

GSAT Enhanced with Learning Automata and Multilevel
Paradigm

Noureddine Bouhmala1 and Ole-Christoffer Granmo2

 1 Department of Maritime Technology and Innovation, Vestfold University College
 Borre, NO-3184, Norway

2 Department of ICT, University of Agder
Grimstad, NO-4876, Norway

Abstract
A large number of problems that occur in knowledge-
representation, learning, very large scale integration technology
(VLSI-design), and other areas of artificial intelligence, are
essentially satisfiability problems. The satisfiability problem
refers to the task of finding a satisfying assignment that makes a
Boolean expression evaluate to True. The growing need for more
efficient and scalable algorithms has led to the development of a
large number of SAT solvers. This paper introduces two new
techniques that combine finite learning automata and multilevel
paradigm with the Greedy Satisfiability Algorithm (GSAT). We
present a detailed comparative analysis of the new approaches
using a benchmark set containing randomized and practical
engineering applications from various domains.
Keywords: Satisfiability problem, learning automata, multilevel
techniques, combinatorial optimization.

1. Introduction

The satisfiability problem (SAT) which is known to be NP-
complete (nondeterministic polynomial time) [2] plays a
central role in many applications in the fields of VLSI
(Very-large-scale integration) Computer-Aided design,
Computing Theory, and Artificial Intelligence. Generally,
a SAT problem is defined as follows. A propositional
formula 1

m
j jC=Φ = ∧ with m clauses and n Boolean

variables is given. Each Boolean
variable, , {1, , }ix i n∈  , takes one of the two values,

True or False. Each clause jC , in turn, is a disjunction of
Boolean variables and has the form:

 ,
j j

j k l
k I l I

C x x
∈ ∈

   
   = ∨
   
   
∨ ∨

where , {1,..... },j jI I n⊆ jI I∩ =∅ , and ix denotes

the negation of ix .

The task is to determine whether there exists an assignment
of values to the variables under which Φ evaluates to True.
Such an assignment, if it exists, is called a satisfying
assignment for Φ , and Φ is called satisfiable. Otherwise,
Φ is said to be unsatisfiable. Since we have two choices
for each of the n Boolean variables, the size of the search
space S becomes | | 2nS = . That is, the size of the search
space grows exponentially with the number of variables.
Since most known combinatorial optimization problems
can be reduced to SAT [7], the design of special methods
for SAT can lead to general approaches for solving
combinatorial optimization problems.

Most SAT solvers use a Conjunctive Normal Form (CNF)
representation of the formula Φ . In CNF, the formula is
represented as a conjunction of clauses, with each clause
being a disjunction of literals, and a literal being a Boolean
variable or its negation. For example, P Q∨ is a clause
containing the two literals P and Q . The clause P Q∨
is satisfied if either P is True or Q is True. When each
clause in Φ contains exactly k literals, the resulting SAT
problem is called k -SAT.

In essence, we here enhance the traditional GSAT Random
Walk (GSATRW) strategy with learning capability, taking
the form of Learning Automata and the multi-level
paradigm. Learning Automata have been used to model
biological systems [42] and have attracted considerable
interest in the last decade because they can learn the
optimal actions when operating in (or interacting with)
unknown stochastic environments. Furthermore, they
combine rapid and accurate convergence with low

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 38

computational complexity. The multilevel paradigm is a
simple technique which at its core involves recursive
coarsening to produce smaller and smaller problems that
are easier to solve than the original one.

The paper is organized as follows. In Section 2 we survey
algorithms used for solving the SAT problem. In Section 3
we take a closer look at the GSAT Random Walk
algorithm, before we in Section 4 explain how the latter
algorithm can be enhanced with learning capability, using
the basic concepts of Learning Automata. In Section 5, we
report the results obtained from testing the new approach.
Section 6 introduces the multilevel generic paradigm. In
section 7 we describe the main components of the
multilevel paradigm when applied to the satisfiability
problem. Section 8 presents the results. In section 9 we
apply the Wilcoxon Rank Sum test to test the significance
of the results. Finally, in Section 10, we summarize the
findings and suggest directions for future research.

2. Stochastic Local Search Algorithms (SLS)

The SAT problem has been extensively studied due to its
simplicity and applicability. The simplicity of the problem
coupled with its intractability makes it an ideal platform
for exploring new algorithmic techniques. This has led to
the development of several local search algorithms for
solving SAT problems.

Local search algorithms typically start with an initial
assignment of truth values to variables, randomly or
heuristically generated. Satisfiability can then be
formulated as an iterative optimization problem in which
the goal is to minimize the number of unsatisfied clauses.
Thus, the optimum is obtained when the value of the
objective function equals zero, which means that all
clauses are satisfied. During each iteration, a new value
assignment is selected from the "neighborhood" of the
present one, by performing a "move". Most local search
algorithms use a 1-flip neighborhood relation, which
means that two truth value assignments are considered to
be neighbors if they differ in the truth value of only one
variable. Performing a move, then, consists of switching
the present value assignment with one of the neighboring
value assignments.

The search terminates if no better neighboring assignment
can be found. Note that choosing a fruitful neighborhood,
and a method for searching it, is usually guided by
intuition – theoretical results that can be used as guidance
are sparse.

One of the earliest local search algorithms for solving SAT
is GSAT [37]. Basically, GSAT begins with a randomly
generated assignment of values to variables, and then uses
the steepest descent heuristic to find the new variable-
value assignment which best decreases the numbers of
unsatisfied clauses. After a fixed number of moves, the
search is restarted from a new random assignment. The
search continues until a solution is found or a fixed number
of restarts have been performed. An extension of GSAT,
referred to as random-walk [39] has been realized with the
purpose of escaping from local optima. In a random walk
step, a randomly unsatisfied clause is selected. Then, one
of the variables appearing in that clause is flipped, thus
effectively forcing the selected clause to become satisfied.
The main idea is to decide at each search step whether to
perform a standard GSAT or a random-walk strategy with
a probability called the walk probability.

