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Abstract 
A large number of problems that occur in knowledge-
representation, learning, very large scale integration technology 
(VLSI-design), and other areas of artificial intelligence, are 
essentially satisfiability problems. The satisfiability problem 
refers to the task of finding a satisfying assignment that makes a 
Boolean expression evaluate to True. The growing need for more 
efficient and scalable algorithms has led to the development of a 
large number of SAT solvers. This paper introduces two new 
techniques that combine finite learning automata and multilevel 
paradigm with the Greedy Satisfiability Algorithm (GSAT). We 
present a detailed comparative analysis of the new approaches 
using a benchmark set containing randomized and practical 
engineering applications from various domains. 
Keywords: Satisfiability problem, learning automata, multilevel 
techniques, combinatorial optimization. 

1. Introduction 

The satisfiability problem (SAT) which is known to be NP-
complete (nondeterministic polynomial time) [2] plays a 
central role in many applications in the fields of VLSI 
(Very-large-scale integration) Computer-Aided design, 
Computing Theory, and Artificial Intelligence. Generally, 
a SAT problem is defined as follows.  A propositional 
formula 1

m
j jC=Φ = ∧  with m  clauses and n  Boolean 

variables is given. Each Boolean 
variable, , {1, , }ix i n∈  , takes one of the two values, 

True or False. Each clause jC , in turn, is a disjunction of 
Boolean variables and has the form:  
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where , {1,..... },j jI I n⊆  jI I∩ =∅ , and ix  denotes 

the negation of ix . 
 
The task is to determine whether there exists an assignment 
of values to the variables under which Φ evaluates to True. 
Such an assignment, if it exists, is called a satisfying 
assignment for Φ , and Φ  is called satisfiable. Otherwise, 
Φ  is said to be unsatisfiable. Since we have two choices 
for each of the n  Boolean variables, the size of the search 
space S  becomes | | 2nS = . That is, the size of the search 
space grows exponentially with the number of variables. 
Since most known combinatorial optimization problems 
can be reduced to SAT [7], the design of special methods 
for SAT can lead to general approaches for solving 
combinatorial optimization problems. 
 
Most SAT solvers use a Conjunctive Normal Form (CNF) 
representation of the formula Φ . In CNF, the formula is 
represented as a conjunction of clauses, with each clause 
being a disjunction of literals, and a literal being a Boolean 
variable or its negation. For example, P Q∨  is a clause 
containing the two literals P  and Q . The clause P Q∨  
is satisfied if either P  is True or Q  is True. When each 
clause in Φ  contains exactly k  literals, the resulting SAT 
problem is called k -SAT. 
 
In essence, we here enhance the traditional GSAT Random 
Walk (GSATRW) strategy with learning capability, taking 
the form of Learning Automata and the multi-level 
paradigm. Learning Automata have been used to model 
biological systems [42] and have attracted considerable 
interest in the last decade because they can learn the 
optimal actions when operating in (or interacting with) 
unknown stochastic environments. Furthermore, they 
combine rapid and accurate convergence with low 
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computational complexity. The multilevel paradigm is a 
simple technique which at its core involves recursive 
coarsening to produce smaller and smaller problems that 
are easier to solve than the original one. 
 
The paper is organized as follows. In Section 2 we survey 
algorithms used for solving the SAT problem. In Section 3 
we take a closer look at the GSAT Random Walk 
algorithm, before we in Section 4 explain how the latter 
algorithm can be enhanced with learning capability, using 
the basic concepts of Learning Automata. In Section 5, we 
report the results obtained from testing the new approach. 
Section 6 introduces the multilevel generic paradigm. In 
section 7 we describe the main components of the 
multilevel paradigm when applied to the satisfiability 
problem. Section 8 presents the results. In section 9 we 
apply the Wilcoxon Rank Sum test to test the significance 
of the results. Finally, in Section 10, we summarize the 
findings and suggest directions for future research. 

2. Stochastic Local Search Algorithms (SLS) 

The SAT problem has been extensively studied due to its 
simplicity and applicability.  The simplicity of the problem 
coupled with its intractability makes it an ideal platform 
for exploring new algorithmic techniques. This has led to 
the development of several local search algorithms for 
solving SAT problems. 
 
Local search algorithms typically start with an initial 
assignment of truth values to variables, randomly or 
heuristically generated. Satisfiability can then be 
formulated as an iterative optimization problem in which 
the goal is to minimize the number of unsatisfied clauses. 
Thus, the optimum is obtained when the value of the 
objective function equals zero, which means that all 
clauses are satisfied. During each iteration, a new value 
assignment is selected from the "neighborhood" of the 
present one, by performing a "move". Most local search 
algorithms use a 1-flip neighborhood relation, which 
means that two truth value assignments are considered to 
be neighbors if they differ in the truth value of only one 
variable. Performing a move, then, consists of switching 
the present value assignment with one of the neighboring 
value assignments. 
 
