

Scalable Symmetric Key Cryptography Using Asynchronous
Data Exchange in Enterprise Grid

Medhat Awadallah1 and Ahmed Youssef2

 1 Electrical and Computer Engineering Dept, Sultan Qaboos University
Muscat, Oman

2 Information Systems Department, King Saud University
Riyadh, 11543, KSA

Abstract
Symmetric key cryptography is one of the most critical
computing problems that need high performance computing
power resources. The use of large key sizes and complex
encryption/decryption algorithms to achieve unbreakable state
has led to an increased time computational complexity.
Traditionally, this problem is solved in the grid environment by
partitioning data streams into several blocks of a predefined size.
This is done while sequentially reading the data from the raw
data file. The grid manager node then takes the responsibility of
passing these blocks to the executer nodes where different blocks
are processed separately and simultaneously. Although this
technique allows parallel processing to speed up the
encryption/decryption process, creating blocks by sequentially
reading the data file and distributing these blocks on executers
synchronously by the central manager node is a poor technique
and a source of delay. In this paper, we present a novel approach
that tackles this problem by allowing executers to access data file
at random and asynchronously exchange the blocks among them,
thereby, delay is significantly reduced and data size can be scaled
up. In order to show the merit of our approach experiments have
been conducted through a system-level middleware for grid
computing called Alchemi. The results show a remarkable
performance enhancement in our approach over traditional
approaches in terms of speed.
Keywords: Grid computing, Grid Middleware, Alchemi, Data
Encryption/Decryption, Symmetric Key Cryptography.

1. Introduction

The concept of grid computing is gaining popularity with
the emergence of the Internet as a medium for global
communication and the wide spread availability of
powerful computers and networks as low-cost commodity
components [1]. The computing resources and special
class of scientific devices or instruments are located across
various organizations around the globe. These resources

could be computational systems (such as traditional
supercomputers, clusters [2], or even powerful desktop
machines), special class of devices (such as sensors, radio
telescope, and satellite receivers), visualization platforms,
or storage devices. A number of applications need more
computing power than can be offered by a single
resource/reasonable time and cost. This promoted the
exploration of logically coupling geographically
distributed high-end computational resources and using
them for solving large-scale problems. Such emerging
infrastructure is called computational (power) grid [3].
Computational grids are expected to offer dependable,
consistent, pervasive, and inexpensive access to high-end
resources irrespective of their physical location and the
location of access points [3].

The grid must be designed and created in such a way that
their components (fabric, middleware, and higher-level
tools) and applications handle the key design issues in a
coordinated manner. For instance, grid middleware offers
services for handling heterogeneity, security, information,
allocation, and so on. Higher level tools, such as resource
brokers, support dynamic adaptability through automatic
resource discovery, trading for economy of resources,
resource acquisition, scheduling, the staging of data and
programs, initiating computations, and adapting to changes
in the grid status [4]. In addition, they also need to make
sure that domain autonomy is honored but still meets user
requirements such as quality of service in coordination
with other components.

Symmetric key cryptography is one of those complex
large-scale problems that need high computing power to
be solved efficiently. Cryptanalysis on this problem is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 107

encouraging the use of larger key sizes and complex
algorithms to achieve an unbreakable state [5]. However,
this leads to an increase in computational complexity.
Therefore, many researchers investigated the deployment
of high performance computing approaches such as grid
computing, cluster computing and Peer-to-Peer (P2P) to
develop efficient and cost-effective symmetric key
cryptography schemes. By utilizing these approaches, the
performance of symmetric key cryptography can be
improved through parallel execution [5].

