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Abstract 
The aim of a distributed checkpointing algorithm is to efficiently 
restore the execution state of distributed applications in face of 
hardware or software failures. Originally, such algorithms were 
devised for fixed networking systems, of which computing 
components communicate with each other via wired networks. 
Therefore, those algorithms usually suffer from heavy 
networking costs coming from frequent data transits over 
wireless networks, if they are used in the wireless computing 
environment. In this paper, to reduce usage of wireless 
communications, our checkpointing algorithm allows the 
distributed mobile application to tune the level of its 
checkpointing strictness. The strictness is defined by the 
maximum rollback distance (MRD) that says how many recent 
local checkpoints can be rolled back in the worst case. Since our 
algorithm have more flexibility in checkpointing schedule due to 
the use of MRD, it is possible to reduce the number of enforced 
local checkpointing. In particular, the amount of data transited on 
wirelesses networks becomes much smaller than in earlier 
methods; thus, our algorithm can provide less communication 
cost and shortened blocking time. 
Keywords: Mobile networks, distributed application, rollback, 
recovery, distributed checkpointing. 

1. Introduction 

During the past decades, there have been dramatic 
advances in mobile networks and mobile devices. In 
particular, the fast spreading usage of smart phones is 
likely to yield demands for sophisticated distributed 
applications across multiple mobile devices [1, 2]. During 
the run-time of such a distributed application, its 
cooperating application processes (APs) work in parallel 
and data are usually transited between APs to share 
application contexts.  In this situation, failure on a single 
AP or hardware device could cause a serious problem in 
the whole distributed application and thus it may roll back 

the application’s processing state to the initial one in the 
worst case. To prevent a whole cancelation of the 
processing result, checkpoint records are created to log 
intermediate execution results. The recovery procedure 
after abrupt failure builds a consistent state of an 
application from the checkpoint data, and resumes the 
interrupted application from that state. This can reduce 
undesirable loss of application process 
 
To make the distributed application robust and recoverable 
against failure, many works are done for the computing 
environments where the distributed application seems to be 
executed in the wired fixed networks [4, 6, 7, 10, 11, 13]. 
When checkpointing algorithms of those earlier works are   
applied to distributed applications running on wireless 
networked, they suffer from high cost for sending 
checkpoint data via warless connections. Since data transit 
over wireless networks is more costly and unstable, 
compared with that over wired networks, many researches 
focus on reduction of wireless data transit in the case of the 
checkpointing scheme for wireless computing environment 
[5, 8, 9,10, 12]. 
 
In the paper, we also propose a distributed checkpointing 
scheme suitable for distributed applications running on the 
mobile computing environment. We here introduce two 
key ideas of the maximum rollback distance (MRD) and 
the logging agent running on the MSS (Mobile Support 
Station). The logging agent is a software agent running on 
MSS, which is responsible for making local checkpoints at 
the request of its associated AP’s requests and maintaining 
at least one consistent global checkpoint. To save the cost 
for maintaining such a global checkpoint, the agent can do 
some logging activities without any requests from 
associated AP. For this, the logging agent securitizes 
messages arriving on its MSS and communicates with 
other logging agents for synchronization of checkpointing. 
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If the rule of checkpointing synchronization is too strict, 
enforced local checkpoints are frequently created. Sine 
enforced local checkpoint request costly data transit in 
wireless network lines; it is needed to make the 
synchronization rule more flexible. In this notion, we 
introduce the MDR for each distributed application. On the 
other hand, the MDR is a run-time parameter for a 
distributed application, saying how many local checkpoint 
of a given AP can be rolled back in the worst case. With a 
MDR properly set to a value, a significant flexibility is 
available at the time local checkpoints are synchronized in 
order to create a new global checkpoint. Due to the tunable 
level of checkpointing synchronization using MDR, the 
logging agents participating in a distributed application can 
reduce the number of enforced local checkpointing and 
costly message transit over wireless networks.  

 
The rest of this paper is organized as follows. In Section 2, 
we describe some backgrounds regarding the meaning of 
global consistency of distributed checkpoints, the assumed 
mobile network, and the previous works. Then, we propose 
a new efficient distributed checkpointing scheme in 
Section 3, and discuss the performance characteristics of 
our scheme in Section 4. Lastly, we conclude this paper in 
Section 5. 