The search terminates if no better neighboring assignment 
can be found.  Note that choosing a fruitful neighborhood, 
and a method for searching it, is usually guided by 
intuition – theoretical results that can be used as guidance 
are sparse. 
 

One of the earliest local search algorithms for solving SAT 
is GSAT [37]. Basically, GSAT begins with a randomly 
generated assignment of values to variables, and then uses 
the steepest descent heuristic to find the new variable-
value assignment which best decreases the numbers of 
unsatisfied clauses. After a fixed number of moves, the 
search is restarted from a new random assignment. The 
search continues until a solution is found or a fixed number 
of restarts have been performed. An extension of GSAT, 
referred to as random-walk [39] has been realized with the 
purpose of escaping from local optima. In a random walk 
step, a randomly unsatisfied clause is selected. Then, one 
of the variables appearing in that clause is flipped, thus 
effectively forcing the selected clause to become satisfied. 
The main idea is to decide at each search step whether to 
perform a standard GSAT or a random-walk strategy with 
a probability called the walk probability. 
 
Another widely used variant of GSAT is the WalkSAT 
algorithm, originally introduced in [38]. It first picks 
randomly an unsatisfied clause, and then, in a second step, 
one of the variables with the lowest break count, appearing 
in the selected clause, is randomly selected. The break 
count of a variable is defined as the number of clauses that 
would be unsatisfied by flipping the chosen variable. If 
there exists a variable with break count equal to zero, this 
variable is flipped, otherwise, the variable with minimal 
break count is selected with a certain probability (noise 
probability). It turns out that the choice of unsatisfied 
clauses, combined with the randomness in the selection of 
variables, enable WalkSAT to avoid local minima and to 
better explore the search space. 
 
Extensive tests have led to the introduction of new variants 
of the Walksat algorithm referred to as Novelty and R-
Novelty [26]. These two variants use a combination of two 
criteria when choosing a variable to flip from within an 
unsatisfied clause. Quite often, these two algorithms can 
get stuck in local minima and fail to get out. To this end, 
recent variants have been designed [24][25][16] using a 
combination of search intensification and diversification 
mechanisms, leading to good performance on a wide range 
of SAT instances. 
 
Other algorithms [10][13][8][9] use history-based variable 
selection strategies in order to avoid repeated flipping of 
the same variable. In parallel to the development of more 
sophisticated versions of randomized improvement 
techniques, other methods based on the idea of modifying 
the evaluation function [44][17][41][35][36] in order to 
prevent the search from getting stuck in non-attractive 
areas of the underlying search space have become 
increasingly popular in SAT solving. The key idea is to 
associate the clauses of the given CNF formula with 
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weights. Although these clause weighting SLS algorithms 
differ in the way clause weights should be updated 
(probabilistic or deterministic), they all choose to increase 
the weights of all the unsatisfied clauses as soon as a local 
minimum is encountered. 
 
A new approach to clause weighting known as Divide and 
Distribute Fixed Weights (DDFW) [18] exploits the 
transfer of weights from neighboring satisfied clauses to 
unsatisfied clauses in order to break out form local minima. 
Recently, a strategy based on assigning weights to 
variables [34] instead of clauses greatly enhances the 
performance of the Walksat algorithm, leading to the best 
known results on some benchmarks. 
 
Lacking theoretical guidelines while being stochastic in 
nature, the deployment of several meta-heuristics involves 
extensive experiments to find the optimal noise or walk 
probability settings. To avoid manual parameter tuning, 
new methods have been designed to automatically adapt 
parameter settings during the search [23][33], and results 
have shown their effectiveness for a wide range of 
problems.  
 
The work conducted in [12] introduced Learning Automata 
(LA) as a mechanism for enhancing random walk 
algorithm, thus laying the foundation for novel LA-based 
SAT solvers. Finally, a new approach based on an 
automatic procedure for integrating selected components 
from various existing solvers in order to build new 
efficient algorithms that draw upon the strengths of 
multiple algorithms was proposed in [45][22]. 

3. The GSAT-Random-Walk  Algorithm 
(GSATRW) 

This section is devoted to explaining the details of the 
GSATRW algorithm as it is embedded into our Finite 
Learning Automata based strategy. The main motivation 
behind choosing the GSATRW algorithm is the fact that all 
state-of-the-art SAT solving algorithms are derivatives of 
GSATRW. They all have the general GSATRW backbone 
architecture with some additional features such as random 
restart, clause weighting and Tabu list mechanisms, and 
therefore comparing the performance of GSATRW with 
and without enhancements are informative.  
 