Traditionally, this problem is solved in the Grid
environment by partitioning data streams into several
blocks of a predefined size [5, 14]. This is done while
sequentially reading the data from the raw data file. The
grid manager node then takes the responsibility of
assigning these blocks to the executer nodes where
different blocks are processed separately and
simultaneously. Although this technique allows parallel
processing to speed up the encryption/decryption process,
creating blocks by sequentially reading the data file and
distributing these blocks on executers synchronously by
the central manager node is poor technique and a source of
delay. In this paper, we present a novel approach that
tackles this problem by allowing executers to access data
file at random and asynchronously exchange data blocks
among them. The proposed approach is faster and more
scalable than traditional approaches since it avoids the
delay occurs due to partitioning the data into blocks by the
grid application while reading the file and passing large
sets of data by the manager to the executers. The validity
and the feasibility of the proposed approach is examined
through a system level middleware for creating grid
computing environment called Alchemi. Experiments
show a remarkable performance enhancement in our
approach over traditional approaches.

The rest of this paper is organized as follows: in section 2
we outline background information. Section 3 presents the
open source, Alchemi, which provides the middleware for
creating an enterprise grid-computing environment.
Section 4 presents DES (Data Encryption Standard);
Encryption and Decryption using Alchemi grid computing
framework. Our proposed approach is presented in Section
5. Section 6 presents performance evaluation experiments
conducted through Alchemi and discusses the results.
Finally, section 7 gives our conclusions.

2. Background

In order to meet the increasing demand of large-scale
scientific computation in the fields of life sciences,
biology, physics, and astronomy, the notion of
"computational grid" was proposed in mid 1990s [6]. It
has been observed that computers (such as PCs, work-
stations, and clusters) in the Internet are often idle. Grid
computing aims to integrate idle computational power over
the Internet and provide powerful computation capability
for users all over the world [7]. Since a grid connects
numerous geographical distributed computers fashion, an
important issue is how to evenly distribute submitted tasks
to nodes. This is a load balancing problem, one of the
scheduling problems on the grid. By solving this problem,
the computational resources of the grid can optimally be
utilized. To perform grid computation, the process must be
divisible into several sub-processes and run in parallel.
The following are some of famous projects that have been
designed for grid computation.

The human genome is composed of 24 distinct
chromosomes with about 3 billion DNA base pairs
organized into 20,000~25,000 genes [8]. To identify these
genes and determine the sequences of 3 billion DNA base
pairs, running a computer simulation would be expensive
and time consuming. Based on computational grid, the
Human Genome Project was completed in 2003, three
years ahead of the target goal. After the Human Genome
Project was completed, scientists wanted to understand the
function of human proteins, which affect human health, to
discover the cure for diseases such as AIDS and cancer.
Human Proteome Folding (HPF) project was started and
ran on two computational grids [9].

Chemical reactions or molecular behavior can be huge and
complicated processes. Some chemistry problems, like
quantum mechanics, would take hundreds of years to
simulate on a personal computer. Computational
Chemistry Grid [10] is one of the most important virtual
organizations, which provides all necessary software and
resources for computational chemistry. Searching for
extraterrestrial intelligence (SETI), is a compelling
scientific research that utilizes grid computation
technology to analyze space-based radio signals collected
from a radio telescope, at Arecibo, Puerto Rico [12].

Grid computation is not only used in science, but also in
business computation, where all corporate resources can
be pooled so they can be processed efficiently in parallel,
according to the business demand. The Oracle 10g [11]
runs all database systems in a virtual environment (grid)
where all systems are considered a resource pool, using
resources efficiently and dynamically for business needs.
Grid computation can also be used in financial modeling,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 108

earthquake simulation, and climate/weather modeling,
which are complex processes requiring an intricate
infrastructure. A dynamic grid environment, which can
perform parallel processing under a collaborative network,
must be created to deliver the information. A number of
projects worldwide are actively exploring the development
of grid computing technology. They include Globus [13],
Legion [15], NASA Information power grid [16], and
Condor [17].

