

A Tunable Checkpointing Algorithm for the Distributed
Mobile Environment

Sungchae Lim

Dept. of Computer Science, Dongduk Women’s University
Seoul, 136-714, South Korea

Abstract
The aim of a distributed checkpointing algorithm is to efficiently
restore the execution state of distributed applications in face of
hardware or software failures. Originally, such algorithms were
devised for fixed networking systems, of which computing
components communicate with each other via wired networks.
Therefore, those algorithms usually suffer from heavy
networking costs coming from frequent data transits over
wireless networks, if they are used in the wireless computing
environment. In this paper, to reduce usage of wireless
communications, our checkpointing algorithm allows the
distributed mobile application to tune the level of its
checkpointing strictness. The strictness is defined by the
maximum rollback distance (MRD) that says how many recent
local checkpoints can be rolled back in the worst case. Since our
algorithm have more flexibility in checkpointing schedule due to
the use of MRD, it is possible to reduce the number of enforced
local checkpointing. In particular, the amount of data transited on
wirelesses networks becomes much smaller than in earlier
methods; thus, our algorithm can provide less communication
cost and shortened blocking time.
Keywords: Mobile networks, distributed application, rollback,
recovery, distributed checkpointing.

1. Introduction

During the past decades, there have been dramatic
advances in mobile networks and mobile devices. In
particular, the fast spreading usage of smart phones is
likely to yield demands for sophisticated distributed
applications across multiple mobile devices [1, 2]. During
the run-time of such a distributed application, its
cooperating application processes (APs) work in parallel
and data are usually transited between APs to share
application contexts. In this situation, failure on a single
AP or hardware device could cause a serious problem in
the whole distributed application and thus it may roll back

the application’s processing state to the initial one in the
worst case. To prevent a whole cancelation of the
processing result, checkpoint records are created to log
intermediate execution results. The recovery procedure
after abrupt failure builds a consistent state of an
application from the checkpoint data, and resumes the
interrupted application from that state. This can reduce
undesirable loss of application process

To make the distributed application robust and recoverable
against failure, many works are done for the computing
environments where the distributed application seems to be
executed in the wired fixed networks [4, 6, 7, 10, 11, 13].
When checkpointing algorithms of those earlier works are
applied to distributed applications running on wireless
networked, they suffer from high cost for sending
checkpoint data via warless connections. Since data transit
over wireless networks is more costly and unstable,
compared with that over wired networks, many researches
focus on reduction of wireless data transit in the case of the
checkpointing scheme for wireless computing environment
[5, 8, 9,10, 12].

In the paper, we also propose a distributed checkpointing
scheme suitable for distributed applications running on the
mobile computing environment. We here introduce two
key ideas of the maximum rollback distance (MRD) and
the logging agent running on the MSS (Mobile Support
Station). The logging agent is a software agent running on
MSS, which is responsible for making local checkpoints at
the request of its associated AP’s requests and maintaining
at least one consistent global checkpoint. To save the cost
for maintaining such a global checkpoint, the agent can do
some logging activities without any requests from
associated AP. For this, the logging agent securitizes
messages arriving on its MSS and communicates with
other logging agents for synchronization of checkpointing.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 1

If the rule of checkpointing synchronization is too strict,
enforced local checkpoints are frequently created. Sine
enforced local checkpoint request costly data transit in
wireless network lines; it is needed to make the
synchronization rule more flexible. In this notion, we
introduce the MDR for each distributed application. On the
other hand, the MDR is a run-time parameter for a
distributed application, saying how many local checkpoint
of a given AP can be rolled back in the worst case. With a
MDR properly set to a value, a significant flexibility is
available at the time local checkpoints are synchronized in
order to create a new global checkpoint. Due to the tunable
level of checkpointing synchronization using MDR, the
logging agents participating in a distributed application can
reduce the number of enforced local checkpointing and
costly message transit over wireless networks.

The rest of this paper is organized as follows. In Section 2,
we describe some backgrounds regarding the meaning of
global consistency of distributed checkpoints, the assumed
mobile network, and the previous works. Then, we propose
a new efficient distributed checkpointing scheme in
Section 3, and discuss the performance characteristics of
our scheme in Section 4. Lastly, we conclude this paper in
Section 5.

2. Backgrounds

2.1 Global Consistent State

The GCS (Global Consistent State) of distributed
applications was formally defined by Lamport [17].
According to that definition, processing of a distributed
application can be modeled by three types of events such
as the message sending event, the message receiving event,
and the computation event. Each AP participating in a
distributed event can do the computation event to proceed
with its processing state and communication with other
participant APs through message sending/receiving events.

In this event model, a set of events meeting the GCS can
be captured using the relation “happen-before” drawn on
events. In [17], the “happen-before” relation (HBR) is as
follows.