As argued previously, the introduction of an element of 
randomness (i.e., noise) into local search methods is 
common practice for improving effectiveness through 
diversification [1]. In this spirit, the GSATRW algorithm 
(shown in Fig. 1) starts with a randomly chosen assignment. 
Thereafter, two possible strategies are used for selecting 

the variable to be flipped at each iteration of the algorithm. 
The first strategy is taking a walk-step, which amounts to 
randomly selecting a currently unsatisfied clause and then 
flipping one of its variables, also in a random manner. 
Thus, at each walk-step, at least one unsatisfied clause 
becomes satisfied. The other strategy uses a greedy search 
to choose a random variable from the set PossFlips, which 
contains the variables that when flipped (individually) 
achieve the largest decrease (or the least increase) in the 
total number of unsatisfied clauses. Note that the walk-step 
strategy may lead to an increase in the total number of 
unsatisfied clauses even when purely improving flips 
would have been possible. 

  
Fig. 1 GSAT-Random-Walk Algorithm. 

4. Solving SAT Using Finite Learning 
Automata 

We base our work on the principles of Learning Automata 
[28][40]. Learning Automata have been used to model 
biological systems [42], and have recently attracted 
considerable interest because they can learn the optimal 
actions when operating in (or interacting with) unknown 
stochastic environments. Furthermore, they combine rapid 
and accurate convergence with low computational 
complexity. Learning Automata solutions have been 
proposed for several other combinatorial optimization 
problems [30][6][11][27][32][31][29]. 
 
The work reported in [12] was the first to combine the 
traditional random walk with learning automata for the 
satisfiability problem. Inspired by the success of the above 
solution scheme, we will in the following propose how 
GSATRW can be enhanced with learning capability, using 
Learning Automata. 

4.1 A Learning SAT Automaton 

Generally stated, a finite learning automaton performs a 
sequence of actions on an environment. The environment 
can be seen as a generic unknown medium that responds to 
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each action with some sort of reward or penalty, perhaps 
stochastically. Based on the responses from the 
environment, the aim of the finite learning automaton is to 
find the action that minimizes the expected number of 
penalties received. Fig. 2 illustrates the interaction between 
the finite learning automaton and the environment. 
Because we treat the environment as unknown, we will 
here only consider the definition of the finite learning 
automaton (LA). 
 

 
Fig. 2 A learning automaton interacting with an 

environment. 
 
The finite learning automaton can be defined in terms of a 
quintuple [28]: 

 { , , , (·,·), (·,·)}.α βΦ F G  

1 2{ , , , }sφ φ φΦ = …  is the set of internal automaton 

states. 1 2{ , , , }rα α α α= …  is the set of automaton 

actions. And, 1 2{ , , , }mβ β β β= …  is the set of inputs 
that can be given to the automaton. An output function 

[ ]t tα φ=G  determines the next action performed by the 
automaton given the current automaton state. Finally, a 
transition function 1 [ , ]t t tφ φ β+ = F  determines the new 
automaton state from (1) the current automaton state and 
(2) the response of the environment to the action 
performed by the automaton. 
 
Based on the above generic framework, the crucial issue is 
to design automata that can learn the optimal action when 
interacting with the environment. Several designs have 
been proposed in the literature, and the reader is referred to 
[28][40] for an extensive treatment. In this paper we target 
the SAT problem, and our goal is to design a team of 
Learning Automata that seeks the solution of SAT problem 
instances. We build upon the work of Tsetlin and the linear 
two-action automaton [42][28]. For each literal in the SAT 
problem instance that is to be solved, we construct an 
automaton with 

• States:
{ 1, , , 1,0, , 2, }N N N NΦ = − − − … − … − . 

• Actions: { , }True Falseα = . 
• Inputs: { , }reward penaltyβ = . 

Fig. 3 specifies theGand F matrices. 
 

 
Fig. 3 The state transitions and actions of the Learning 
SAT automaton. 
 
The G  matrix can be summarized as follows. If the 
automaton state is positive, then action True will be chosen 
by the automaton. If on the other hand the state is negative, 
then action False will be chosen. Note that since we 
initially do not know which action is optimal, we set the 
initial state of the Learning SAT Automaton randomly to 
either '-1' or '0'. 
 
The state transition matrix F  determines how learning 
proceeds. As seen in the figure, providing a reward input 
to the automaton strengthens the currently chosen action, 
essentially by making it less likely that the other action will 
be chosen in the future. Correspondingly, a penalty input 
weakens the currently selected action by making it more 
likely that the other action will be chosen later on. In other 
words, the automaton attempts to incorporate past 
responses when deciding on a sequence of actions. 