3. Windows-based grid computing framework
(Alchemi)

The Alchemi grid-computing framework was conceived
with the aim of making grid construction and development
of grid software as easy as possible without sacrificing
flexibility, scalability, reliability and extensibility. The key
features supported by Alchemi are [18,19]:
• Windows based machine with .NET grid computing

framework;
• Internet-based clustering of desktop computers without a

shared file system
• Federation of clusters to create hierarchical, cooperative

grids
• Dedicated or non-dedicated (voluntary) execution by

clusters and individual nodes
• Object-oriented grid thread programming model (fine-

grained abstraction)
• Web services interface supporting a grid job model

(coarse-grained abstraction) for cross-platform
interoperability (e.g., for creating a global and cross-
platform grid environment via a custom resource broker
component).

Fig. 1 Distributed components and their relationships [19]

Alchemi's distributed components consist of four types of
nodes (or hosts) that take part in enterprise grid
construction and application execution. These nodes
include: User node, Manager node, Executer node and

Cross platform Manger node, Fig. 1. An Alchemi
enterprise grid is constructed by deploying a Manager
node and one or more Executor nodes configured to
connect to the Manager. One or more Users can execute
their applications by connecting to the Manager. An
optional component, the Cross Platform Manager,
provides a web service interface to custom grid
middleware. These components allow Alchemi to be
utilized to create different grid configurations, which are
desktop cluster grid, multi-cluster grid, and cross-platform
grid (global grid). According to [19], these are described
as follows:

Cluster (Desktop Grid): is the basic deployment scenario,
a cluster (as shown in Fig. 2) consists of a single Manager
and multiple Executors that are configured to connect to
the Manager. One or more Owners can execute their
applications on the cluster by connecting to the Manager.
Such an environment is appropriate for deployment on
Local Area Networks as well as the Internet.

Fig. 2 Cluster (desktop grid) deployment [19]

Multi-cluster environment: is created by connecting
Managers in a hierarchical fashion, Fig. 3.a. As in a single-
cluster environment, any number of Executors and Owners
can connect to a Manager at any level in the hierarchy. An
Executor and Owner in a multi-cluster environment
connect to a Manager in the same fashion as in a cluster
and correspondingly their operation is no different from
that in a cluster.

Global Grid: the cross platform manager is used to
construct a grid conforming to the classical global grid
model, Fig. 3.b. A grid middleware component such as a
broker can use the Cross-Platform Manager web service to
execute cross-platform applications (jobs within tasks) on
an Alchemi node (cluster or multi-cluster) as well as
resources grid-enabled using other technologies such as
Globus.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 109

Fig.3: Alchemi deployment in [a] multi-cluster [b] global grid
environments [19]

4. DES Encryption/Decryption using Alchemi
grid computing framework

In this paper, we are concerned with symmetric key
encryption algorithms such as DES and RC4
[5] as a grid application that runs under Alchemi
framework. These algorithms are extremely fast
(compared to public-key algorithms) and are well suited
for performing cryptographic transformations on large
streams of data. Typically, these algorithms are used to
encrypt one block of data at a time. Block ciphers
cryptographically transform an input block of n bytes into
an output block of encrypted bytes. The Enterprise Grid
Middleware (Alchemi) is used to solve the symmetric key
cryptography problem as shown in Fig. 4. Alchemi
provides a Software Development Kit (SDK) that can be
used by developers to develop grid applications. The SDK
includes a Dynamic Link Library (DLL) that supports
object oriented programming model for multithreaded
applications.

A grid application, called GridCryptoGraphy, has been
built on top of Alchemi middleware grid environment as
shown in Fig. 5. In this application, three main classes
have been developed. The first class (GridCryptForm) is
the interface to control and monitor the progress of the
encryption and decryption process. It is also used to
specify the location, connect user, and configure number
of threads to be submitted to Alchemi manager. The
classes GridEncryptThread and GridDecryptThred are the
thread classes that run under Alchemi and they use the
DES algorithm.

The flow of GridCryptoGraphy program starts by dividing
the raw file into several blocks and separating these blocks

in order to parallelize the encryption process. The block
separation process is done by reading the data file
sequentially according to the block size. Each part of the
file (block) is assigned to a thread including the last block
whose size is the remainder of the predefined block size.
The manager node passes the threads to the executer
nodes. After the threads return with the encrypted results,
GridCryptoGraphy saves the encrypted data to an output
file according to the order of the threads.