Another widely used variant of GSAT is the WalkSAT
algorithm, originally introduced in [38]. It first picks
randomly an unsatisfied clause, and then, in a second step,
one of the variables with the lowest break count, appearing
in the selected clause, is randomly selected. The break
count of a variable is defined as the number of clauses that
would be unsatisfied by flipping the chosen variable. If
there exists a variable with break count equal to zero, this
variable is flipped, otherwise, the variable with minimal
break count is selected with a certain probability (noise
probability). It turns out that the choice of unsatisfied
clauses, combined with the randomness in the selection of
variables, enable WalkSAT to avoid local minima and to
better explore the search space.

Extensive tests have led to the introduction of new variants
of the Walksat algorithm referred to as Novelty and R-
Novelty [26]. These two variants use a combination of two
criteria when choosing a variable to flip from within an
unsatisfied clause. Quite often, these two algorithms can
get stuck in local minima and fail to get out. To this end,
recent variants have been designed [24][25][16] using a
combination of search intensification and diversification
mechanisms, leading to good performance on a wide range
of SAT instances.

Other algorithms [10][13][8][9] use history-based variable
selection strategies in order to avoid repeated flipping of
the same variable. In parallel to the development of more
sophisticated versions of randomized improvement
techniques, other methods based on the idea of modifying
the evaluation function [44][17][41][35][36] in order to
prevent the search from getting stuck in non-attractive
areas of the underlying search space have become
increasingly popular in SAT solving. The key idea is to
associate the clauses of the given CNF formula with

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 39

weights. Although these clause weighting SLS algorithms
differ in the way clause weights should be updated
(probabilistic or deterministic), they all choose to increase
the weights of all the unsatisfied clauses as soon as a local
minimum is encountered.

A new approach to clause weighting known as Divide and
Distribute Fixed Weights (DDFW) [18] exploits the
transfer of weights from neighboring satisfied clauses to
unsatisfied clauses in order to break out form local minima.
Recently, a strategy based on assigning weights to
variables [34] instead of clauses greatly enhances the
performance of the Walksat algorithm, leading to the best
known results on some benchmarks.

Lacking theoretical guidelines while being stochastic in
nature, the deployment of several meta-heuristics involves
extensive experiments to find the optimal noise or walk
probability settings. To avoid manual parameter tuning,
new methods have been designed to automatically adapt
parameter settings during the search [23][33], and results
have shown their effectiveness for a wide range of
problems.

The work conducted in [12] introduced Learning Automata
(LA) as a mechanism for enhancing random walk
algorithm, thus laying the foundation for novel LA-based
SAT solvers. Finally, a new approach based on an
automatic procedure for integrating selected components
from various existing solvers in order to build new
efficient algorithms that draw upon the strengths of
multiple algorithms was proposed in [45][22].

3. The GSAT-Random-Walk Algorithm
(GSATRW)

This section is devoted to explaining the details of the
GSATRW algorithm as it is embedded into our Finite
Learning Automata based strategy. The main motivation
behind choosing the GSATRW algorithm is the fact that all
state-of-the-art SAT solving algorithms are derivatives of
GSATRW. They all have the general GSATRW backbone
architecture with some additional features such as random
restart, clause weighting and Tabu list mechanisms, and
therefore comparing the performance of GSATRW with
and without enhancements are informative.

As argued previously, the introduction of an element of
randomness (i.e., noise) into local search methods is
common practice for improving effectiveness through
diversification [1]. In this spirit, the GSATRW algorithm
(shown in Fig. 1) starts with a randomly chosen assignment.
Thereafter, two possible strategies are used for selecting

the variable to be flipped at each iteration of the algorithm.
The first strategy is taking a walk-step, which amounts to
randomly selecting a currently unsatisfied clause and then
flipping one of its variables, also in a random manner.
Thus, at each walk-step, at least one unsatisfied clause
becomes satisfied. The other strategy uses a greedy search
to choose a random variable from the set PossFlips, which
contains the variables that when flipped (individually)
achieve the largest decrease (or the least increase) in the
total number of unsatisfied clauses. Note that the walk-step
strategy may lead to an increase in the total number of
unsatisfied clauses even when purely improving flips
would have been possible.

Fig. 1 GSAT-Random-Walk Algorithm.

4. Solving SAT Using Finite Learning
Automata

We base our work on the principles of Learning Automata
[28][40]. Learning Automata have been used to model
biological systems [42], and have recently attracted
considerable interest because they can learn the optimal
actions when operating in (or interacting with) unknown
stochastic environments. Furthermore, they combine rapid
and accurate convergence with low computational
complexity. Learning Automata solutions have been
proposed for several other combinatorial optimization
problems [30][6][11][27][32][31][29].

The work reported in [12] was the first to combine the
traditional random walk with learning automata for the
satisfiability problem. Inspired by the success of the above
solution scheme, we will in the following propose how
GSATRW can be enhanced with learning capability, using
Learning Automata.

4.1 A Learning SAT Automaton

Generally stated, a finite learning automaton performs a
sequence of actions on an environment. The environment
can be seen as a generic unknown medium that responds to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 40

each action with some sort of reward or penalty, perhaps
stochastically. Based on the responses from the
environment, the aim of the finite learning automaton is to
find the action that minimizes the expected number of
penalties received. Fig. 2 illustrates the interaction between
the finite learning automaton and the environment.
Because we treat the environment as unknown, we will
here only consider the definition of the finite learning
automaton (LA).

Fig. 2 A learning automaton interacting with an

environment.