2. Backgrounds 

2.1 Global Consistent State 

The GCS (Global Consistent State) of distributed 
applications was formally defined by Lamport [17]. 
According to that definition, processing of a distributed 
application can be modeled by three types of events such 
as the message sending event, the message receiving event, 
and the computation event. Each AP participating in a 
distributed event can do the computation event to proceed 
with its processing state and communication with other 
participant APs through message sending/receiving events.   
 
In this event model, a set of events meeting the GCS can 
be captured using the relation “happen-before” drawn on 
events. In [17], the “happen-before” relation (HBR) is as 
follows. 
 
[Definition of HBR] If it is the case that e1 “happen-before” 
e2, then either of the following conditions should be true.  

i) Both e1 and e2 occur in the same AP and e1 precedes 
e2 in timing sequence.  

ii) There are a message m and two APs of p1 and p2 such 
that p1 sends (event e1) message m to p2 and p2 
receives (event e2) it. 

Owing to the transitive property of the HBRs, we can give 
a partial order to the events of a distribute application, 
even though there is no common clock shared by its 
participant AP’s.  

 
The GCS of a distributed application is defined based on 
the HBR above. Let us take a snapshot of execution state 
of a distributed application at a particular time, and let S be 
that snapshot, which is a set of the events having arisen in 
the application. Let G be a subset of S. In this case, G is 
said to be in a GCS if the following condition is satisfied; 
for every event e’ in G, if there is e in S such that e 
“happen-before” e’, then e should be also an event in G. In 
other words, for every event of G, its causal events should 
be found in G. Since all the causal events are contained in 
G, it may be possible to obtain the same execution results 
of G, if we redo the events of G from it begging time. 
Based on this idea, we can recover any intermediate 
execution state of any failed application if its any GCS 
execution snapshot is available.  
 

To have execution snapshots, checkpointing schemes are 
commonly used for saving local execution state of 
individual AP’s. Fig.1 shows an example where distributed 
checkpoint is performed by three AP’s, p1, p2, and p3. In 
the figure, the blacked rectangle of Ci,k represents the k-th 
local checkpoint made by AP  pi. The local checkpoint of 
Ci,k is made to save the computational computation state of  
pi  and the message sent to other AP’s after the creation 
time of Ci,k-1.  

 
Suppose that an application failure arise at p3. as in Fig. 1. 
At this moment, the set of local checkpoints preserving the 
GCS are that inside the GCS line of the figure. That is, the 
latest CGS state is composed of C1,3, C2,2, and C3,3. As the 
message sending event of m8 is not saved in any local 
checkpoint, its message receiving event cannot be include 
a GCS. Therefore, C2,2  is rolled back, and C1,3  is also 
rolled back because C1,3  contains the message-receiving 
event of m7 saved in C2,2. As a result, the local 

Fig. 1. An example of GCS: a failure arises at p3. 
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checkpoints on the GCS line will be used to recover the 
failed application.  

In the example of Fig. 1, the latest local checkpoints 
of a GCS are the same as C1,3, C2,2, and C3,3  is used 
as a latest consistent global checkpoint. This choice 
of such a consistent global checkpoint is done by a 
recover algorithm initiated in the presence of failure. 
During the recovery phase, such a latest consistent 
global checkpoint is found and then the disrupted 
distributed application is restarted. In the case of Fig. 
2, the associated AP’s will restore their 
computational state using the data saved in the local 
checkpoints of C1,3, C2,2, and C3,3, respectively, and 
p1 will send the lost message m6  to p2 again. Since 
checkpoint records bookkeep the serial numbers of 
messages transferred among AP’s, this message 
resending is possible. 

2.2 Assumed Mobile Network 

In general, the mobile network is comprised of mobile 
hosts (MH’s), mobile support stations (MSS’s), and the 
fixed networks interconnecting the MSSs [1, 2, 8]. The 
network architecture is shown in Fig. 2(a), where there are 
two wireless cells and MH’s can make wireless network 
connections within its wireless cell. Since the MH can hop 
among wireless cells, the MSS’s have to update the list of 
MH’s under control for seamless hand-offs. Each AP can 
be identified by unique process id within its hosting MH. 
Of cause, the MH is also uniquely identified in the global 
network environment. 
 