4.2 Combining Learning Automata with 
GSATRW(LA-GSATRW) 

Overview: In addition to the definition of the LA, we must 
define the environment that the LA interacts with. Simply 
put, the environment is a SAT problem instance as defined 
in Section 1. Each variable of the SAT problem instance is 
assigned a dedicated LA, resulting in a team of LA. The 
task of each LA is to determine the truth value of its 
corresponding variable, with the aim of satisfying all of the 
clauses where that variable appears. In other words, if each 
automaton reaches its own goal, then the overall SAT 
problem at hand has also been solved. 
 
Pseudo-code: With the above perspective in mind, we will 
now present the details of the LA-GSATRW that we 
propose. Fig. 4 contains the complete pseudo-code for 
solving SAT problem instances, using a team of LA. As 
seen from the figure, an ordinary GSATRW strategy is 
used to penalize an LA when it ``disagrees'' with 
GSATRW, i.e., when GSATRW and the LA suggest 
opposite truth values. Additionally, we use an ``inverse'' 
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GSATRW strategy for rewarding an LA when it agrees 
with GSATRW. Note that as a result, the assignment of 
truth values to variables is indirect, governed by the states 
of the LA.  At the core of the LA-GSATRW algorithm is a 
punishment/rewarding scheme that guides the team of LA 
towards the optimal assignment. In the spirit of automata 
based learning, this scheme is incremental, and learning is 
performed gradually, in small steps. 
 

 
Fig. 4 Learning Automata GSAT Random Walk Algorithm. 
 
Remark 1: Like a two-action Tsetlin Automaton, our 
proposed LA seeks to minimize the expected number of 
penalties it receives. In other words, it seeks finding the 
truth assignment that minimizes the number of unsatisfied 
clauses among the clauses where its variable appears. 
 
Remark 2: Note that because multiple variables, and 
thereby multiple LA, may be involved in each clause, we 
are dealing with a game of LA [28]. That is, multiple LAs 
interact with the same environment, and the response of the 
environment depends on the actions of several LA. In fact, 
because there may be conflicting goals among the LA 

involved in the LA-GSATRW, the resulting game is 
competitive. The convergence properties of general 
competitive games of LA have not yet been successfully 
analyzed, however, results exists for certain classes of 
games, such as the Prisoner's Dilemma game 
[28]. In our case, the LA involved in the LA-GSATRW is 
non-absorbing, i.e., every state can be reached from every 
other state with positive probability. This means that the 
probability of reaching the solution of the SAT problem 
instance at hand is equal to 1 when running the game 
infinitely. Also note that the solution of the SAT problem 
corresponds to a Nash equilibrium of the game. 
 
Remark 3: In order to maximize speed of learning, we 
initialize each LA randomly to either the state '-1' or '0'.  In 
this initial configuration, the variables will be flipped 
relatively quickly because only a single state transition is 
necessary for a flip. Accordingly, the joint state space of 
the LA is quickly explored in this configuration. However, 
as learning proceeds and the LA move towards their 
boundary states, i.e., states '-N' and 'N-1', the flipping of 
variables calms down. Accordingly, the search for a 
solution to the SAT problem instance at hand becomes 
increasingly focused. 

5. Empirical Results: Learning Automata 

5.1 Benchmark Instances 

As a basis for the empirical evaluation of LA-GSATRW, 
we selected benchmark instances which are available from 
the SATLIB website (www.satlib.org). All the benchmark 
instances used in this experiment are satisfiable instances 
and have been used widely in the literature in order to give 
an overall picture of the performance of different 
algorithms. Due to the randomization of the algorithm, the 
number of flips required for solving a problem instance 
varies widely between different runs. Therefore, for each 
problem instance, we run LA-GSATRW and GSATRW  
100  times with a cutoff parameter (maxflips) setting 
which is high enough ( 710 ) to guarantee a success rate 
close to100% . 

5.2 Run-Length-Distributions (RLDs) 

As an indicator of the behavior of the two algorithms when 
trying to solve a given problem instance in 100  trials, and 
to get an idea of the variability of the search cost, we 
analyzed the cumulative distribution of the number of 
search flips needed by both LA-GSATRW and GSATRW. 
Due to non-deterministic decisions involved in the 
algorithm (i.e., initial assignment, random moves), the 
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number of flips needed by both algorithms to find a 
solution is a random variable that varies from run to run. 
More formally, let k  denotes the total number of runs, and 
let ( )f j′  denotes the number of flips for the j-th 
successful run (i.e., run during which a solution is found ) 
in a list of all successful runs, sorted according to 
increasing number of flips,  then the cumulative empirical 
RLD is defined by 
ˆ( ( ) ) |{ | ( ) } /P f j f j f j f k′ ′≤ = ≤ . Each problem 

was solved 100  times using an extremely high cutoff 
parameter setting of 710Maxsteps =  in order to obtain a 
maximal number of successful tries. 
 