The finite learning automaton can be defined in terms of a
quintuple [28]:

 { , , , (·,·), (·,·)}.α βΦ F G

1 2{ , , , }sφ φ φΦ = … is the set of internal automaton

states. 1 2{ , , , }rα α α α= … is the set of automaton

actions. And, 1 2{ , , , }mβ β β β= … is the set of inputs
that can be given to the automaton. An output function

[]t tα φ=G determines the next action performed by the
automaton given the current automaton state. Finally, a
transition function 1 [,]t t tφ φ β+ = F determines the new
automaton state from (1) the current automaton state and
(2) the response of the environment to the action
performed by the automaton.

Based on the above generic framework, the crucial issue is
to design automata that can learn the optimal action when
interacting with the environment. Several designs have
been proposed in the literature, and the reader is referred to
[28][40] for an extensive treatment. In this paper we target
the SAT problem, and our goal is to design a team of
Learning Automata that seeks the solution of SAT problem
instances. We build upon the work of Tsetlin and the linear
two-action automaton [42][28]. For each literal in the SAT
problem instance that is to be solved, we construct an
automaton with

• States:
{ 1, , , 1,0, , 2, }N N N NΦ = − − − … − … − .

• Actions: { , }True Falseα = .
• Inputs: { , }reward penaltyβ = .

Fig. 3 specifies theGand F matrices.

Fig. 3 The state transitions and actions of the Learning
SAT automaton.

The G matrix can be summarized as follows. If the
automaton state is positive, then action True will be chosen
by the automaton. If on the other hand the state is negative,
then action False will be chosen. Note that since we
initially do not know which action is optimal, we set the
initial state of the Learning SAT Automaton randomly to
either '-1' or '0'.

The state transition matrix F determines how learning
proceeds. As seen in the figure, providing a reward input
to the automaton strengthens the currently chosen action,
essentially by making it less likely that the other action will
be chosen in the future. Correspondingly, a penalty input
weakens the currently selected action by making it more
likely that the other action will be chosen later on. In other
words, the automaton attempts to incorporate past
responses when deciding on a sequence of actions.

4.2 Combining Learning Automata with
GSATRW(LA-GSATRW)

Overview: In addition to the definition of the LA, we must
define the environment that the LA interacts with. Simply
put, the environment is a SAT problem instance as defined
in Section 1. Each variable of the SAT problem instance is
assigned a dedicated LA, resulting in a team of LA. The
task of each LA is to determine the truth value of its
corresponding variable, with the aim of satisfying all of the
clauses where that variable appears. In other words, if each
automaton reaches its own goal, then the overall SAT
problem at hand has also been solved.

Pseudo-code: With the above perspective in mind, we will
now present the details of the LA-GSATRW that we
propose. Fig. 4 contains the complete pseudo-code for
solving SAT problem instances, using a team of LA. As
seen from the figure, an ordinary GSATRW strategy is
used to penalize an LA when it ``disagrees'' with
GSATRW, i.e., when GSATRW and the LA suggest
opposite truth values. Additionally, we use an ``inverse''

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 41

GSATRW strategy for rewarding an LA when it agrees
with GSATRW. Note that as a result, the assignment of
truth values to variables is indirect, governed by the states
of the LA. At the core of the LA-GSATRW algorithm is a
punishment/rewarding scheme that guides the team of LA
towards the optimal assignment. In the spirit of automata
based learning, this scheme is incremental, and learning is
performed gradually, in small steps.

Fig. 4 Learning Automata GSAT Random Walk Algorithm.

Remark 1: Like a two-action Tsetlin Automaton, our
proposed LA seeks to minimize the expected number of
penalties it receives. In other words, it seeks finding the
truth assignment that minimizes the number of unsatisfied
clauses among the clauses where its variable appears.

Remark 2: Note that because multiple variables, and
thereby multiple LA, may be involved in each clause, we
are dealing with a game of LA [28]. That is, multiple LAs
interact with the same environment, and the response of the
environment depends on the actions of several LA. In fact,
because there may be conflicting goals among the LA

involved in the LA-GSATRW, the resulting game is
competitive. The convergence properties of general
competitive games of LA have not yet been successfully
analyzed, however, results exists for certain classes of
games, such as the Prisoner's Dilemma game
[28]. In our case, the LA involved in the LA-GSATRW is
non-absorbing, i.e., every state can be reached from every
other state with positive probability. This means that the
probability of reaching the solution of the SAT problem
instance at hand is equal to 1 when running the game
infinitely. Also note that the solution of the SAT problem
corresponds to a Nash equilibrium of the game.

Remark 3: In order to maximize speed of learning, we
initialize each LA randomly to either the state '-1' or '0'. In
this initial configuration, the variables will be flipped
relatively quickly because only a single state transition is
necessary for a flip. Accordingly, the joint state space of
the LA is quickly explored in this configuration. However,
as learning proceeds and the LA move towards their
boundary states, i.e., states '-N' and 'N-1', the flipping of
variables calms down. Accordingly, the search for a
solution to the SAT problem instance at hand becomes
increasingly focused.

5. Empirical Results: Learning Automata

5.1 Benchmark Instances

As a basis for the empirical evaluation of LA-GSATRW,
we selected benchmark instances which are available from
the SATLIB website (www.satlib.org). All the benchmark
instances used in this experiment are satisfiable instances
and have been used widely in the literature in order to give
an overall picture of the performance of different
algorithms. Due to the randomization of the algorithm, the
number of flips required for solving a problem instance
varies widely between different runs. Therefore, for each
problem instance, we run LA-GSATRW and GSATRW
100 times with a cutoff parameter (maxflips) setting
which is high enough (710) to guarantee a success rate
close to100% .