Consider a situation where a MH x in MSS A sends a 
network message m to an MH y in MSS B. The message m 
from  x is queued into an outbound queue of MSS A and 
then it is delivered to the counterpart MSS B via the fixed 
network. Consecutively, message m is entered into the 
inbound queue of MSS B for the delivery towards y.   
On the top of the traditional architecture of Fig. 2(a), we 
assume that an agent program executes on each MSS for 
doing checkpoint-related activities. That is, it is assumed 
that the agent program makes accesses the two message 
queues of the MSS, in which outbound or inbound network 
messages are temporarily stored waiting for their delivery 
to target AP. Fig. 2(b) depicts the assumed architecture 
with logging agents. In the example of Fig. 2(b), an MH in 
cell A sends a network message m to other MH staying in 
cell B. In this case, the logging agent in MSS A dequeues 
message m and then appends some checkpoint-related data 
to m before it sends m to the logging agent of MSS B. 
Correspondingly, the logging agent of MSS B deletes the 

appended data from m before it inputs m into the inbound 
queue towards the destination MH. During this message 
transit time, the logging agent’s can make checkpoint 
records in the disk storage installed in the MSS’s. Using 
the logging agent, we can reduce the checkpoint cost and 
improve the flexibility of the consistent global checkpoints. 
The more details about the logging agent are described in 
Section 3.  
 

2.3 Earlier Works 

Checkpointing schemes for distributed applications can be 
roughly categorized into the synchronized schemes and the 
asynchronized schemes. In the synchronized schemes, 
when a AP requests a checkpoint, actions for making a 
consistent global checkpoint are performed such that the 
newly created global checkpoint includes the current 
execution state of the checkpoint-requesting AP. From this, 
the checkpoint-requesting AP can make its crucial results 
of execution robust to any failure. For such checkpointing, 
the checkpoint requester AP is blocked until all the causal 
events of the checkpoint-requested events are saved in the 
local checkpoint records of the participant AP’s. Owing to 
such creation of a global checkpoint, most of execution 
results can be restored in the present of failure.  
 
However, because creation of a global checkpoint needs a 
number of message deliveries and requires some enforced 
checkpointing of other participant AP’s, this scheme suffer 
from a high network cost and long delay time for 
checkpointing. Especially, such shortcomings become 
more serious in the case where the AP’s are ruing in 
mobile network environment [1, 2, 8, 12].  
 

Fig. 2. Architecture of the assumed mobile network. 
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Meanwhile, the asynchronized scheme does not enforce the 
creation of a consistent global checkpoint at every 
checkpoint request time. Instead, during the recovery 
phase a latest consistent global checkpoint is found from 
the casual dependency of APs’ events saved in disturbed 
local checkpoints. By examining the casual dependency 
among the previous local checkpoints, the recovery 
algorithm picks a most recent consistent global checkpoint 
for recovery. Since each AP can make its local checkpoint 
in asynchronized manner, this scheme is apt to have a 
problem of many cascaded rollbacks of local checkpoints, 
so-called domino effect [1, 8, 17]. In a worst case, the 
whole execution results of any distributed application can 
be cancelled because of the domino-effect. In addition, the 
asynchronized schemes have more restarting overheads, 
compared to the synchronized schemes. This is because the 
asynchronized scheme has to collect the whole information 
from scatted local checkpoints in order to find a consistent 
global checkpoint. From these reasons, the synchronized 
scheme is preferred in earlier time.  
 
However, when it comes to the mobile network 
environment, the synchronized scheme is more feasible 
because of less network connectivity and more 
consideration of instability of mobile devices of that 
application environment. Among the asynchronized 
schemes, in particular, the message-induced checkpointing 
scheme [8, 9] is regarded to be a good alternative solution 
in the mobile network environment. This is because the 
message-induced scheme can eliminate the possibility of 
domino effect sin a very simple manner. By forcing AP’s 
to make local checkpoints depending on the message-
receiving events, this scheme can set some boundaries on 
rollbacked local checkpoints 

3. Proposed Method 

3.1 Motivations 

Although the message-induced scheme is useful to avoid 
the domino effect, it has a severe problem in that the time 
of checkpoint creations is determined without active 
involvement of participant AP’s. This problem can be 
easily understood by viewing the used mechanism of the 
message-induced scheme. The scheme uses two different 
execution states of the AP, that is, SEND and RECEIVE 
states. The SEND and RECIVED states are set while the 
message-sending and message-receiving events are 
successively arising, respectively. A new checkpoint is 
compulsorily created at the time when a network message 
arrives at a particular AP with the execution state of SEND. 
Since the time of checkpoint creations in an AP is 

inactively determined depending on the arrivals of 
message-receiving events, the created checkpoints would 
not reflect application’s semantics. Otherwise, if we want 
application’s semantics-aware checkpointing, that 
checkpointing time of checkpoint can be chosen by 
considering the critical points of processed application. In 
other words, checkpoints have to be made when some 
critical executions or expensive processes are done. Such 
semantics-aware checkpointing is possible only when the 
AP can actively request checkpointing. Note that the user 
can also issue checkpoint requests via its AP. 
 
