bytes file 
size 

 
 (1 Mega) 

min :sec 
(5 Mega ) 
 min :sec 

(10 Mega) 
min: sec 

1 00:42.563 00:35.469 00:35.141 

2 00:23.625 00:26.328 00:24.063 

3 00:23.469 00:24.266 00:24.013 

4 00:22.641 00:23.328 00:23.375 

5 00:21.859 00:21.281 00:23.078 

6 00:20.078 00:20.828 00:22.188 

7 00:21.313 00:20.391 00:20.172 

8 00:21.547 00:18.469 00:20.141 

Table 1.b: Encryption Speedup Performance results of (105Mega bytes) 
file size 

 

No of 
Executer
 

Block 
size 
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Fig. 8.a: Result graph of (104858112 bytes) file size with different block 
sizes 

 

Fig. 8.b Speedup Result graph of (104858112 bytes) file size with 
different block sizes 

 

Fig 9.a: A time comparison of results to the first and second experiments 
(104858112bytes) file size with different block sizes 

 

Fig. 9.b A time comparison of results to the First and Second        
Experiments of (104858112 bytes) file size with 1 Megabytes block sizes 

 

 

Fig. 9.c A time comparison of results to the First and Second Experiments 
of (104858112 bytes) file size with 5 Megabytes block sizes 

 

Fig. 9.d A time comparison of results to the First and Second Experiments 
of (104858112 bytes) file size with 10 Megabytes block sizes 
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Fig. 10.a Speedup comparison of results to the First and Second 
Experiments of (104858112 bytes) file size with different block sizes 

 

Fig (10.b) a speedup comparison of results to the First and Second 
Experiments of (104858112 bytes) file size with 1 Megabytes block sizes 

 

Fig. 10.c A speedup comparison of results to the First and Second 
Experiments of (104858112 bytes) file size with 5 Megabytes block sizes 

 

Fig (10.d) a speedup comparison of results to the First and Second 
Experiments of (104858112 bytes) file size with 10 Megabytes block sizes 

7. Conclusions 

This paper presents a grid based solution for solving the 
complex and large-scale problem of symmetric key 
cryptography that requires high performance computing 
resources. The problem was solved through a system-level 
middleware infrastructure called Alchemi. Alchemi is 
capable of creating an enterprise grid computing 
environment by harnessing windows machines and 
provide users with seamless computing ability and 
uniform access to resources in the heterogeneous grid 
environment. The proposed approach enhances the 
performance in terms of speed and limits the 
communication overhead. It is also scalable and cost-
effective due to the effective and efficient utilization of a 
commodity-based high performance-computing platform.   
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