[Definition of HBR] If it is the case that e1 “happen-before”
e2, then either of the following conditions should be true.

i) Both e1 and e2 occur in the same AP and e1 precedes
e2 in timing sequence.

ii) There are a message m and two APs of p1 and p2 such
that p1 sends (event e1) message m to p2 and p2
receives (event e2) it.

Owing to the transitive property of the HBRs, we can give
a partial order to the events of a distribute application,
even though there is no common clock shared by its
participant AP’s.

The GCS of a distributed application is defined based on
the HBR above. Let us take a snapshot of execution state
of a distributed application at a particular time, and let S be
that snapshot, which is a set of the events having arisen in
the application. Let G be a subset of S. In this case, G is
said to be in a GCS if the following condition is satisfied;
for every event e’ in G, if there is e in S such that e
“happen-before” e’, then e should be also an event in G. In
other words, for every event of G, its causal events should
be found in G. Since all the causal events are contained in
G, it may be possible to obtain the same execution results
of G, if we redo the events of G from it begging time.
Based on this idea, we can recover any intermediate
execution state of any failed application if its any GCS
execution snapshot is available.

To have execution snapshots, checkpointing schemes are
commonly used for saving local execution state of
individual AP’s. Fig.1 shows an example where distributed
checkpoint is performed by three AP’s, p1, p2, and p3. In
the figure, the blacked rectangle of Ci,k represents the k-th
local checkpoint made by AP pi. The local checkpoint of
Ci,k is made to save the computational computation state of
pi and the message sent to other AP’s after the creation
time of Ci,k-1.

Suppose that an application failure arise at p3. as in Fig. 1.
At this moment, the set of local checkpoints preserving the
GCS are that inside the GCS line of the figure. That is, the
latest CGS state is composed of C1,3, C2,2, and C3,3. As the
message sending event of m8 is not saved in any local
checkpoint, its message receiving event cannot be include
a GCS. Therefore, C2,2 is rolled back, and C1,3 is also
rolled back because C1,3 contains the message-receiving
event of m7 saved in C2,2. As a result, the local

Fig. 1. An example of GCS: a failure arises at p3.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 2

checkpoints on the GCS line will be used to recover the
failed application.

In the example of Fig. 1, the latest local checkpoints
of a GCS are the same as C1,3, C2,2, and C3,3 is used
as a latest consistent global checkpoint. This choice
of such a consistent global checkpoint is done by a
recover algorithm initiated in the presence of failure.
During the recovery phase, such a latest consistent
global checkpoint is found and then the disrupted
distributed application is restarted. In the case of Fig.
2, the associated AP’s will restore their
computational state using the data saved in the local
checkpoints of C1,3, C2,2, and C3,3, respectively, and
p1 will send the lost message m6 to p2 again. Since
checkpoint records bookkeep the serial numbers of
messages transferred among AP’s, this message
resending is possible.

2.2 Assumed Mobile Network

In general, the mobile network is comprised of mobile
hosts (MH’s), mobile support stations (MSS’s), and the
fixed networks interconnecting the MSSs [1, 2, 8]. The
network architecture is shown in Fig. 2(a), where there are
two wireless cells and MH’s can make wireless network
connections within its wireless cell. Since the MH can hop
among wireless cells, the MSS’s have to update the list of
MH’s under control for seamless hand-offs. Each AP can
be identified by unique process id within its hosting MH.
Of cause, the MH is also uniquely identified in the global
network environment.

Consider a situation where a MH x in MSS A sends a
network message m to an MH y in MSS B. The message m
from x is queued into an outbound queue of MSS A and
then it is delivered to the counterpart MSS B via the fixed
network. Consecutively, message m is entered into the
inbound queue of MSS B for the delivery towards y.
On the top of the traditional architecture of Fig. 2(a), we
assume that an agent program executes on each MSS for
doing checkpoint-related activities. That is, it is assumed
that the agent program makes accesses the two message
queues of the MSS, in which outbound or inbound network
messages are temporarily stored waiting for their delivery
to target AP. Fig. 2(b) depicts the assumed architecture
with logging agents. In the example of Fig. 2(b), an MH in
cell A sends a network message m to other MH staying in
cell B. In this case, the logging agent in MSS A dequeues
message m and then appends some checkpoint-related data
to m before it sends m to the logging agent of MSS B.
Correspondingly, the logging agent of MSS B deletes the

appended data from m before it inputs m into the inbound
queue towards the destination MH. During this message
transit time, the logging agent’s can make checkpoint
records in the disk storage installed in the MSS’s. Using
the logging agent, we can reduce the checkpoint cost and
improve the flexibility of the consistent global checkpoints.
The more details about the logging agent are described in
Section 3.