The lack of semantics-awareness of the message-induced 
scheme may have poor performance. When this scheme is 
used for distributed mobile applications requiring a lot of 
message transit, a large number of non-meaningful 
checkpoints can be made. This can result in frequent 
checkpointing and creations of obsolete checkpoints. In 
addition, the message-induced scheme has no mechanism 
to actively create consistent global checkpoints. Therefore, 
in the case that an AP wants to make its critical execution 
results persistent, there is no way for that. Whether or not 
the execution results are saved into a consistent global 
checkpoint relies on the existence of an appropriate pair of 
message-receiving and message-sending events.  
 
To solve such problems of lack of semantics-awareness in 
checkpointing time and its defective mechanism for global 
checkpointing, we propose a new checkpoint scheme based 
on a combination of the logging agent and the R-distance 

3.1 Data Format 

First, we describe the data format of the network message, 
which is represented by M below. In the followings, the 
message sender AP is denoted by  and the total number 
of AP’s joining the distributed application by N, 
respectively. The fields of M are seven in all. Among them, 
the last three fields are not used by the AP. These fields 
exist for containing control data of checkpointing purpose 
and they are visible only to the logging agent. Meanwhile, 
the first four are for containing application data needed by 
the AP.  

o M.type: Message type 
o M.sender: Id of  
o M.recever: Id of the counterpart AP 
o M.data: Application data sent to the counterpart AP 
o M.ap[1,2,…,N]: Ids of AP’s joining this application. 
o M.serial[1,2,…,N]: Serial numbers of the local 

checkpoints already made by M.ap[1, 2, …N]. 
o M.dep_vec[1,2,…,N]: Checkpoint dependency vector   
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To make the checkpoint-related fields invisible to the 
entire participant AP’s, the logging agent appends these 
fields at the tail of any message m received from its AP 
before it sends message m to other logging agent. Then, the 
receiver logging agent will delete these fields from m 
before m is sent to the destination AP. The dependency 
vector used for finding a consistent global checkpoint is 
the same as that proposed in the earlier literatures [7, 8, 9, 
11]. For space limitation, the details of use of the 
dependency vector are referred to the literatures.   

 
In turn, we describe the data format of the checkpoint 
record managed by the logging agent. The fields below are 
ones existing in the checkpoint record. When an AP 
initiates or joins a distributed application, a logging agent 
of the AP creates a new checkpoint record for saving 
transferred network messages and checkpoint-related data 
until the next checkpointing time. At the creation time, the 
checkpoint record is manipulated in an area of main 
memory, and then it is written into a stable storage at the 
next checkpointing time. In the followings, the owner AP 
of the checkpoint record is represented by , and the total 
number of AP’s joining the distributed application by N. 

o REC.id: Id of . 
o REC.serial: Current checkpoint serial number  
o REC.r_distance: R-distance of this application. 
o REC.ap[1,..,N]:  Ids of participant AP’s  
o REC.serial[1,..,N]: Serial numbers of the local 

checkpoints already made by REC.ap[1, 2, …N]. 
o REC.dep_vec[1,..,N]: checkpoint dependency vector 
o REC.message[]: Messages sent by after the last 

checkpointing time 
o REC.prev_rec: Disk address to the previous 

checkpoint record 

 

As known from the above, at the first four fields the 
checkpoint record saves the id of the owner AP, the serial 
number of the current checkpoint record, the given R-
distance, and ids of the participant AP’s. And, the next two 
fields are used for bookkeeping the information about 
created local checkpoint serials and dependency vector.  

To log all the network messages sent by  until the next 
checkpointing time, we use the field of message[]. Since 
all the network messages sent to other AP’s are logged in 
that field, messages resending can be done during the 
recovery phase. Since more than one checkpoint record are 
created o be created for the same application while the 
application executes, they are chained for the fast access 
during the recovery time. The last field is used for that 
purpose, that is, it saves the disk address to the very 
previous checkpoint record stored in the disk. 