 
Fig. 5 LA-GSATRW Vs GSATRW: Cumulative 
distributions for a 600-variable random problem with 2550 
clauses (f600). 

 
Fig. 6 LA-GSATRW Vs GSATRW: Cumulative 
distribution for a 1000-variable random problem with 
4250 clauses (f1000). 
 

 
Fig. 7 LA-GSATRW Vs GSATRW: Cumulative 
distributions for a 2000-variables random problem with 
8500 clauses (f2000).  
 
Figs. Fig. 5-7 show RLDs obtained by applying LA-
GSATRW and GSATRW to individual large random 
problems.  
 
As can be seen from the three plots, we observe that both 
algorithms reach a success rate of 100%  for f600 and 
f1000. However, on the large problem f2000, GSATRW 
shows a low asymptotic solution probability corresponding 
to 0.37 , compared to 0.45  for LA-GSATRW. Note also, 
that there is a substantial part of trials that are dramatically 
hard to solve which explains the large variability in the 
length of the different runs of the two algorithms. Both 
algorithms show the existence of an initial phase below 
which the probability for finding a solution is 0. Both 
methods start the search from a randomly chosen 
assignment which typically violates many clauses. 
Consequently, both methods need some time to reach the 
first local optimum which   possibly could be a feasible 
solution. The two algorithms show no cross-over in their 
corresponding RLDs even though it is somewhat hard to 
see for f600 but it becomes more pronounced for f1000 
and f2000. The median search cost for LA-GSATRW 
is 3% , 29% , and 17%  of that  of GSATRW for f600, 
f1000 and f2000 respectively.  
 
As can be seen from these plots, LA-GSATRW gives 
consistently higher success probabilities while requiring 
fewer search steps compared to GSATRW.  
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Fig. 8 LA-GSATRW Vs GSATRW:  Cumulative 
distributions for a 228-variable logistics problem with 
6718 clauses (logistics-a). 
 

 
Fig. 9 LA-GSATRW Vs GSATRW: Cumulative 
distribution for a 843-variable logistics problem with 7301  
clauses (logistics-b).   
 

 
Fig. 10 LA-GSATRW Vs GSATRW: Cumulative 
distributions for an 1141-variable logistics problem with 
10719 clauses (logistics-c). 
 

 
Fig. 11 LA-GSATRW Vs GSATRW: Cumulative 
distribution for a 4713-variable logistics problem with 
21991 clauses (logistics-d). 
 
Looking at Figs. 8-11 and applying the RLD analysis to 
SAT-encoded logistics problems, there is no clear success 
rate winner between the two algorithms. The number of 
search steps varies between the different trials and is 
significantly higher with GSATRW than that of LA-
GSATRW. The median search cost for LA-GSATRW 
is 4% , 29% , 34% , and 51%  of that of GSATRW for 
Logistics-d, Logistics-b, Logistics-c, and Logistics-a 
respectively. 
 

 
Fig. 12 LA-GSATRW Vs GSATRW: Cumulative 
distribution for a 116-variable Blocks World problem with 
953 clauses (medium). 
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Fig. 13 LA-GSATRW Vs GSATRW: Cumulative 
distribution for a 459-variable Blocks World problem with 
4675 clauses (bw-large.a). 
 

 
Fig. 14 LA-GSATRW Vs GSATRW: Cumulative 
distributions for a 459-variable Blocks World problem with 
7054 clauses (huge). 
 

 
Fig. 15 LA-GSATRW Vs GSATRW: Cumulative 
distribution for a 1087-variable Blocks World problem 
with 13772 clauses (bw-large.b). 
 

 
We now turn to single SAT-encoded instances from the 
Blocks World Planning domain. The crossing of the two 
RLDs at different points as shown in Figs. 12-15, indicates 
that there is no complete dominance of one algorithm over 
the other when applied to the same problem. Looking at 
Figs. 10-11 and taking the smallest problem (medium) as 
an example, we notice that for smaller cutoff times, 
GSATRW achieves higher solution probabilities, while for 
larger cutoff times, LA-GSATRW shows increasingly 
superior performance. It may be noted that GSATRW 
performs better than LA-GSATRW for the smallest 
problem (up to 49%  more steps than LA-GSATRW). 
However this gap is fairly small and is within 5%  for 
medium size problems (bw-large.a, bw-huge). On the other 
hand, for the large problem bw-large.b, the situation is 
reversed. GSATRW requires  16%  more steps than LA-
GSATRW. 
 

 
Fig. 16 LA-GSATRW Vs GSATRW: Cumulative 
distributions for a 3628-variable BMC problem with 14468 
clauses (bmc-ibm2). 
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Fig. 17 LA-GSATRW Vs GSATRW: Cumulative 
distribution for a 14930-variable BMC problem with 
72106 clauses (bmc-ibm3). 
 