5.2 Run-Length-Distributions (RLDs)

As an indicator of the behavior of the two algorithms when
trying to solve a given problem instance in 100 trials, and
to get an idea of the variability of the search cost, we
analyzed the cumulative distribution of the number of
search flips needed by both LA-GSATRW and GSATRW.
Due to non-deterministic decisions involved in the
algorithm (i.e., initial assignment, random moves), the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 42

number of flips needed by both algorithms to find a
solution is a random variable that varies from run to run.
More formally, let k denotes the total number of runs, and
let ()f j′ denotes the number of flips for the j-th
successful run (i.e., run during which a solution is found)
in a list of all successful runs, sorted according to
increasing number of flips, then the cumulative empirical
RLD is defined by
ˆ(()) |{ | () } /P f j f j f j f k′ ′≤ = ≤ . Each problem

was solved 100 times using an extremely high cutoff
parameter setting of 710Maxsteps = in order to obtain a
maximal number of successful tries.

Fig. 5 LA-GSATRW Vs GSATRW: Cumulative
distributions for a 600-variable random problem with 2550
clauses (f600).

Fig. 6 LA-GSATRW Vs GSATRW: Cumulative
distribution for a 1000-variable random problem with
4250 clauses (f1000).

Fig. 7 LA-GSATRW Vs GSATRW: Cumulative
distributions for a 2000-variables random problem with
8500 clauses (f2000).

Figs. Fig. 5-7 show RLDs obtained by applying LA-
GSATRW and GSATRW to individual large random
problems.

As can be seen from the three plots, we observe that both
algorithms reach a success rate of 100% for f600 and
f1000. However, on the large problem f2000, GSATRW
shows a low asymptotic solution probability corresponding
to 0.37 , compared to 0.45 for LA-GSATRW. Note also,
that there is a substantial part of trials that are dramatically
hard to solve which explains the large variability in the
length of the different runs of the two algorithms. Both
algorithms show the existence of an initial phase below
which the probability for finding a solution is 0. Both
methods start the search from a randomly chosen
assignment which typically violates many clauses.
Consequently, both methods need some time to reach the
first local optimum which possibly could be a feasible
solution. The two algorithms show no cross-over in their
corresponding RLDs even though it is somewhat hard to
see for f600 but it becomes more pronounced for f1000
and f2000. The median search cost for LA-GSATRW
is 3% , 29% , and 17% of that of GSATRW for f600,
f1000 and f2000 respectively.

As can be seen from these plots, LA-GSATRW gives
consistently higher success probabilities while requiring
fewer search steps compared to GSATRW.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 43

Fig. 8 LA-GSATRW Vs GSATRW: Cumulative
distributions for a 228-variable logistics problem with
6718 clauses (logistics-a).

Fig. 9 LA-GSATRW Vs GSATRW: Cumulative
distribution for a 843-variable logistics problem with 7301
clauses (logistics-b).

Fig. 10 LA-GSATRW Vs GSATRW: Cumulative
distributions for an 1141-variable logistics problem with
10719 clauses (logistics-c).

Fig. 11 LA-GSATRW Vs GSATRW: Cumulative
distribution for a 4713-variable logistics problem with
21991 clauses (logistics-d).

Looking at Figs. 8-11 and applying the RLD analysis to
SAT-encoded logistics problems, there is no clear success
rate winner between the two algorithms. The number of
search steps varies between the different trials and is
significantly higher with GSATRW than that of LA-
GSATRW. The median search cost for LA-GSATRW
is 4% , 29% , 34% , and 51% of that of GSATRW for
Logistics-d, Logistics-b, Logistics-c, and Logistics-a
respectively.

Fig. 12 LA-GSATRW Vs GSATRW: Cumulative
distribution for a 116-variable Blocks World problem with
953 clauses (medium).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 44

Fig. 13 LA-GSATRW Vs GSATRW: Cumulative
distribution for a 459-variable Blocks World problem with
4675 clauses (bw-large.a).

Fig. 14 LA-GSATRW Vs GSATRW: Cumulative
distributions for a 459-variable Blocks World problem with
7054 clauses (huge).

Fig. 15 LA-GSATRW Vs GSATRW: Cumulative
distribution for a 1087-variable Blocks World problem
with 13772 clauses (bw-large.b).

We now turn to single SAT-encoded instances from the
Blocks World Planning domain. The crossing of the two
RLDs at different points as shown in Figs. 12-15, indicates
that there is no complete dominance of one algorithm over
the other when applied to the same problem. Looking at
Figs. 10-11 and taking the smallest problem (medium) as
an example, we notice that for smaller cutoff times,
GSATRW achieves higher solution probabilities, while for
larger cutoff times, LA-GSATRW shows increasingly
superior performance. It may be noted that GSATRW
performs better than LA-GSATRW for the smallest
problem (up to 49% more steps than LA-GSATRW).
However this gap is fairly small and is within 5% for
medium size problems (bw-large.a, bw-huge). On the other
hand, for the large problem bw-large.b, the situation is
reversed. GSATRW requires 16% more steps than LA-
GSATRW.

Fig. 16 LA-GSATRW Vs GSATRW: Cumulative
distributions for a 3628-variable BMC problem with 14468
clauses (bmc-ibm2).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 45

Fig. 17 LA-GSATRW Vs GSATRW: Cumulative
distribution for a 14930-variable BMC problem with
72106 clauses (bmc-ibm3).

Fig. 18 LA-GSATRW Vs GSATRW: Cumulative
distributions for a 8710-variable BMC problem with 8710
clauses (bmc-ibm6).

Finally, the plots in Figs. 16-18 explore the behavior of the
RLDs of both algorithms when applied to BMC problems.
Both algorithms reach a success rate of 100% with the
one exception that, for the medium size problem (bmc-
ibm3), the success rate was around 95% . Returning to Fig.
16 then, for the smaller problem (bmc-ibm-2) GSATRW
dominates LA-GSATRW on the major part of the runs (i.e.,
approximately 80%), as it reaches high solution
probabilities while requiring lower search cost. On the
other hand, for the medium size problem (bmc-ibm-3) the
situation is similar but reversed.