2.3 Earlier Works

Checkpointing schemes for distributed applications can be
roughly categorized into the synchronized schemes and the
asynchronized schemes. In the synchronized schemes,
when a AP requests a checkpoint, actions for making a
consistent global checkpoint are performed such that the
newly created global checkpoint includes the current
execution state of the checkpoint-requesting AP. From this,
the checkpoint-requesting AP can make its crucial results
of execution robust to any failure. For such checkpointing,
the checkpoint requester AP is blocked until all the causal
events of the checkpoint-requested events are saved in the
local checkpoint records of the participant AP’s. Owing to
such creation of a global checkpoint, most of execution
results can be restored in the present of failure.

However, because creation of a global checkpoint needs a
number of message deliveries and requires some enforced
checkpointing of other participant AP’s, this scheme suffer
from a high network cost and long delay time for
checkpointing. Especially, such shortcomings become
more serious in the case where the AP’s are ruing in
mobile network environment [1, 2, 8, 12].

Fig. 2. Architecture of the assumed mobile network.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 3

Meanwhile, the asynchronized scheme does not enforce the
creation of a consistent global checkpoint at every
checkpoint request time. Instead, during the recovery
phase a latest consistent global checkpoint is found from
the casual dependency of APs’ events saved in disturbed
local checkpoints. By examining the casual dependency
among the previous local checkpoints, the recovery
algorithm picks a most recent consistent global checkpoint
for recovery. Since each AP can make its local checkpoint
in asynchronized manner, this scheme is apt to have a
problem of many cascaded rollbacks of local checkpoints,
so-called domino effect [1, 8, 17]. In a worst case, the
whole execution results of any distributed application can
be cancelled because of the domino-effect. In addition, the
asynchronized schemes have more restarting overheads,
compared to the synchronized schemes. This is because the
asynchronized scheme has to collect the whole information
from scatted local checkpoints in order to find a consistent
global checkpoint. From these reasons, the synchronized
scheme is preferred in earlier time.

However, when it comes to the mobile network
environment, the synchronized scheme is more feasible
because of less network connectivity and more
consideration of instability of mobile devices of that
application environment. Among the asynchronized
schemes, in particular, the message-induced checkpointing
scheme [8, 9] is regarded to be a good alternative solution
in the mobile network environment. This is because the
message-induced scheme can eliminate the possibility of
domino effect sin a very simple manner. By forcing AP’s
to make local checkpoints depending on the message-
receiving events, this scheme can set some boundaries on
rollbacked local checkpoints

3. Proposed Method

3.1 Motivations

Although the message-induced scheme is useful to avoid
the domino effect, it has a severe problem in that the time
of checkpoint creations is determined without active
involvement of participant AP’s. This problem can be
easily understood by viewing the used mechanism of the
message-induced scheme. The scheme uses two different
execution states of the AP, that is, SEND and RECEIVE
states. The SEND and RECIVED states are set while the
message-sending and message-receiving events are
successively arising, respectively. A new checkpoint is
compulsorily created at the time when a network message
arrives at a particular AP with the execution state of SEND.
Since the time of checkpoint creations in an AP is

inactively determined depending on the arrivals of
message-receiving events, the created checkpoints would
not reflect application’s semantics. Otherwise, if we want
application’s semantics-aware checkpointing, that
checkpointing time of checkpoint can be chosen by
considering the critical points of processed application. In
other words, checkpoints have to be made when some
critical executions or expensive processes are done. Such
semantics-aware checkpointing is possible only when the
AP can actively request checkpointing. Note that the user
can also issue checkpoint requests via its AP.

The lack of semantics-awareness of the message-induced
scheme may have poor performance. When this scheme is
used for distributed mobile applications requiring a lot of
message transit, a large number of non-meaningful
checkpoints can be made. This can result in frequent
checkpointing and creations of obsolete checkpoints. In
addition, the message-induced scheme has no mechanism
to actively create consistent global checkpoints. Therefore,
in the case that an AP wants to make its critical execution
results persistent, there is no way for that. Whether or not
the execution results are saved into a consistent global
checkpoint relies on the existence of an appropriate pair of
message-receiving and message-sending events.