 
Fig. 18 LA-GSATRW Vs GSATRW: Cumulative 
distributions for a 8710-variable BMC problem with 8710 
clauses (bmc-ibm6). 
 
Finally, the plots in Figs. 16-18 explore the behavior of the 
RLDs of both algorithms when applied to BMC problems. 
Both algorithms reach a success rate of 100%  with the 
one exception that, for the medium size problem (bmc-
ibm3), the success rate was around 95% . Returning to Fig. 
16 then, for the smaller problem (bmc-ibm-2) GSATRW 
dominates LA-GSATRW on the major part of the runs (i.e., 
approximately 80% ), as it reaches high solution 
probabilities while requiring lower search cost. On the 
other hand, for the medium size problem (bmc-ibm-3) the 
situation is similar but reversed. 
 
Fig. 18 shows the RLD for both algorithms for the large 
problem (bmc-ibm-6). As can be seen from the figure, the 
RLDs for both algorithms have roughly the same shape. 
The presence of heavy tails in both RLDs indicates that 
both algorithms get stuck in local minima for a relatively 

small number of trials. The median search cost for 
GSATRW is 15%  of that of LA-GSATRW for the bmc-
ibm-2. However, LA-GSATRW shows a better 
performance for the medium (improvement of 
approximately 8%  in the median) and larger problem 
(improvement of approximately5% ).  

6. The Multilevel Paradigm 

The multilevel paradigm is a simple technique which at its 
core involves recursive coarsening to produce smaller and 
smaller problems that are easier to solve than the original 
one. Fig. 19 shows the process of the generic multilevel 
paradigm in pseudo-code. The multilevel paradigm 
consists of three phases: coarsening, initial solution, and 
multilevel refinement. During the coarsening phase, a 
series of smaller problems is constructed by matching pair 
of vertices of the input original problem in order to form 
clusters, use the clusters to define a related coarser 
problem, and recursively iterate the coarsening procedure 
until a sufficiently small problem is obtained.  
 
Computation of an initial solution is performed on the 
coarsest level (smallest problem). Finally, the solution 
found at each level is extended to give an initial solution 
for the next level and then refined using a chosen local 
search algorithm. A common feature that characterizes 
multilevel algorithms is that any solution in any of the 
coarsened problems is a legitimate solution to the original 
graph. This is always true as long as the coarsening is 
achieved in a way that each of the coarsened problems 
retains the original problem's global structure. The key 
success behind the efficiency of the multilevel techniques 
is the use of the multilevel paradigm. This paradigm offers 
two main advantages which enable local search techniques 
to become much more powerful in the multilevel context. 
First, by allowing local search schemes to view a cluster of 
vertices as a single entity, the search becomes restricted to 
only those configurations in the solution space in which the 
vertices grouped within a cluster are assigned the same 
label. During the refinement phase a local refinement 
scheme applies a local a transformation within the 
neighborhood (i.e., the set of solutions that can be reached 
from the current one) of the current solution to generate a 
new one. As the size of the clusters varies from one level 
to another, the size of the neighborhood becomes adaptive 
and allows the possibility of exploring different regions in 
the search space. Second, the ability of a refinement 
algorithm to manipulate clusters of vertices provides the 
search with an efficient mechanism to escape from local 
minima. Multilevel techniques were first introduced when 
dealing with the graph partitioning problem (GCP) [14] 
[20] [21] [43] and have proved to be effective in producing 
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high quality solutions at a lower cost than single level 
techniques.  

 
Fig. 19 Multilevel Generic Algorithm. 

7. The multilevel framework for the 
satisfiability problem 

  
Fig. 20 GSAT-Refinement Algorithm. 
Coarsening: The original problem 0P  is reduced into a 

sequence of smaller problems 0 2, ,.... mP P P  such 

that 0 1 2| | | | | | ..... | |mP P P P> > > . It will require at least 
'( / )O logN N  coarsening phases to coarsen the problem 

down to 'N  variables. Let v
iV  denotes the set of variables 

of iP  combined to form variable v  of 1iP+ . We will refer 
to v  as multivariable. During the coarsening phase, a 
sequence of smaller problems, each with fewer variables is 
constructed. Let 0P  denotes the original problem. The next 

level coarser problem 1P  is constructed from 0P  by 
collapsing pairs of variables into multi-variables. The 
variables are visited in random order. If a variable has not 
been matched yet, then we randomly select one randomly 
unmatched variable, and a multivariable consisting of these 
two variables is created. Unmatched variables are simply 

copied the next level. The new formed multi-variables are 
used to define a new and smaller problem and recursively 
iterate the coarsening process until the size of the problem 
reaches some desired threshold.  

• Initial solution: An initial assignment mA  of mP  
is easily computed using a random assignment 
algorithm. The random assignment algorithms 
works by randomly assigning to each   
multivariable of the coarsest problem mP  the 
value of true or false.  