Fig. 18 shows the RLD for both algorithms for the large
problem (bmc-ibm-6). As can be seen from the figure, the
RLDs for both algorithms have roughly the same shape.
The presence of heavy tails in both RLDs indicates that
both algorithms get stuck in local minima for a relatively

small number of trials. The median search cost for
GSATRW is 15% of that of LA-GSATRW for the bmc-
ibm-2. However, LA-GSATRW shows a better
performance for the medium (improvement of
approximately 8% in the median) and larger problem
(improvement of approximately5%).

6. The Multilevel Paradigm

The multilevel paradigm is a simple technique which at its
core involves recursive coarsening to produce smaller and
smaller problems that are easier to solve than the original
one. Fig. 19 shows the process of the generic multilevel
paradigm in pseudo-code. The multilevel paradigm
consists of three phases: coarsening, initial solution, and
multilevel refinement. During the coarsening phase, a
series of smaller problems is constructed by matching pair
of vertices of the input original problem in order to form
clusters, use the clusters to define a related coarser
problem, and recursively iterate the coarsening procedure
until a sufficiently small problem is obtained.

Computation of an initial solution is performed on the
coarsest level (smallest problem). Finally, the solution
found at each level is extended to give an initial solution
for the next level and then refined using a chosen local
search algorithm. A common feature that characterizes
multilevel algorithms is that any solution in any of the
coarsened problems is a legitimate solution to the original
graph. This is always true as long as the coarsening is
achieved in a way that each of the coarsened problems
retains the original problem's global structure. The key
success behind the efficiency of the multilevel techniques
is the use of the multilevel paradigm. This paradigm offers
two main advantages which enable local search techniques
to become much more powerful in the multilevel context.
First, by allowing local search schemes to view a cluster of
vertices as a single entity, the search becomes restricted to
only those configurations in the solution space in which the
vertices grouped within a cluster are assigned the same
label. During the refinement phase a local refinement
scheme applies a local a transformation within the
neighborhood (i.e., the set of solutions that can be reached
from the current one) of the current solution to generate a
new one. As the size of the clusters varies from one level
to another, the size of the neighborhood becomes adaptive
and allows the possibility of exploring different regions in
the search space. Second, the ability of a refinement
algorithm to manipulate clusters of vertices provides the
search with an efficient mechanism to escape from local
minima. Multilevel techniques were first introduced when
dealing with the graph partitioning problem (GCP) [14]
[20] [21] [43] and have proved to be effective in producing

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 46

high quality solutions at a lower cost than single level
techniques.

Fig. 19 Multilevel Generic Algorithm.

7. The multilevel framework for the
satisfiability problem

Fig. 20 GSAT-Refinement Algorithm.
Coarsening: The original problem 0P is reduced into a

sequence of smaller problems 0 2, ,.... mP P P such

that 0 1 2| | | | | | | |mP P P P> > > . It will require at least
'(/)O logN N coarsening phases to coarsen the problem

down to 'N variables. Let v
iV denotes the set of variables

of iP combined to form variable v of 1iP+ . We will refer
to v as multivariable. During the coarsening phase, a
sequence of smaller problems, each with fewer variables is
constructed. Let 0P denotes the original problem. The next

level coarser problem 1P is constructed from 0P by
collapsing pairs of variables into multi-variables. The
variables are visited in random order. If a variable has not
been matched yet, then we randomly select one randomly
unmatched variable, and a multivariable consisting of these
two variables is created. Unmatched variables are simply

copied the next level. The new formed multi-variables are
used to define a new and smaller problem and recursively
iterate the coarsening process until the size of the problem
reaches some desired threshold.

• Initial solution: An initial assignment mA of mP
is easily computed using a random assignment
algorithm. The random assignment algorithms
works by randomly assigning to each
multivariable of the coarsest problem mP the
value of true or false.

• Projection: Having optimized the assignment

1kA + on a 1kP + , the assignment must be

projected onto its parent kP . Since each

multivariable of 1kP + contains a distinct subset of

multi-variables of kP , obtaining kA from 1kA +
is done by simply assigning the set of variables

v
iV collapsed to 1kv P +∈ the same value as v

(i.e., 1[] []i iA u A v+= , v
iu V∀ ∈).

• Refinement: At each level, the assignment from
the previous level is projected back to give an
initial assignment and further refined. Even
though 1iA + is a local minimum of 1iP+ , the

projected assignment iA may not be at a local

optimum with respect to iP . Since iP is finer, it
may still be possible to improve the projected
assignment using a version of GSAT adapted to
the multilevel paradigm. The idea of GSAT
refinement as shown in Fig. 20 is to use the
projected assignment of 1iP+ onto iP as the
initial assignment of GSAT. Since the projected
assignment is already a good one, GSAT will
converge quicker to a better assignment. During
each level, GSAT is allowed to perform
MAXFLIPS iterations before moving to the finer
level. If a solution is not found at the finest level,
a new round of coarsening, random initial
assignment, and refinement is performed.

8. Empirical Results: Multilevel Paradigm

Figs. 21-39 show results which appear to follow the same
pattern. Overall, at least for the instances tested here, we
observe that the search pattern happens in two phases. The
first phase which corresponds to the early part of the
search, both algorithms behave as a hill-climbing method.
These phases which can be described as a short one, a
large number of the clauses are satisfied. The best