To solve such problems of lack of semantics-awareness in
checkpointing time and its defective mechanism for global
checkpointing, we propose a new checkpoint scheme based
on a combination of the logging agent and the R-distance

3.1 Data Format

First, we describe the data format of the network message,
which is represented by M below. In the followings, the
message sender AP is denoted by and the total number
of AP’s joining the distributed application by N,
respectively. The fields of M are seven in all. Among them,
the last three fields are not used by the AP. These fields
exist for containing control data of checkpointing purpose
and they are visible only to the logging agent. Meanwhile,
the first four are for containing application data needed by
the AP.

o M.type: Message type
o M.sender: Id of
o M.recever: Id of the counterpart AP
o M.data: Application data sent to the counterpart AP
o M.ap[1,2,…,N]: Ids of AP’s joining this application.
o M.serial[1,2,…,N]: Serial numbers of the local

checkpoints already made by M.ap[1, 2, …N].
o M.dep_vec[1,2,…,N]: Checkpoint dependency vector

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 4

To make the checkpoint-related fields invisible to the
entire participant AP’s, the logging agent appends these
fields at the tail of any message m received from its AP
before it sends message m to other logging agent. Then, the
receiver logging agent will delete these fields from m
before m is sent to the destination AP. The dependency
vector used for finding a consistent global checkpoint is
the same as that proposed in the earlier literatures [7, 8, 9,
11]. For space limitation, the details of use of the
dependency vector are referred to the literatures.

In turn, we describe the data format of the checkpoint
record managed by the logging agent. The fields below are
ones existing in the checkpoint record. When an AP
initiates or joins a distributed application, a logging agent
of the AP creates a new checkpoint record for saving
transferred network messages and checkpoint-related data
until the next checkpointing time. At the creation time, the
checkpoint record is manipulated in an area of main
memory, and then it is written into a stable storage at the
next checkpointing time. In the followings, the owner AP
of the checkpoint record is represented by , and the total
number of AP’s joining the distributed application by N.

o REC.id: Id of .
o REC.serial: Current checkpoint serial number
o REC.r_distance: R-distance of this application.
o REC.ap[1,..,N]: Ids of participant AP’s
o REC.serial[1,..,N]: Serial numbers of the local

checkpoints already made by REC.ap[1, 2, …N].
o REC.dep_vec[1,..,N]: checkpoint dependency vector
o REC.message[]: Messages sent by after the last

checkpointing time
o REC.prev_rec: Disk address to the previous

checkpoint record

As known from the above, at the first four fields the
checkpoint record saves the id of the owner AP, the serial
number of the current checkpoint record, the given R-
distance, and ids of the participant AP’s. And, the next two
fields are used for bookkeeping the information about
created local checkpoint serials and dependency vector.

To log all the network messages sent by until the next
checkpointing time, we use the field of message[]. Since
all the network messages sent to other AP’s are logged in
that field, messages resending can be done during the
recovery phase. Since more than one checkpoint record are
created o be created for the same application while the
application executes, they are chained for the fast access
during the recovery time. The last field is used for that
purpose, that is, it saves the disk address to the very
previous checkpoint record stored in the disk.

3.2 Tunable Checkpointing

The semantics-aware checkpointing requires that local
checkpoints be made according to the determination to
importance of the current execution state. Here, the
expensive processing is some actions whose loss causes
many additional network communications or
computational overheads. Such expensive processing is
according to application semantics, and thus only the
involved AP is responsible for its determination. For that
reason, the capability of creating a global checkpoint by
the AP is needed, as supported in the synchronized
checkpoint scheme. However, such capability inevitably
results in a high network cost and long blocking-time when
the protocol of the previous synchronized checkpointing
schemes is applied to the mobile computing environment.

Fig. 3. logging agent algorithm for handling a message-receiving event.

Fig. 3. logging agent algorithm for handling a message-receiving event.

Used Data: R /* current checkpoint record of Pi */
When a message m arrives at Ci from Pi
1. begin
2. if (m is for requesting a checkpoint creation) then
3. Save the content of R into disk space to make a local

checkpoint with the serial number of R.serial.
4. R’ ← GetGCSRec(R). /* get a latest checkpoint record of a

GCS */
5. if (R’= nil)
6. Call the routine GreateGCS(R).
7. endif
8. Create a new checkpoint record with the serial number of

R.serial + 1.
9. Send a messages notifying the creation of a new local

checkpoint of Pi.
10. Send a response message of checkpointing to Pi .
11. else /* m contains application data sent to other AP */
12. Append checkpoint-related fields to m and send it to the

counterpart logging agent.
13. endif
14. end.