3.2 Tunable Checkpointing 

The semantics-aware checkpointing requires that local 
checkpoints be made according to the determination to 
importance of the current execution state. Here, the 
expensive processing is some actions whose loss causes 
many additional network communications or 
computational overheads. Such expensive processing is 
according to application semantics, and thus only the 
involved AP is responsible for its determination. For that 
reason, the capability of creating a global checkpoint by 
the AP is needed, as supported in the synchronized 
checkpoint scheme. However, such capability inevitably 
results in a high network cost and long blocking-time when 
the protocol of the previous synchronized checkpointing 
schemes is applied to the mobile computing environment.   

 

Fig. 3. logging agent algorithm for handling a message-receiving event. 
 

Fig. 3. logging agent algorithm for handling a message-receiving event. 

 
Used Data: R  /* current  checkpoint record of Pi */ 
When a message m arrives at Ci   from Pi 
1. begin 
2. if ( m is for requesting a checkpoint creation ) then 
3.      Save the content of R into disk space to make a local 

checkpoint with the serial number of R.serial.  
4.      R’ ← GetGCSRec(R). /* get a latest checkpoint record of  a 

GCS */ 
5.      if ( R’= nil  )  
6.          Call the routine GreateGCS(R).  
7.      endif 
8.     Create a new checkpoint record with the serial number of 

R.serial + 1.  
9.      Send a messages notifying the creation of a new local 

checkpoint  of Pi. 
10.       Send a response message of checkpointing to Pi . 
11. else  /* m contains application data sent to other AP */   
12.      Append checkpoint-related fields to m and send it to the 

counterpart logging agent. 
13. endif 
14. end. 

 
When a message m arrives at  Ci  from other logging agent  
15. begin 
16. if (m is an application data message toward Pi )  
17.       Call the routine UpdateChptRec(m , R).  
18.       Remove some checkpoint-related fields form m and sent it 

to Pi . 
19. else if (m is for notifying creation of a new remote 

checkpoint )  
20.       UpdateChptRec(m, R). 
21. else  /*  m is for requesting Pi ‘s checkpointing */ 
22.       Make a message for requesting an enforced checkpointing 

and set it to Pi . 
23. endif  
24. end. 
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To solve such a problem, we introduce the notion of the 
recovery distance (R-distance) for the distributed 
application. The R-distance indicates the worst-case 
number of rollbacked checkpoints in the presence of 
failure. If its value is d, then the latest d -1 local 
checkpoints can be rolled back at the worst-case. For 
example, if its value is equal to three, then the latest two 
checkpoints can be rolled back with respect to each 
participant AP. In the same way, if its value is one, our 
scheme will work identically with an earlier synchronized 
checkpoint scheme, where every checkpoint request results 
in creation of a new consistent global checkpoint. If the 
current application is in a very mission critical state, then 
the application initiator AP can set the R-distance to a 
small one. Additionally, if an AP really wants to make a 
global checkpoint for a distributed application with R-
distance d, it can do that by issuing d local checkpoint 
requests successively.  

 
The R-distance value is determined and assigned to every 
distributed application at its beginning point, and the 
global checkpoints are made in flexible manner, while 
preserving the given R-distance. In our scheme, the 
enforced global checkpoint is issued by only the logging 
agent and the necessity of such enforced checkpointing is 
also decided by the logging agent. The AP just issues a 
request for creating its local checkpoint by reflecting 
application semantics.  

 
The algorithm of Fig. 3 shows the way a logging agent 
works at the time when a network message m arrives at the 
logging agent. In the algorithm, the logging agent receiving 
message m is denoted by , and the AP checkpointed by 

 is denoted by . The message m can be one from  or 
any other logging agent. Since all the messages sent to an 
AP are relayed by logging agent’s, every message from 
AP’s other than Pi arrives at  via the logging agent’s.  

 
The steps of lines 1–14, are executed if receives a 
message from Pi. In this case,  first checks if message m 
is for requesting a creation of Pi’s local checkpoint. If that 
is true, the steps of lines 3-9 are performed to make a new 
local checkpoint, preserving the R-distance of the 
distributed application. For this, calls the routine 
GetGCSRec() to get the lasts checkpoint record of a GCS. 
Then, the record’s serial number is compared with the that 
of the newly created local checkpoint. If preservation of 
the R-distance constraint is not possible, then the routine 
CreateGCS() is executed to make a new consistent global 
checkpoint as in line 6. Otherwise, if the R-distance is 
preserved, then  just saves the current checkpoint record 
and send a response message back to for notifying 
successful checkpointing. On the other hand, if m is a pure 
application data message, then the message is delivered to 

the counterpart logging agent managing the message 
receiver AP. At that time, some fields used for 
checkpointing are appended to the original m.  