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 47

assignment climbs rapidly at first, and then flattens off as
we mount the plateau, marking the start of the second
phase. The plateau spans a region in the search space
where flips typically leave the best assignment unchanged.
The long plateaus becomes even more pronounced as the
number of flips increases, and occurs more specifically in
trying to satisfy the last few remaining clauses. The
transition between each plateau corresponds to a change to
the region where a small number of flips gradually
improves the score of the current solution ending with an
improvement of the best assignment. The plateau is rather
of short length with MLVGSAT compared to that of
GSAT. The projected solution from one level to a finer
one offers an elegant mechanism to reduce the length of
the plateau as it consists of more degree of freedom that
can be used for further improving the best solution. The
plots show a time overhead for MLVGSAT especially for
large problems due mainly to data structures settings at
each level. We feel that this initial overhead which is a
common feature in multilevel implementations is more
susceptible to further improvements, and will be
considerably minimized by a more efficient
implementation. Comparing GSAT and MLVGSAT for
small sized problems (up to 1500 clauses) and as can be
seen from the left sides of Figs. 24, 25, 28 and 29, both
algorithms seem to be reaching the optimal quality
solutions. It is not immediately clear which of the two
algorithms converges more rapidly. This is probably very
dependent on the choice of the instances in the test suite.
For example the run time required by MLVGSAT for
solving instance flat100-239 is more than 12 times higher
than the mean run-time of GSAT (25sec vs 2sec). The
situation is reversed when solving the instance block-
medium (20sec vs 70sec). The difference in convergence
behavior of both algorithms starts to become more
distinctive as the size of the problem increases. All the
plots show a clear dominance of MLGSAT over GSAT
throughout the whole run. MLVGSAT shows a better
asymptotic convergence (to around 0.008% 0.1%−) in
excess of the optimal solution as compared with GSAT
which only reach around (0.01%-11%). The performance
of MLVGSAT surpasses that of GSAT although few of the
curves overlay each other closely, MLVGSAT has
marginally better asymptotic convergence.

Fig. 21 Log-Log plot, Random: Evolution of the best
solution on a 600 variable problem with 2550 clauses
(f600.cnf).

Fig. 22 Log-Log plot, Random: Evolution of the best
solution on a 1000 variable problem with 4250 clauses.
(f1000.cnf).

Fig. 23 Log-Log plot, Random: Evolution of the best
solution on a 2000 variable problem with 8500 clauses
(f2000.cnf).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 48

Fig. 24 Log-Log plot, SAT-encoded graph coloring:
Evolution of the best solution on a 300 variable problem
with 1117 clauses (flat100.cnf).

Fig. 25 Log-Log plot, SAT-encoded graph coloring:
Evolution of the best solution on a 2125 problem with
66272 clauses (g125-17.cnf).

Fig. 26 Log-Log plot, SAT-encoded graph coloring:
Evolution of the best solution on a 2250 variable problem
with 70163 clauses (g125-18.cnf).

Fig. 27 Log-Log plot, SAT-encoded block world:
Evolution of the best solution on a 116 variable problem
with 953 clauses (medium.cnf).

Fig. 28 Log-Log plot, SAT-encoded Block World:
Evolution of the best solution on a 459 problem with 7054
clauses (huge.cnf).

Fig. 29 Log-Log plot, SAT-encoded Block World:
Evolution of the best solution on a 1087 variable problem
with 13772 clauses (bw-largeb.cnf).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 49

Fig. 30 Log-Log plot, SAT-encoded Logistics: Evolution
of the best solution on a 843 variable problem with 7301
clauses (logisticsb.cnf).

Fig. 31 Log-Log plot, SAT-encoded Logistics: Evolution
of the best solution on a 1141 problem with 10719 clauses
(logisticsc.cnf).

Fig. 32 Log-Log plot, SAT-encoded Logistics: Evolution
of the best solution on a 4713 problem with 21991 clauses
(logisticsd.cnf).

Fig. 33 Log-Log plot, SAT-encoded Quasigroup:
Evolution of the best solution on a 129 variable problem
with 21844 clauses (qg6-9.cnf).

Fig. 34 Log-Log plot, SAT-encoded Quasigroup:
Evolution of the best solution on a 729 variable problem
with 28540 clauses (qg5-9.cnf).

Fig. 35 Log-Log plot, SAT-encoded Quasigroup:
Evolution of the best solution on a 512 variable problem
with 148957 clauses (qg1-8.cnf).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 50

Fig. 36 Log-Log plot, SAT competition Beijing: Evolution
of the best solution on a 410 variable problem with 24758
clauses (4blockb.cnf).

Fig. 37 Log-Log plot, SAT competition Beijing: Evolution
of the best solution on a 8432 problem with 31310 clauses
(3bitadd-31.cnf).

Fig. 38 Log-Log plot, SAT competition Beijing: Evolution
of the best solution on a 8704 variable problem with 32316
clauses (3bitadd32.cnf).

Fig. 39 Log-Log plot, SAT competition Beijing: Evolution
of the best solution on a 758 problem with 47820 clauses
(4blocks.cnf).

9. Wilcoxon Rank-Sum Test

The quality of the solution may vary significantly from run
to run on the same problem instance due to random initial
solutions and subsequent randomized decisions. We
choose the Wilcoxon Rank test in order to test the level of
statistical confidence in differences between the mean
percentage excess deviations from the solution of the two
algorithms. The test requires that the absolute values of the
differences between the mean percentage excess deviations
from the solution of the two algorithms are sorted from
smallest to largest and these differences are ranked
according to absolute magnitude. The sum of the ranks is
then formed for the negative and positive differences
separately. As the size of the trials increase, the rank sum
statistic becomes normal. If the null hypothesis is true, the
sum of ranks of the positive differences should be about
the same as the sum of the ranks of the negative differences.
Using two-tailed P value, significance performance
difference is granted if the Wilcoxon test is significant for
P < 0.05.

Looking at Table 1, we observe that the difference in the
mean excess deviation from the solution is significant for
large problems and remains insignificant for small sized
problems.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 51

Table 1: Wilcoxon statistical test.

10. Conclusions and Future Work

In this work, we have described and tested two new
approaches in order to enhance GSAT. GSATRW suffers
from stagnation behavior which directly affects its
performance. This same phenomenon is however observed
with LA-GSATRW only for large instances. Based on the
analysis of RLD's, we observe that the probability of
finding a solution within any arbitrary number of search
steps is higher with GSATRW compared to that of LA-
GSATRW.