When a message m arrives at Ci from other logging agent
15. begin
16. if (m is an application data message toward Pi)
17. Call the routine UpdateChptRec(m , R).
18. Remove some checkpoint-related fields form m and sent it

to Pi .
19. else if (m is for notifying creation of a new remote

checkpoint)
20. UpdateChptRec(m, R).
21. else /* m is for requesting Pi ‘s checkpointing */
22. Make a message for requesting an enforced checkpointing

and set it to Pi .
23. endif
24. end.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 5

To solve such a problem, we introduce the notion of the
recovery distance (R-distance) for the distributed
application. The R-distance indicates the worst-case
number of rollbacked checkpoints in the presence of
failure. If its value is d, then the latest d -1 local
checkpoints can be rolled back at the worst-case. For
example, if its value is equal to three, then the latest two
checkpoints can be rolled back with respect to each
participant AP. In the same way, if its value is one, our
scheme will work identically with an earlier synchronized
checkpoint scheme, where every checkpoint request results
in creation of a new consistent global checkpoint. If the
current application is in a very mission critical state, then
the application initiator AP can set the R-distance to a
small one. Additionally, if an AP really wants to make a
global checkpoint for a distributed application with R-
distance d, it can do that by issuing d local checkpoint
requests successively.

The R-distance value is determined and assigned to every
distributed application at its beginning point, and the
global checkpoints are made in flexible manner, while
preserving the given R-distance. In our scheme, the
enforced global checkpoint is issued by only the logging
agent and the necessity of such enforced checkpointing is
also decided by the logging agent. The AP just issues a
request for creating its local checkpoint by reflecting
application semantics.

The algorithm of Fig. 3 shows the way a logging agent
works at the time when a network message m arrives at the
logging agent. In the algorithm, the logging agent receiving
message m is denoted by , and the AP checkpointed by

 is denoted by . The message m can be one from or
any other logging agent. Since all the messages sent to an
AP are relayed by logging agent’s, every message from
AP’s other than Pi arrives at via the logging agent’s.

The steps of lines 1–14, are executed if receives a
message from Pi. In this case, first checks if message m
is for requesting a creation of Pi’s local checkpoint. If that
is true, the steps of lines 3-9 are performed to make a new
local checkpoint, preserving the R-distance of the
distributed application. For this, calls the routine
GetGCSRec() to get the lasts checkpoint record of a GCS.
Then, the record’s serial number is compared with the that
of the newly created local checkpoint. If preservation of
the R-distance constraint is not possible, then the routine
CreateGCS() is executed to make a new consistent global
checkpoint as in line 6. Otherwise, if the R-distance is
preserved, then just saves the current checkpoint record
and send a response message back to for notifying
successful checkpointing. On the other hand, if m is a pure
application data message, then the message is delivered to

the counterpart logging agent managing the message
receiver AP. At that time, some fields used for
checkpointing are appended to the original m.

First, we describe the data format of the network message,
which is represented by M below. In the followings, the
message sender AP is denoted by and the total number
of AP’s joining the distributed application by N,
respectively. The fields of M are seven in all. Among them,
the last three fields are not used by the AP. These fields
exist for containing control data of checkpointing purpose
and they are visible only to the logging agent. Meanwhile,
the first four are for containing application data needed by
the AP.

The rest steps in lines 15-24 of Fig. 3 are ones to be
performed when receives m from other logging agent,
say . If m is for sending application data to Pi, then it is
sent to Pi, after some piggybacking fields are deleted from
m. Of course, to save the checkpoint-related data the
routine UpdateChptRec() is called in line 17. If message m
is not for sending pure application data, it is either for
notifying a new checkpoint creation in the side of or for
forcing Pi to create a new local checkpoint. In the former
case, just updates the current checkpoint record for
reflecting the advance of the remote checkpoint serial
number and other changes of the distributed application.
Since M has no application data in itself, further message
delivery is not needed. In the latter case, a new message
forcing Pi to make its local checkpoint is sent to as in
line 22. In the response of that message, will send a
message for checkpoint creations, and then line 3 is
executed later.

The main advantages of our checkpointing scheme in Fig.
3 are two-fold. First, based on the concept of R-distance,
the average cost for creating a consistent global checkpoint
can be reduced, because creation of the global checkpoint
can be delayed within the R-distance. Additionally, if no
global checkpoint is found within the R-distance, then our
scheme estimate the costs of global checkpoints within R-
distance in routine CreateGCS(). Those features
differentiate our checkpointing protocol from others used
for global checkpointing in the earlier schemes, which only
have to create a global checkpoint containing the latest
local checkpoint without any consideration of its creation
cost. With our flexibility and cost estimation in global
checkpoint time, we can reduce the average cost for
making a global checkpoint.

Second, the use of the logging agent can reduce the amount
of checkpoint-related data transferred between MSS’s and
MH’s. Since those additional data for checkpoint is always
needed for tracking application’s execution state,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 6

overheads for sending them are unavoidable. If the
communication overheads become too large on wireless
networks, that could be a severe bottleneck in the
execution of the distributed applications. Against such a
problem, we adopt the logging agent so that most of the
additional checkpoint-related data are visible only in the
network messages transferred within logging agent’s wired
fixed networks. Since the communication cost in the fixed
networks of logging agent’s is very lower than in wireless
communication, we can reduce the overall network cost
due to the use of logging agents.