Fig.4: Symmetric Key Cryptography using Alchemi Middleware

Fig. 5 GridCryptoGraphy Architecture

5. Cryptography using asynchronous data
exchange

Our approach modeifies GridCryptoGraphy application to
enable every executer accesses the input data file directly
and at random by developing two new classes in this
application. The classes are (AssGridEncryptThread and
AssGridDecryptThread) which are the thread classes that
run under Alchemi. The GridCryptoGraphy application
only passes the names of input and output files to the
manager as strings. It also passes the block size that each
thread will access. So each thread will access the random
access file according to each thread id multiplied with the
block size, so if the block size is 1000, then thread number
(0) will access the file in byte number (0) and thread

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 110

number (1) will access the file in byte number (1000), and
so on. This process is accomplished through the reading
and writing of the file, so the whole process is
asynchronous as shown in Fig. 6. The job of the manager
will only be initiating the threads, and not passing large
datasets, thereby, we avoid delays due to creating large
data blocks and passing them to executers.

Fig. 6 GridCryptoGraphy Second experiment Architecture

6. Performance evaluation

Two experiments on large datasets have been conducted.
Experiment 1 is a repetition of the GridCryptoGraphy
application in [5] for a quantitative comparison with the
results of experiment 2 that implements our approach.
Eight executers have been used in each experiment with
the following specification: for experiment 1, Intel®
Pentium® 4 CPU 2.40 GHz, 512 MB RAM. For
experiment 2, Intel® Pentium® 4 CPU 1.60 GHz, 128 MB
RAM. Microsoft Windows XP Professional Version 2002
Service Pack 2. The nodes were interconnected over a
shared LAN network of 100 Mbps.

The Alchemi manager was installed on a separate
computer together with SQL Server 2000 and has the
following specification: Intel® Pentium®4 CPU 3.00
GHz, 512 MB RAM. Microsoft Windows Server 2003
Standard Edition. The executions of the
GridCryptoGraphy application run on the same computer
with the manager.

A separate computer is used for monitoring the
performance of the application with the following
specification: Intel® Pentium®III CPU 731 MHz, 128 MB
RAM. Microsoft Windows XP Professional Version 2002
Service Pack 2.

The encryption and decryption experiments were
conducted on files of size 9645200 bytes (approximately
10 MB), 56610116 bytes (approximately 57 MB),
104858112 bytes (approximately 105 MB), 597393408
bytes (approximately 598 MB) and 1060842110 bytes
(approximately 1061 MB) with different block sizes. For
each file the encryption and decryption was carried on
1,2,3,4,5,6,7 and 8 executer nodes. The encryption
experiments were conducted on file of size 104858112
bytes (approximately 105 MB) with 1, 5 and 10 Mb block
size, which lead to the creation of 105, 21 and 11 work
units respectively. For each experiment, the encryption
was carried on 1, 2, 3, 4,5,6,7 and 8 executor nodes. Some
snapshots of the program running are illustrated in Fig.
7(a-d).

The time performance results of experiment 2 are shown in
Table 1.a and in Fig. 8.a. The speedup performance results
are shown in Table 1.b and in Fig. 8.b where the speedup
calculation is based on the following formula:
 Speedup=(((Time taken by 1 executer using 1 megabytes
block size - Time taken by m executer using n megabytes
block size)/ Time taken by 1 executer using 1 megabytes
block size)*100)+100)

Figure 9 and figure 10 show the comparison between the
results of experiment 1 and experiment 2. Although
executers used in experiment 1 have higher specifications
(Pentium IV 2400 MHz processor and 512 MB of
memory) than those (Pentium IV 1600 MHz processor and
128 MB of memory) used in experiment 2, It has been
found that:
 Fig. 9 and Fig. 10 show remarkable improvements in the

performance of our approach (experiment 2) compared
to that of the traditional approach (experiment 1).