• Projection: Having optimized the assignment 

1kA +  on a 1kP + , the assignment must be 

projected  onto its parent kP . Since each 

multivariable of 1kP +  contains a distinct subset of 

multi-variables of kP , obtaining kA  from 1kA +  
is done by simply assigning the set of variables 

v
iV  collapsed to 1kv P +∈  the same value as v   

(i.e., 1[ ] [ ]i iA u A v+= , v
iu V∀ ∈ ). 

• Refinement: At each level, the assignment from 
the previous level is projected back  to give an 
initial assignment and further refined. Even 
though 1iA +  is a local minimum of 1iP+ , the 

projected assignment iA  may not be at a local 

optimum with respect to iP . Since iP  is finer, it 
may still be possible to improve the projected 
assignment using a version of GSAT adapted to 
the multilevel paradigm. The idea of GSAT 
refinement as shown in Fig. 20 is to use the 
projected assignment of 1iP+  onto iP  as the 
initial assignment of GSAT. Since the projected 
assignment is already a good one, GSAT will 
converge quicker to a better assignment. During 
each level, GSAT is allowed to perform 
MAXFLIPS iterations before moving to the finer 
level. If a solution is not found at the finest level, 
a new round of coarsening, random initial 
assignment, and refinement is performed. 

8. Empirical Results: Multilevel Paradigm 

Figs. 21-39 show results which appear to follow the same 
pattern. Overall, at least for the instances tested here, we 
observe that the search pattern happens in two phases. The 
first phase which corresponds to the early part of the 
search, both algorithms behave as a hill-climbing method. 
These phases which can be described as a short one, a 
large number of the clauses are satisfied. The best 
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assignment climbs rapidly at first, and then flattens off as 
we mount the plateau, marking the start of the second 
phase.  The plateau spans a region in the search space 
where flips typically leave the best assignment unchanged.  
The long plateaus becomes even more pronounced as the 
number of flips increases, and occurs more specifically in 
trying to satisfy the last few remaining clauses.  The 
transition between each plateau corresponds to a change to 
the region where a small number of flips gradually 
improves the score of the current solution ending with an 
improvement of the best assignment. The plateau is rather 
of short length with MLVGSAT compared to that of 
GSAT. The projected solution from one level to a finer 
one offers an elegant mechanism to reduce the length of 
the plateau as it consists of more degree of freedom that 
can be used for further improving the best solution. The 
plots show a time overhead for MLVGSAT especially for 
large problems due mainly to data structures settings at 
each level. We feel that this initial overhead which is a 
common feature in multilevel implementations is more 
susceptible to further improvements, and will be 
considerably minimized by a more efficient 
implementation. Comparing GSAT and MLVGSAT for 
small sized problems (up to 1500 clauses) and as can be 
seen from the left sides of Figs. 24, 25, 28 and 29, both 
algorithms seem to be reaching the optimal quality 
solutions. It is not immediately clear which of the two 
algorithms converges more rapidly. This is probably very 
dependent on the choice of the instances in the test suite. 
For example the run time required by MLVGSAT for 
solving instance flat100-239 is more than 12 times higher 
than the mean run-time of GSAT (25sec vs 2sec). The 
situation is reversed when solving the instance block-
medium (20sec vs 70sec). The difference in convergence 
behavior of both algorithms starts to become more 
distinctive as the size of the problem increases. All the 
plots show a clear dominance of MLGSAT over GSAT 
throughout the whole run. MLVGSAT shows a better 
asymptotic convergence (to around 0.008% 0.1%− ) in 
excess of the optimal solution as compared with GSAT 
which only reach around (0.01%-11%). The performance 
of MLVGSAT surpasses that of GSAT although few of the 
curves overlay each other closely, MLVGSAT has 
marginally better asymptotic convergence. 
 

 
Fig. 21 Log-Log plot, Random: Evolution of the best 
solution on a 600 variable problem with 2550 clauses 
(f600.cnf). 
 

 
Fig. 22 Log-Log plot, Random: Evolution of the best 
solution on a 1000 variable problem with 4250 clauses. 
(f1000.cnf).  
 

 
Fig. 23 Log-Log plot, Random: Evolution of the best 
solution on a 2000 variable problem with 8500 clauses 
(f2000.cnf). 
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Fig. 24 Log-Log plot, SAT-encoded graph coloring: 
Evolution of the best solution on a 300 variable problem 
with 1117 clauses (flat100.cnf). 
 

 
Fig. 25 Log-Log plot, SAT-encoded graph coloring: 
Evolution of the best solution on a 2125 problem with 
66272 clauses (g125-17.cnf). 
 