3.2 Detailed Algorithms

In Fig. 3, we outlined the proposed algorithm of the
logging agent. In that algorithm, we omitted details of the
routines called by the logging agent in Fig. 3. Here, we
present the detailed algorithms of the routines. Besides
those routines of Fig. 3, other routines used by the AP are
also needed for our checkpointing scheme. For instance,
we need the routines for message sending/receiving,
requesting a local checkpoint, and processing a checkpoint
enforcement message. As the algorithms for those AP
routines are not distinctive from ones previously proposed
in [8, 9] and they can be conjectured from the algorithm of
the logging agent, we do not present them in this paper.

Fig. 4 depicts the algorithm of routine GetGCSRec() used to
get a latest checkpoint record of being in a GCS. Here,

 is the AP whose checkpoint record is R of this routine.
In lines 1-4, the routine reads the previous checkpoint
records into the memory areas of A[2], .., A[R.r_distance]
and the current checkpoint record into A[1], respectively.

For this, the backward pointers chaining the disk-resident
checkpoint records are used for fast accesses. Using the
dependency vector and the serial local checkpoint numbers
saved in A[1, …, R.r_distance], this routine finds a latest
GCS.

The algorithm of routine GetGCSRec() is based on the
concept of the local checkpoints dependency among
different AP’s. This is represented by the dependency
vector saved in the checkpoint record field of dep_vec[] of
Fig. 3. The use of dependency vector is common in the
global checkpoint schemes [5, 6, 9, 10, 11]. The proof on
the usefulness of the dependency vector is also referred to
these researches.

We also use the dependency vector for deterring a
collection of local checkpoints with a GCS, that is, a
consistent global checkpoint. This routine compares the
dependency vector saved in R the current serial number of
the latest checkpoint records of other AP’s. The latest
checkpoint serials are found in the data structure of
serial[] in R. With the comparison, this routine can finds
the latest local checkpoint whose dependency are checked
that is not dependent on the events that have not been
check-pointed by counterpart AP’s.

In lines 6-13, the logging agent decides whether or not the
current creation of a local checkpoint supports the R-
distance preservation. If its preservation is not possible due
to the current checkpoint request, the routine CreateGCS()
is called as in line 6 of Fig. 3.

Fig. 5 depicts the algorithm of routine CreateGCS(). This
routine also reads the previous checkpoint records into A[]
for fast manipulation. Then, in lines x-x the routine
computes the global checkpoint costs with respect to the
local checkpoints represented by A[]. Here, the costs are
assessed by the number of remote local checkpoints to be
created for yielding a GCS, plus the distance of the chosen
local checkpoint from the current checkpoint time. That is
performed in lines 8-15 of Fig. 5. Based on the estimation,
the forced GCS line is determined by favorably choosing a
local checkpoint with the smallest costs as in line 16.

To make the chosen local checkpoint, denote by A[s] in the
algorithm of Fig. 5, be a global consistent one, messages
for requesting enforcement of checkpointing in other AP’s
are sent to the involved logging agent’s. Then, the logging
agent’s will enforce its AP to create the local checkpoint.
When all the response messages are gathered, this routine
returns. ,

The routine UpdateChptRec() of Fig. 6 is for modifying
the checkpoint record in accordance with message arrivals.
In line 2, the routine check if m is an outbound message

Algorithm: Routine GetGCSRec(R)
Input: Pi’s checkpoint record R
Output: checkpoint record having a GCS

1. A[1] ← R.
2. for i =2 to R.r_distance
3. A[i] ← ReadChptRec(A[i-1].previous). /* reading of the

previous checkpoint records */
4. endfor
5. p_num ← number of AP’s saved in R.ap[].
6. for i = 1 to R.r_distance
7. cgs_exist ← yes.
8. for j = 1 to p_num
9. if (A[i].chpt_dep_vec[j] > R.serial[j])
10. cgs_exist = no.
11. endfor
12. if(cgs_exist = yes) return A[j].
13. endfor
14. return nil. /* no GCS checkpoint record *

Fig. 4. Algorithm for routine GetGCSRec().

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 7

sent by Pi. If that is true, the routine saves the content of m
in the checkpoint record being located in memory.
Otherwise, if m is an inbound message, that is, m is a
message coming from other logging agent, then the data of
checkpoint’s dependency and the serial numbers of the
local checkpoints of other AP’s are updated to reflect the
changes of in the distributed application state.