 
First, we describe the data format of the network message, 
which is represented by M below. In the followings, the 
message sender AP is denoted by  and the total number 
of AP’s joining the distributed application by N, 
respectively. The fields of M are seven in all. Among them, 
the last three fields are not used by the AP. These fields 
exist for containing control data of checkpointing purpose 
and they are visible only to the logging agent. Meanwhile, 
the first four are for containing application data needed by 
the AP.  

 
The rest steps in lines 15-24 of Fig. 3 are ones to be 
performed when receives m from other logging agent, 
say . If m is for sending application data to Pi, then it is 
sent to Pi, after some piggybacking fields are deleted from 
m. Of course, to save the checkpoint-related data the 
routine UpdateChptRec() is called in line 17. If message m 
is not for sending pure application data, it is either for 
notifying a new checkpoint creation in the side of  or for 
forcing Pi  to create a new local checkpoint. In the former 
case, just updates the current checkpoint record for 
reflecting the advance of the remote checkpoint serial 
number and other changes of the distributed application. 
Since M has no application data in itself, further message 
delivery is not needed. In the latter case, a new message 
forcing Pi to make its local checkpoint is sent to as in 
line 22. In the response of that message, will send a 
message for checkpoint creations, and then line 3 is 
executed later.  

 
The main advantages of our checkpointing scheme in Fig. 
3 are two-fold. First, based on the concept of R-distance, 
the average cost for creating a consistent global checkpoint 
can be reduced, because creation of the global checkpoint 
can be delayed within the R-distance. Additionally, if no 
global checkpoint is found within the R-distance, then our 
scheme estimate the costs of global checkpoints within R-
distance in routine CreateGCS(). Those features 
differentiate our checkpointing protocol from others used 
for global checkpointing in the earlier schemes, which only 
have to create a global checkpoint containing the latest 
local checkpoint without any consideration of its creation 
cost. With our flexibility and cost estimation in global 
checkpoint time, we can reduce the average cost for 
making a global checkpoint. 
 
Second, the use of the logging agent can reduce the amount 
of checkpoint-related data transferred between MSS’s and 
MH’s. Since those additional data for checkpoint is always 
needed for tracking application’s execution state, 
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overheads for sending them are unavoidable. If the 
communication overheads become too large on wireless 
networks, that could be a severe bottleneck in the 
execution of the distributed applications. Against such a 
problem, we adopt the logging agent so that most of the 
additional checkpoint-related data are visible only in the 
network messages transferred within logging agent’s wired 
fixed networks. Since the communication cost in the fixed 
networks of logging agent’s is very lower than in wireless 
communication, we can reduce the overall network cost 
due to the use of logging agents. 

3.2 Detailed Algorithms 

In Fig. 3, we outlined the proposed algorithm of the 
logging agent. In that algorithm, we omitted details of the 
routines called by the logging agent in Fig. 3. Here, we 
present the detailed algorithms of the routines. Besides  
those routines of Fig. 3, other routines used by the AP are 
also needed for our checkpointing scheme. For instance, 
we need the routines for message sending/receiving, 
requesting a local checkpoint, and processing a checkpoint 
enforcement message. As the algorithms for those AP 
routines are not distinctive from ones previously proposed 
in [8, 9] and they can be conjectured from the algorithm of 
the logging agent, we do not present them in this paper.  
 
Fig. 4 depicts the algorithm of routine GetGCSRec() used to 
get a latest checkpoint record of  being in a GCS. Here, 

 is the AP whose checkpoint record is R of this routine. 
In lines 1-4, the routine reads the previous checkpoint 
records into the memory areas of A[2], .., A[R.r_distance] 
and the current checkpoint record into A[1], respectively. 

For this, the backward pointers chaining the disk-resident 
checkpoint records are used for fast accesses. Using the 
dependency vector and the serial local checkpoint numbers 
saved in A[1, …, R.r_distance], this routine finds a latest 
GCS.  
 
The algorithm of routine GetGCSRec() is based on the 
concept of the local checkpoints dependency among 
different AP’s. This is represented by the dependency 
vector saved in the checkpoint record field of dep_vec[] of 
Fig. 3. The use of dependency vector is common in the 
global checkpoint schemes [5, 6, 9, 10, 11]. The proof on 
the usefulness of the dependency vector is also referred to 
these researches.  