 In the first experiment, there is a drop in the
performance after using 4 executers. In contrary, in the
second experiment there was improvement in
performance till 8 executers, therefore, larger files as the
video file of size 1060842110 bytes (approximately
1061 MB) could successfully be encrypted.

 Although increasing the block size creates less work
units and so the performance should be increased. It is
found that the performance in experiment 1 is reduced
compared with experiment 2.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 111

Fig. 7a: GridCryptoGraphy at runtime (monitoring of finished threads)

Fig.7b: GridCryptoGraphy at runtime (initializing files using 5-mega
block size and 12 working unit)

Fig. 7c: Six executers are working

Fig. 7.d: Execution desktop

Table 1.a: Encryption time Performance results of 105Mega bytes file
size

 (1 Mega)

min :sec
(5 Mega)
 min :sec

(10 Mega)
min: sec

1 00:42.563 00:35.469 00:35.141

2 00:23.625 00:26.328 00:24.063

3 00:23.469 00:24.266 00:24.013

4 00:22.641 00:23.328 00:23.375

5 00:21.859 00:21.281 00:23.078

6 00:20.078 00:20.828 00:22.188

7 00:21.313 00:20.391 00:20.172

8 00:21.547 00:18.469 00:20.141

Table 1.b: Encryption Speedup Performance results of (105Mega bytes)
file size

No of
Executer

Block
size

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 112

Fig. 8.a: Result graph of (104858112 bytes) file size with different block
sizes

Fig. 8.b Speedup Result graph of (104858112 bytes) file size with
different block sizes

Fig 9.a: A time comparison of results to the first and second experiments
(104858112bytes) file size with different block sizes

Fig. 9.b A time comparison of results to the First and Second
Experiments of (104858112 bytes) file size with 1 Megabytes block sizes

Fig. 9.c A time comparison of results to the First and Second Experiments
of (104858112 bytes) file size with 5 Megabytes block sizes

Fig. 9.d A time comparison of results to the First and Second Experiments
of (104858112 bytes) file size with 10 Megabytes block sizes

105 MB using 1 MB block size (105 work units)

00:00.000

00:17.280

00:34.560

00:51.840

01:09.120

01:26.400

01:43.680

02:00.960

02:18.240

02:35.520

02:52.800

12345678

No of Executers

Ti
m

e i
n

m
in

:s
ec

1000000 (1 Mega)min:sec
First version
1000000 (1 Mega)min:sec
Second version

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 113

Fig. 10.a Speedup comparison of results to the First and Second
Experiments of (104858112 bytes) file size with different block sizes

Fig (10.b) a speedup comparison of results to the First and Second
Experiments of (104858112 bytes) file size with 1 Megabytes block sizes

Fig. 10.c A speedup comparison of results to the First and Second
Experiments of (104858112 bytes) file size with 5 Megabytes block sizes

Fig (10.d) a speedup comparison of results to the First and Second
Experiments of (104858112 bytes) file size with 10 Megabytes block sizes

7. Conclusions

This paper presents a grid based solution for solving the
complex and large-scale problem of symmetric key
cryptography that requires high performance computing
resources. The problem was solved through a system-level
middleware infrastructure called Alchemi. Alchemi is
capable of creating an enterprise grid computing
environment by harnessing windows machines and
provide users with seamless computing ability and
uniform access to resources in the heterogeneous grid
environment. The proposed approach enhances the
performance in terms of speed and limits the
communication overhead. It is also scalable and cost-
effective due to the effective and efficient utilization of a
commodity-based high performance-computing platform.

References
[1] R. Buyya, D. Abramson and J. Giddy, “Driven Resource

Management Architecture for Computational Power Grids”.
The 2000 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’2000), Las Vegas, 2000.

[2] http://recerca.ac.upc.edu/conferencies/AGC2007/, “Agent
based Grid Computing”.7th IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2007) Rio de
Janeiro, Brazil, 154-17 May 2007.