4. Performance Analysis

To analyze the performance of the proposed scheme, we
consider two key metrics, that is, less overhead paid for
making checkpoints during normal execution time and low
possibility of rollbacked executions in the face of
application failure. Because there is a trade-off between
these two metrics and they are largely affected by diverse
factors such as application or network failure rates and
frequency of checkpoint creations, it is very hard to devise
an exact performance metrics. For these limitations, we
give only a rough analysis on our checkpointing scheme
here. ,

We first look on the overhead paid to generate checkpoint
records during normal time. The main components of such
overhead cost seem to be AP’s blocking time for
checkpointing and communication costs for sending

additional data used for tracking execution states of
ongoing application. The blocking time in our algorithm is
very short on average, compared with the traditional
algorithms. To see that, recall the steps of lines 5-7 in Fig .
3. In those steps, blocking time arises only when a globally
consistent local checkpoint is not found within the R-
distance. In many cases, such a situation is not the case.
Even though there is a need for creating a new global
checkpoint, our protocol will choose a local checkpoint
whose checkpointing overhead is most cheap. That is done
by the logging agent by using the routine CreateGCS() of
Fig. 5. Using this routine, the logging agent can choose
among previous local checkpoints any one that demands a
least number of local checkpoints.

The network cost for checkpointing depends on the amount
of additional checkpoint-related data that piggybacks on
messages delivering application data. In particular, such
data should be less on the warless communications. To
reduce the additional data on wireless networks, the
logging agent manages checkpoint-related information
using its checkpoint record in memory and refers to that
for generating messages being transferred among logging
agent’s. From this, additional network overheads for
checkpointing are small in our scheme, because most of
additional data are not visible to AP’s,

In the aspect of less cancellation of execution results in the
case of application failure, our algorithm has a good
property. Due to R-distance, the number of rollbacks in a
particular AP is always less than a value set to R-distance.
To all AP’s participating in the application, the worst case
number of rollbacks is less than N (d-1) while N AP’s are
running with R-distance of d. That is, there is a tight upper
bound on the number of cancelled local checkpoints.
However, such a large cancellation is not realistic, since
the times of checkpoint creations are different among the
AP’s joining a distributed transaction. In probabilistic, the

Algorithm: Routine CreateGCS(R)
Input: Pi’s checkpoint record R
1. A[1] ← R.
2. for i =2 to R.r_distance
3. A[i] ←ReadChptRec(A[i-1].previous). /* reading of the

previous checkpoint records */
4. endfor
5. p_num ← number of AP’s saved in R.ap[].
6. needed_local[1,..,R.distance] ← 0. /* number of local

checkpoints created for making a GCS */
7. costs[1,..,R.distance] ← 0. /* initialization */
8. for i = 1 to R.r_distance
9. for j = to p_num
10. if (A[i].dep_vec[j] > R.serial[j])
11. needed_local[[j]++.
12. endif
13. endfor
14. costs[i] = i + needed_local[i].
15. endfor
16. Find the least element among costs[1], costs[2],..,

costs[R.distance] and let s be the index of that element.
17. forall AP such that A[s].dep_vec[] > R.serial[]
18. Send a checkpoint requesting message to the logging agent

managing the checkpoint record of p.
19. endfor
20. Blocked until all the response messaged are received form the

logging agent’s above.

Algorithm: Routine UpdateChptRec(m, R)
Input: received message m, Pi ’s checkpoint record R

1. if(m is an outbound message) /* heading for other AP */
2. Save m into R and advance the number of sent

messages by one.
3. else /* M is a message arriving at Pi */
4. foreach in R.ap[] /* participant application

processes */
5. R.serial[] ← max(m.serial[], R.serial[]).

6. R.dep_vec[] ← max(m.dep_vec[], R.dep_vec[]).
7. endfor
8. endif

Fig. 6. Algorithm for routine UpdateChptRec().

Fig. 5. Algorithm for routine CreateGCS().

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 8

average number of rollbacked local checkpoints remains
below a half of the upper bound number, that is, N (d-1)/2.
Therefore, by setting R-distance appropriately, we can give
a limit on the losses of execution results. From these
properties, we can say that our algorithm can have a less
cancellation of application by setting R-distance in a low
range. Consequently, the proposed method has advantages
during the normal execution time and recovery phase.

5. Conclusions

The problem of making a consistent distributed checkpoint
in a mobile network environment is challenging to solve.
This is because the distributed application needs
application processes’ communication via warless
networks and such wireless communications easily make
the cost for checkpoint higher. To have less
communication cost, the previous checkpoint schemes for
mobile distributed applications take an approach to making
local checkpoints in a very inflexible manner. Such
inflexible in the checkpointing causes the lack of
semantics-awareness in the time of checkpointing. In
addition, some asynchronized checkpointing scheme
cannot provide any efficient mechanism for global
checkpointing by the application process. These
shortcomings can make obsolete checkpoints and frequent
losses of expensive execution results. To solve those
problems, we proposed a new checkpoint scheme based on
the checkpoint agent and the concept of the recovery
distance. From the combination of them, the proposed
scheme provides the capability of semantics-aware
checkpointing by paying only a cheap cost. We believe
that the proposed checkpointing scheme can be applied to
recover the mobile distribute application from diverse
failures.