 
We also use the dependency vector for deterring a 
collection of local checkpoints with a GCS, that is, a 
consistent global checkpoint. This routine compares the 
dependency vector saved in R the current serial number of 
the latest checkpoint records of other AP’s. The latest 
checkpoint serials are found in the data structure of 
serial[] in R. With the comparison, this routine can finds 
the latest local checkpoint whose dependency are  checked  
that is not dependent on the events that have not been 
check-pointed by counterpart AP’s.  

In lines 6-13, the logging agent decides whether or not the 
current creation of a local checkpoint supports the R-
distance preservation. If its preservation is not possible due 
to the current checkpoint request, the routine CreateGCS() 
is called as in line 6 of Fig. 3.  

 
Fig. 5 depicts the algorithm of routine CreateGCS(). This 
routine also reads the previous checkpoint records into A[] 
for fast manipulation. Then, in lines x-x the routine 
computes the global checkpoint costs with respect to the 
local checkpoints represented by A[]. Here, the costs are 
assessed by the number of remote local checkpoints to be 
created for yielding a GCS, plus the distance of the chosen 
local checkpoint from the current checkpoint time. That is 
performed in lines 8-15 of Fig. 5. Based on the estimation, 
the forced GCS line is determined by favorably choosing a 
local checkpoint with the smallest costs as in line 16.  

 
To make the chosen local checkpoint, denote by A[s] in the 
algorithm of Fig. 5, be a global consistent one, messages 
for  requesting enforcement of checkpointing in other AP’s 
are sent to the involved logging agent’s. Then, the logging 
agent’s will enforce its AP to create the local checkpoint.  
When all the response messages are gathered, this routine 
returns. ,  
 
The routine UpdateChptRec() of Fig. 6 is for modifying 
the checkpoint record in accordance with message arrivals. 
In line 2, the routine check if m is an outbound message  

 
Algorithm: Routine GetGCSRec(R) 
Input:   Pi’s checkpoint record R  
Output: checkpoint record having a GCS 
 
1. A[1]  ← R.  
2. for i =2 to R.r_distance 
3.    A[i] ← ReadChptRec(A[i-1].previous). /* reading of the 

previous checkpoint records */ 
4. endfor 
5. p_num  ← number of AP’s saved in R.ap[].  
6. for i = 1 to  R.r_distance 
7.     cgs_exist ← yes. 
8.     for j = 1 to p_num 
9.          if ( A[i].chpt_dep_vec[j] > R.serial[j] ) 
10.              cgs_exist = no. 
11.     endfor 
12.     if( cgs_exist =  yes )  return A[j].   
13. endfor 
14. return nil.   /* no GCS checkpoint record * 

Fig. 4. Algorithm for routine GetGCSRec(). 
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sent by Pi. If that is true, the routine saves the content of m 
in the checkpoint record being located in memory. 
Otherwise, if m is an inbound message, that is, m is a 
message coming from other logging agent, then the data of 
checkpoint’s dependency  and the serial numbers of the 
local checkpoints of other AP’s are updated to reflect the 
changes of in the distributed application state.  

4. Performance Analysis  

To analyze the performance of the proposed scheme, we 
consider two key metrics, that is, less overhead paid for 
making checkpoints during normal execution time and low 
possibility of rollbacked executions in the face of 
application failure. Because there is a trade-off between 
these two metrics and they are largely affected by diverse 
factors such as application or network failure rates and 
frequency of checkpoint creations, it is very hard to devise 
an exact performance metrics. For these limitations, we 
give only a rough analysis on our checkpointing scheme 
here. ,  
 
We first look on the overhead paid to generate checkpoint 
records during normal time. The main components of such 
overhead cost seem to be AP’s blocking time for 
checkpointing and communication costs for sending 

additional data used for tracking execution states of 
ongoing application. The blocking time in our algorithm is 
very short on average, compared with the traditional 
algorithms. To see that, recall the steps of lines 5-7 in Fig . 
3. In those steps, blocking time arises only when a globally 
consistent local checkpoint is not found within the R-
distance.  In many cases, such a situation is not the case. 
Even though there is a need for creating a new global 
checkpoint, our protocol will choose a local checkpoint 
whose checkpointing overhead is most cheap. That is done 
by the logging agent by using the routine CreateGCS() of 
Fig. 5. Using this routine, the logging agent can choose 
among previous local checkpoints any one that demands a 
least number of local checkpoints.  