[3] I. Foster and C. Kesselman, (editors), “The Grid: Blueprint
for a New Computing Infrastructure”, Morgan Kaufmann
Publishers, USA, 1999.

[4] I. Foster, “Service-Oriented Science”. Science, vol. 308, May
6, 2005.

[5] A. Setiawan, D. Adiutama, J. Liman, A. Luther and R.
Buyya, “GridCrypt: High Performance Symmetric Key
Cryptography Using Enterprise Grids”. Liew, K. M. (editors)
PDCAT, Springer-Verlag, pp. 872-877, 2004.

105 MB using 10 MB block size (11 work units)

0.00

50.00

100.00

150.00

200.00

250.00

12345678

No of Executers

Sp
ee

du
p(

%
)10000000 (10

Mega)Speedup(%) First
version
10000000 (10
Mega)Speedup(%)
Second version

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 114

[6] I. Foster, “What is the Grid? A Three Point Checklist”,
GRIDToday, July 20, 2002.

[7] I. Foster, “The Grid: A New Infrastructure for 21st Century
Science”. Physics Today, 55(2):42-47, 2002.

[8] International Human Genome Sequencing Consortium. 2004
[9]The Human Proteome Folding Project, http://www.

Grid.org/projects/hpf/
[10] http:// www.worldcommunitygrid.org/
[11] D. Kusnetzky and C. W. Olofson, “Oracle 10g: Putting

Grids to Work”,
 http://www.sswug.org/articles/viewarticle.aspx?id=18542
[12] http://setiathome.ss1.berkeley.edu/
[13] J. Bresnahan, M. Link, G. Khanna, Z. Imani, R. Kettimuthu

and I. Foster. “Globus GridFTP: What's New in 2007”
(Invited Paper), in Proceedings of the First International
Conference on Networks for Grid Applications (GridNets
2007), Oct, 2007

 [14] R. Kettimuthu, W. Allcock, L. Liming, J. Navarro and I.
Foster. “GridCopy: Moving Data Fast on the Grid”, in
Proceedings of the Fourth High Performance Grid
Computing Workshop to be held in conjunction with
International Parallel and Distributed Processing Symposium
(IPDPS 2007), March, 2007

[15] Legion – http://legion.verginia.edu/
[16] NASA IPG-http://www.ipg.nasa.gov
[17] Condor – http://www.cs.wisc.edu/condor/
[18] R. Ranjan, X. Chu, C. A. Queiroz, A. Harwood, R. Buyya.

“A self organizing federation of Alchemi Desktop grids”.
Grids lab and P2P group, Australia, 2007.

[19] A. Luther, R. Buyya, R. Ranjan and S. Venugopal,
“Alchemi: A .NET-based Grid Computing Framework and
its Integration into Global Grids”, Technical Report, GRIDS-
TR-2003-8, Grid Computing and Distributed Systems
Laboratory, University of Melbourne, Australia, December
2003.

Medhat Awadallah is an assistant professor at Electrical and
Computer Engineering Department, Sultan Qaboos University. He
obtained his PhD from university of Cardiff, UK. MSc and BSc from
Helwan university, Egypt. His research interest includes cloud
computing, sensor networks, high performance computing and real
time systems.

Ahmed Youssef is an assistant professor at college of computer
and information sciences, King Saud University. He obtained his
P.h.D. and M.Sc. in computer science and engineering from
university of Connecticut, USA. M.Sc and B.Sc in electronics and
communications engineering from Helawn university, Egypt. His
research interest includes cloud computing, mobile computing,
high performance computing and information security.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 115

http://www/
http://www.worldcommunitygrid.org/
http://setiathome.ss1.berkeley.edu/
http://legion.verginia.edu/
http://www.cs.wisc.edu/condor/
http://www.gridbus.org/~alchemi/files/alchemi_techreport.pdf
http://www.gridbus.org/~alchemi/files/alchemi_techreport.pdf