Results indicated that the harder the problem, the better
asymptotic convergence reached by LA-GSATRW as
opposed with GSATRW.

The finite automaton learning mechanism employed in LA-
GSATRW offers an efficient way to escape from highly
attractive areas in the search space leading to a higher
probability success as well as reducing the number of local
search steps to find a solution.

As far as the second approach is concerned, we observe
that within the same computational time, MLVGSAT
provides high quality solution compared to that of GSAT.
The broad conclusions that we may draw from the results
are that the multilevel paradigm can either speed up
(GSAT) or even improve its asymptotic convergence.
Finally, obvious subjects for further work include the
design of different coarsening strategies and tuning the
refinement process so that more CPU time is given during
the coarse levels.

References

[1] C. Blum and A. Roli. Metaheuristics in combinatorial

optimization: Overview and conceptual comparison. ACM
Computing Surveys, 35 (3) pp. 268-308, 2003.

[2] S.A. Cook. The complexity of theorem-proving procedures.
Proceedings of the Third ACM Symposium on Theory of
Computing, pp. 151-158, 1971.

[3] M. Davis and H. Putnam. A computing procedure for
quantification theory. Journal of the ACM, 7, pp. 201-215,
1960.

[4] A.E. Eiben and J.K. Van der Hauw. Solving 3-SAT with
Adaptive Genetic Algorithms. Proceedings of the 4th IEEE
Conference on Evolutionary Computation, pp. 81-86. IEEE
Press, 1997.

[5] B.S. Everit. The analysis of contingency tables. Chapman and
Hall, London, 1977.

[6] W. Gale, S. Das, and C.T. Yu. Improvements to an Algorithm
for Equipartitioning. IEEE Transactions on Computers, 39
(5), pp. 706-710, IEEE, 1990.

[7] M.R. Gary and D.S. Johnson. Computers and intractability: A
guide to the theory of NP-completeness. W.H. Freeman and
Company, New York, 1979.

[8] I. Gent and T. Walsh. Unsatisfied Variables in Local Search.
In J. Hallam, editor, Hybrid Problems, Hybrid Solutions, pp.
73-85. IOS Press, 1995.

[9] L.P. Gent and T. Walsh. Towards an Understanding of Hill-
Climbing Procedures for SAT. Proceedings of AAAI’93, pp.
28-33. MIT Press, 1993.

[10] F. Glover. Tabu Search-Part1. ORSA Journal on
Computing, 1(3): 190-206, 1989.

[11] O.C. Granmo, B.J. Oommen, S.A. Myrer, and M.G. Olsen.
Learning AutomataBased Solutions to the Nonlinear
Fractional Knapsack Problem With Applications to Optimal
Resource Allocation. IEEE Transactions on Systems, Man
and Cybernetics, Vol.SMC-37(B), pp. 166-175, 2007.

[12] O.C. Granmo, N. Bouhmala. Solving the satisfiability
problem using finite learning automata. International Journal
of Computer Science and Applications, 4(3), pp. 15-29,
2007.

[13] P. Hansen and B. Jaumand. Algorithms for the Maximum
Satisfiability Problem. Computing, 44 pp. 279-303, 1990.

[14] B. Hendrickson and R. Leland. A Multilevel Algorithm for
Partitioning Graphs.In S.Karin,editor, In Proceeding of
Supercomputing’95, San Diego, 1995.ACM Press, New
York.

Problem %EX:
MLVGSAT

%EX:
GSAT

Null
Hypothesis

f600 0.001 0.004 Accept

f1000 0.002 0.009 Accept

f2000 0.002 0.01 Accept

flat100 0 0 Reject

g125-17 0.0002 0.001 Accept

g125-18 0.001 0.11 Accept

logistics-b 0.00008 0.0001 Accept

logistics-c 0.001 0.004 Accept

logistics-d 0.005 0.08 Accept

bw-medium 0 0 Reject

bw-huge 0.0007 0.001 Accept

bw-large-b 0.0002 0.001 Accept

qg6-9 0.001 0.003 Accept

qg5-9 0.001 0.002 Accept

qg1-8 0.0004 0.011 Accept

4block 0.00008 0.0008 Accept

3bitadd-31 0.0008 0.006 Accept

3bitadd-32 0.0007 0.004 Accept

4blocksb 0.00008 0.0002 Accept

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 52

[15] H. Hoos. On the run-time behavior of stochastic local search
algorithms for SAT. In Proceedings of AAAI-99, pp. 661-
666, 1999.

[16] H.Hoos. An adaptive noise mechanism for Walksat. In
Proceedings of the Eighteen National Conference in Artificial
Intelligence (AAAI-02), pp. 655-660, 2002.

[17] F. Hutter, D. Tompkins, H. Hoos. Scaling and probabilistic
smoothing:Efficient dynamic local search for SAT. In
Proceedings of the Eight International Conference of the
Principles and Practice of Constraint Programming (CP’02),
pp. 233-248, 2002.

[18] A. Ishtaiwi, J. Thornton, A. Sattar, and D.N.Pham.
Neighborhood clause weight redistribution in local search for
SAT. Proceedings of the Eleventh International Conference
on Principles and Practice Programming(CP-05), volume
3709 of Lecture Notes in Computer Science, pp. 772-776,
2005.

[19] D.S. Johnson and M.A. Trick, editors. Cliques, Coloring,
and Satisfiability, Volume 26 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science. American
Mathematical Society, 1996.

[20] G.Karypis and V.Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.SIAM
J.Sci. Comput.,20 (1):359-392, 1998.

[21] G.Karypis and V. Kumar. Multilevel k-way Partitioning
Scheme for Irregular Graphs. J.Par, Dist. Comput., 48(1):96-
129, 1998.

[22] A.R. KhudaBukhsh, L. Xu, H. Hoos, K. Leyton-Brown.
SATenstein: Automatically building local search SAT solvers
from components. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI-09), 2009.