 
The network cost for checkpointing depends on the amount 
of additional checkpoint-related data that piggybacks on 
messages delivering application data. In particular, such 
data should be less on the warless communications. To 
reduce the additional data on wireless networks, the 
logging agent manages checkpoint-related information 
using its checkpoint record in memory and refers to that 
for generating messages being transferred among logging 
agent’s. From this, additional network overheads for 
checkpointing are small in our scheme, because most of 
additional data are not visible to AP’s,  
 
In the aspect of less cancellation of execution results in the 
case of application failure, our algorithm has a good 
property. Due to R-distance, the number of rollbacks in a 
particular AP is always less than a value set to R-distance. 
To all AP’s participating in the application, the worst case 
number of rollbacks is less than N (d-1) while N AP’s are 
running with R-distance of d. That is, there is a tight upper 
bound on the number of cancelled local checkpoints. 
However, such a large cancellation is not realistic, since 
the times of checkpoint creations are different among the 
AP’s joining a distributed transaction. In probabilistic, the 

Algorithm: Routine CreateGCS(R) 
Input:  Pi’s  checkpoint record R  
1. A[1] ← R.  
2. for  i =2 to R.r_distance 
3.    A[i] ←ReadChptRec(A[i-1].previous). /* reading of the 

previous checkpoint records */ 
4. endfor 
5. p_num  ← number of AP’s saved in R.ap[]. 
6. needed_local[1,..,R.distance] ← 0. /* number of local 

checkpoints created for making a GCS */ 
7. costs[1,..,R.distance] ← 0. /* initialization */ 
8. for i = 1 to R.r_distance  
9.     for  j = to p_num 
10.          if ( A[i].dep_vec[j] > R.serial[j] )  
11.               needed_local[ [j]++.  
12.          endif 
13.      endfor 
14.     costs[i] = i + needed_local[i]. 
15. endfor 
16. Find the least element among costs[1], costs[2],.., 

costs[R.distance] and let s be the index of that element.  
17. forall AP  such that A[s].dep_vec[ ] > R.serial[ ] 
18.    Send a checkpoint requesting message to the logging agent 

managing the checkpoint record of p.  
19. endfor 
20. Blocked until all the response messaged are received form the 

logging agent’s above.   

 
Algorithm: Routine UpdateChptRec(m, R) 
Input: received message m,  Pi ’s  checkpoint record R  
 
1. if( m  is an outbound message )  /* heading for other AP */ 
2.       Save m into R and advance the number of sent 

messages by one. 
3. else  /* M is a message arriving at Pi  */ 
4.       foreach  in R.ap[]   /* participant application 

processes */ 
5.           R.serial[ ]  ← max(m.serial[ ], R.serial[ ]). 

6.           R.dep_vec[ ] ← max(m.dep_vec[ ], R.dep_vec[ ]). 
7.      endfor 
8. endif  

Fig. 6. Algorithm for routine UpdateChptRec(). 

Fig. 5. Algorithm for routine CreateGCS(). 
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average number of rollbacked local checkpoints remains 
below a half of the upper bound number, that is, N (d-1)/2. 
Therefore, by setting R-distance appropriately, we can give 
a limit on the losses of execution results. From these 
properties, we can say that our algorithm can have a less 
cancellation of application by setting R-distance in a low 
range. Consequently, the proposed method has advantages 
during the normal execution time and recovery phase. 

5. Conclusions 

The problem of making a consistent distributed checkpoint 
in a mobile network environment is challenging to solve. 
This is because the distributed application needs 
application processes’ communication via warless 
networks and such wireless communications easily make 
the cost for checkpoint higher. To have less 
communication cost, the previous checkpoint schemes for 
mobile distributed applications take an approach to making 
local checkpoints in a very inflexible manner.  Such 
inflexible in the checkpointing causes the lack of 
semantics-awareness in the time of checkpointing. In 
addition, some asynchronized checkpointing scheme 
cannot provide any efficient mechanism for global 
checkpointing by the application process. These 
shortcomings can make obsolete checkpoints and frequent 
losses of expensive execution results. To solve those 
problems, we proposed a new checkpoint scheme based on 
the checkpoint agent and the concept of the recovery 
distance. From the combination of them, the proposed 
scheme provides the capability of semantics-aware 
checkpointing by paying only a cheap cost.  We believe 
that the proposed checkpointing scheme can be applied to 
recover the mobile distribute application from diverse 
failures.  
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