References
[1] T. Imielinski and B. R. Badrinath, Mobile Wireless Computing:

Challenges in Data Management,Communications of the ACM,
pp.19-28, Vol.37, No.10, October 1994.

[2] Yi-Bing Lin, Failure Restoration of Mobility Databases for
Personal Communication Networks, Wireless Networks, Vol.1,
No.3, 1995.

[3] Sashidhar Gadiraju and Vijay Kumar, Recovery in the Mobile
Wireless Environment Using Mobile Agents,IEEE Trans. on
Mobile Computing, Vol.3, No.2, April 2004.

[4] Ricardo Baratto, Shaya Potter, Gong Su, and Jason Nieh,
MobiDesk: Mobile Virtual Desktop Computing, In Proc of the 10th
International Conference on Mobile Computing and Networking,
pp.1-15, 2004.

[5] Dhiraj K. Pradhan, P. Krishna, and Nitin H. Vaidya,Recovery in
Mobile Wireless Environment: Design andTrade-off Analysis, In
Proc. of the 26th International Symposium on Fault-Tolerant
Computing, pp.16-25,1996.

[6] Arup Acharya and B. R. Badrinath, Checkpointing Distributed
Applications on Mobile Computers, In Proc. of the 3rd
International Conference on Parallel and Distributed Information
Systems, pp.73-80, 1994.

[7] Y. M. Wang, Consistent Gobal Chckpoints That Contain a Given
Set of Local Checkpoints, IEEE Trans. on Computers, Vol.46,
No.4, pp.456-468, 1997.

[8] Tongchit Tantikul and D. Manivannan, Communication-Induced
Checkpointing and Asynchronous Recovery Protocol for Mobile
Computing Systems, In Proc. of the 6th International Conference
on Parallel and Distributed Computing Applications and
Technologies, pp.70-74, 2005.

[9] Taesoon Park and Heon Y. Yeom, An Asynchronous Recovery
Scheme based on Optimistic Message Logging for Mobile
Computing Systems, In Proc. of the 20th International Conference
on Distributed Computing Systems, pp.436-443. 2000.

[10] R. E. Strong and S. Yemini, Optimitic Recovery in Distributed
Systems, ACM Trans. on Computer Systems, Vol.3, No.3, August
1985.

[11] D. Manivannan and Mukesh Singhal, Quasi-Synchronous
Checkpointing: Models, Characterization, and Classification, IEEE
Trans. on Parallel and Distributed Systems, Vol.10, No.7, July
1999.

[12] Cheng-Min Lin and Chyi-Ren Dow, Efficient Checkpoint-based
Failure Recovery Techniques in Mobile Computing Systems,
Journal of Information Science and Engineering, pp.549-573, Vol
17, No.4, 2001.

[13] Lorenzo Alvisi, E. N. Elnozahy, Sriram Rao, Syed Amir Husain
and Asanka De Mel, An Analysis of Communication Induced
Checkpointing, In Proc. of the Symposium on Fault-Tolerant
Computing Symp., pp.242-249, 1999.

[14] Franco Zambonelli, On the Effectiveness of Distributed Checkpoint
Algorithms for Domino-Free Recovery, In Proc. of High
Performance Distributed Computing,pp.124-131, 1998.

[15] Mootaz Elnozahy, et. al., A Survey of Rollback-Recovery Protocols
in Message-Passing Systems, Technical Report: CMU-CS-99-148,
June 1999.

[16] Yi-Min Wang and W. Kent Fuchs, Lazy Checkpointing
Coordination for Bounding Rollback Propagation, In Proc. of the
International Symposium on Reliable Distributed Systems, pp.78-
85, 1993.

[17] Lapmport, Time, clocks, and the Ordering of Events in a
Distributed System, Communication of ACM, Von. 21, No.7,
pp.558-565, 1978.

Sungchae Lim received the B.S. degree in Computer Engineering
form Seoul National University at 1992, and achieved the M.S.
and Ph.D. degrees in Computer Science from Korea Advanced
Institute of Science and Technology (KAIST), at 1994 and 2003,
respectively. He also worked for the Korea Wisenut Cooperation
from 2000 to 2005, and he is currently an Associate Professor in
the Department of Computer Science at Dongduk Women’s
University. His research interest includes the high-performance
indexing, mobile computing, and semantic Web.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 9