[23] C.M. Li, W. Wei, and H. Zhang. Combining adaptive noise
and look-ahead in local search for SAT. Proceedings of the
Tenth International Conference on Theory and Applications
of Satisfiability Testing(SAT-07), volume 4501 of Lecture
Notes in Computer Science, pp. 121-133, 2007.

[24] C.M. Li, W.Q. Huang. Diversification and determinism in
local search for satisfiability. In proceedings of the Eight
International Conference on Theory and Applications of
Satisfiability Testing (SAT-05), volume 3569 of Lecture
Notes in Computer Science, pp. 158-172, 2005.

[25] C.M Li, W. Wei, and H. Zhang. Combining adaptive noise
and look-ahead in local search for SAT. In Proceedings of
the Tenth International Conference on Theory and
Applications of Satisfiability Testing (SAT-07), volume 4501
of Lecture Notes in Computer Science, pp. 121-133, 2007.

[26] D. McAllester, B. Selman, and H.Kautz. Evidence for
Invariants in Local Search. In Proceedings of AAAI’97, pp.
321-326. MIT Press, 1997.

[27] S. Misra and B.J. Oommen. Dynamic Algorithms for the
Shortest Path Routing Problem: Learning Automata-Based
Solutions. IEEE Transactions on Systems, Man and
Cybernetics, Vol.SMC-35(B), pp. 1179-1192, 2005.

[28] K.S. Narendra and M.A.L. Thathachar. Learning Automata:
An Introduction. Prentice Hall, 1989.

[29] B.J. Oommen and E.R. Hansen. List organizing strategies
using stochastic moveto-front and stochastic move-to-rear
operations. SIAM Journal on Computing, 16, SIAM, pp.
705-716, 1987.

[30] B.J. Oommen and D.C.Y. Ma. Deterministic Learning
Automata Solutions to the Equipartitioning Problem. IEEE
Transactions on Computers, 37,1, pp. 2-13, IEEE, 1988.

[31] B.J. Oommen and E.V. St.Croix. Graph partitioning using
learning automata. IEEE Transactions on Computers, 45, 2,
pp.195-208, IEEE, 1996.

[32] B.J. Oommen and T.D. Roberts. A Discretized Learning
Automata Solutions to the Capacity Assignment Problem for
Prioritized Networks. IEEE Transactions on Systems, Man
and Cybernetics, vol. SMC-32(B),pp. 821-831, 2002.

[33] D.J. Patterson and H. Kautz. Auto-Walksat: A Self-Tuning
Implementation of Walksat. Electronic Notes on Discrete
Mathematics 9, 2001.

[34] S. Prestwich. Random walk with continuously smoothed
variable weights. Proceed- ings of the Eight International
Conference on Theory and Applications of Satisfiability
Testing(SAT-05), volume 3569 of Lecture Notes, pp. 203-
215, 2005.

[35] D. Schuurmans, and F. Southey. Local search characteristics
of incomplete SAT procedures. In Proc.AAAI-2000, pp. 297-
302, AAAI Press, 2000.

[36] D. Schuurmans, F.Southey, and R.C. Holte. The
exponentiated sub-gradient algorithm for heuristic Boolean
programming. In Proc. IJCAI-01, pp. 334-341, Morgan
Kaufman Publishers, 2001.

[37] B. Selman, H. Levesque, and D. Mitchell. A New Method
for Solving Hard Satisfiability Problems. Proceedings of
AAA’92, pp.440-446, MIT Press, 1992.

[38] B. Selman, H.A. Kautz, and B. Cohen. Noise Strategies for
Improving Local Search. Proceedings of AAAI’94, pp. 337-
343. MIT Press, 1994.

[39] B. Selman and H.A. Kautz. Domain-Independent extensions
to GSAT: Solving large structured satisfiability problems. In
R.Bajcsy,editor, Proceedings of the in ternational Joint
Conference on Artificial Intelligence,1, pp. 290-295. Morgan
Kaufmann Publishers Inc., 1993.

[40] M.A.L. Thathachar and P.S. Sastry. Network of Learning
Automata: Techniques for On line Stochastic Optimization.
Kluer Academic Publishers, 2004.

[41] J. Thornton, D.N. Pham, S. Bain, and V. Ferreira Jr.
Additive versus multiplicative clause weighting for SAT.
Proceedings of the Ninteenth National Conference of
Artificial Intelligence (AAAI-04), pp. 191-196, 2004.

[42] M.L. Tsetlin. Automaton Theory and Modeling of
Biological Systems. Academic Press, 1973.

[43] C. Walshaw and M. Cross. Mesh Partitioning: A Multilevel
Balancing and Refinement Algorithm. SIAM J.Sci.
Comput.,22(1):63-80,2000.

[44] Z.Wu., and B.Wah. An efficient global-search strategy in
discrete Lagrangian methods for solving hard satisfiability
problems. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI-00), pp. 310-
315, 2000.

[45] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown. SATzilla:
Portfolio-based algorithm selection for SAT. Journal of
Artificial Intelligence Research, 32 (1)pp.565-606, 2008.

Noureddine Bouhmala obtained his MSc from Federal
Polytechnic of Lausanne 1994 and PhD from the University of
Neuchatel in Switzerland. He is currently working at the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 53

Department of Maritime Technology and Innovation at Vestfold
University College, Norway. His research interests include
combinatorial optimization, data mining, and parallel computing.

Ole-Christoffer Granmo was born in Porsgrunn, Norway. He
obtained his M.Sc. in 1999 and the Ph.D. degree in 2004, both
from the University of Oslo, Norway. He is currently a Professor in
the Department of ICT, University of Agder, Norway. His research
interests include Intelligent Systems, Stochastic Modelling and
Inference, Machine Learning, Pattern Recognition, Learning
Automata, Distributed Computing, and Surveillance and
Monitoring. He is the author of more than 55 refereed journal and
conference publications.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 54