 
Fig. 26 Log-Log plot, SAT-encoded graph coloring: 
Evolution of the best solution on a 2250 variable problem 
with 70163 clauses (g125-18.cnf).  
 

 
Fig. 27 Log-Log plot, SAT-encoded block world: 
Evolution of the best solution on a 116 variable problem 
with 953 clauses (medium.cnf). 
 

 
Fig. 28 Log-Log plot, SAT-encoded Block World: 
Evolution of the best solution on a 459 problem with 7054 
clauses (huge.cnf).  
 

 
Fig. 29 Log-Log plot, SAT-encoded Block World: 
Evolution of the best solution on a 1087 variable problem 
with 13772 clauses (bw-largeb.cnf). 
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Fig. 30 Log-Log plot, SAT-encoded Logistics: Evolution 
of the best solution on a 843 variable problem with 7301 
clauses (logisticsb.cnf). 
 

 
Fig. 31 Log-Log plot, SAT-encoded Logistics: Evolution 
of the best solution on a 1141 problem with 10719 clauses 
(logisticsc.cnf). 
 

 
Fig. 32 Log-Log plot, SAT-encoded Logistics: Evolution 
of the best solution on a 4713 problem with 21991 clauses 
(logisticsd.cnf). 
 

 
Fig. 33 Log-Log plot, SAT-encoded Quasigroup: 
Evolution of the best solution on a 129 variable problem 
with 21844 clauses (qg6-9.cnf). 
 

 
Fig. 34 Log-Log plot, SAT-encoded Quasigroup: 
Evolution of the best solution on a 729 variable problem 
with 28540 clauses (qg5-9.cnf). 
 

 
Fig. 35 Log-Log plot, SAT-encoded Quasigroup: 
Evolution of the best solution on a 512 variable problem 
with 148957 clauses (qg1-8.cnf). 
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Fig. 36 Log-Log plot, SAT competition Beijing: Evolution 
of the best solution on a 410 variable problem with 24758 
clauses (4blockb.cnf). 
 

 
Fig. 37 Log-Log plot, SAT competition Beijing: Evolution 
of the best solution on a 8432 problem with 31310 clauses 
(3bitadd-31.cnf). 
 

 
Fig. 38 Log-Log plot, SAT competition Beijing: Evolution 
of the best solution on a 8704 variable problem with 32316 
clauses (3bitadd32.cnf). 
 

 
Fig. 39 Log-Log plot, SAT competition Beijing: Evolution 
of the best solution on a 758 problem with 47820 clauses 
(4blocks.cnf). 

9. Wilcoxon Rank-Sum Test 

The quality of the solution may vary significantly from run 
to run on the same problem instance due to random initial 
solutions and subsequent randomized decisions. We 
choose the Wilcoxon Rank test in order to test the level of 
statistical confidence in differences between the mean 
percentage excess deviations from the solution of the two 
algorithms. The test requires that the absolute values of the 
differences between the mean percentage excess deviations 
from the solution of the two algorithms are sorted from 
smallest to largest and these differences are ranked 
according to absolute magnitude. The sum of the ranks is 
then formed for the negative and positive differences 
separately. As the size of the trials increase, the rank sum 
statistic becomes normal. If the null hypothesis is true, the 
sum of ranks of the positive differences should be about 
the same as the sum of the ranks of the negative differences. 
Using two-tailed P value, significance performance 
difference is granted if the Wilcoxon test is significant for 
P < 0.05. 
 
Looking at Table 1, we observe that the difference in the 
mean excess deviation from the solution is significant for 
large problems  and remains insignificant for small sized 
problems. 
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Table 1: Wilcoxon statistical test. 

 

10. Conclusions and Future Work 

In this work, we have described and tested two new 
approaches in order to enhance GSAT.  GSATRW suffers 
from stagnation behavior which directly affects its 
performance. This same phenomenon is however observed 
with LA-GSATRW only for large instances.  Based on the 
analysis of RLD's, we observe that the probability of 
finding a solution within  any arbitrary number of search  
steps is higher with GSATRW compared to that of LA-
GSATRW.  
 
Results indicated that the harder the problem, the better 
asymptotic convergence reached by LA-GSATRW as 
opposed with GSATRW.  
 
The finite automaton learning mechanism employed in LA-
GSATRW offers an efficient way to escape from highly 
attractive areas in the search space leading to a higher 
probability success as well as reducing the number of local 
search steps to find a solution. 

As far as the second approach is concerned, we observe 
that within the same computational time, MLVGSAT 
provides high quality solution compared to that of GSAT. 
The broad conclusions that we may draw from the results 
are that the multilevel paradigm can either speed up 
(GSAT) or even improve its asymptotic convergence. 
Finally, obvious subjects for further work include the 
design of different coarsening strategies and tuning the 
refinement process so that more CPU time is given during 
the coarse levels. 
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