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Abstract 
     This paper deals with the cost-benefit 
analysis of a system of two identical units-one is 
operative and the other is kept as cold standby. There 
is a single server who attends the system 
immediately whenever needed. The unit becomes 
degraded after repair. The server inspects the 
degraded unit at its failure to see the feasibility of 
repair. If the repair of the degraded unit is not 
feasible, it is replaced by new unit which gets 
priority in operation as well as in repair over the 
degraded unit. The system is considered in up-state if 
either of new/degraded unit is operative. The 
distributions of failure time of the units are taken as 
negative exponential while that of inspection and 
repair times are taken as arbitrary such as 
exponential distribution, Erlang distribution and 
Weibull distribution etc. Various reliability measures 
of system effectiveness are obtained by using semi-
Markov process and regenerative point technique. 
The behavior of mean time to system failure 
(MTSF), availability and profit of the system have 
also been studied through graphs.  
Keywords: Redundant System, Inspection, Priority, 
Degradation and Cost-Benefit Analysis. 
 
1.   Introduction 
       Recently, two unit standby systems have 
widely been studied because of their importance in 
modern business and industries. Various reliability 
engineers and scholars including the authors of 
References 2, 3, 5 and 6 have discussed such 
operating systems under these assumptions that each 
unit works as new after repair and there is no need to 
give priority to one unit over the other in operation 
and repair. 
       In fact, however, these assumptions cannot 
be imposed on every system due to different 
operating and repair characteristics. And, the unit 
may have increased failure rate after its repair by an 
ordinary server. In such a situation the unit becomes 
degraded after repair. Also, in some cases, the repair 
of the degraded unit is neither possible nor 
economical to the system due to its excessive use. 

Under such conditions, the degraded, now failed unit 
may be replaced by new one and this can be revealed 
by inspection. Malik et al. [2008] analyzed a system 
with two types of inspection subject to degradation. 
Further, the availability of a system can be increased 
by giving priority in operation and repair to one unit 
over the other. Chander [2005] analyzed reliability 
models introducing the concept of priority.  
          By considering all these facts, here a 
reliability model for a two-unit cold standby is under 
take for study. There is a single server who attends 
the system immediately whenever needed. The unit 
becomes degraded after repair. The server inspects 
the degraded unit at its failure to see the feasibility of 
repair. If the repair of the degraded unit is not 
feasible, it is replaced by new one. The new unit gets 
priority in operation as well as in repair over the 
degraded unit. The system is considered in up-state if 
either of new/degraded unit is operative. The 
distributions of failure time of the units are taken as 
negative exponential while that of inspection and 
repair times are taken as arbitrary. Various reliability 
measures of system effectiveness such as mean 
sojourn times, mean time to system failure (MTSF), 
steady state availability, busy period of the server, 
expected number of visits by the server and profit are 
obtained by using semi-Markov process and 
regenerative point technique. The behavior of MTSF, 
availability and profit of the system have also been 
studied through graphs drawn for a particular case. 

The system of power generators in an air craft 
can be cited as a good example of the present system 
model.  

 
2.   Notations 
E : Set of regenerative states   
No : The unit is new and operative 
Do : The unit is degraded and operative 
NCs /DCs : The new/degraded unit in cold standby   
p/q : Probability that repair of degraded unit is       

    feasible/not feasible 
λ/λ1:         Constant failure rate of new/degraded unit  
g(t)/G(t), g1(t)/G1(t) : pdf/cdf of repair time for 

                 new/degraded unit 
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h(t)/H(t)   : pdf/cdf of inspection time of the 
                          degraded unit 
NFur/NFUR/NFwr : New unit is failed and under repair
/     under continuous repair       from      previous 
state      /waiting for      repair/continuously  waiting 
for      repair       from  previous state                                                                                                                                                                                                                                                                              
DFur/DFUR/DFwr : Degraded unit is failed and under 
          repair/under repair continuously from previous 
     state/waiting for repair. 
DFui/DFwi /DFUI  /DFWI :  Degraded unit is failed and 
     is  under inspection/waiting for inspection/under   
     inspection continuously from  the previous state/ 
     waiting for inspection     continuously. 
qij(t),Qij(t) : pdf and cdf of first passage time  from 
     regenerative state i to a regenerative state j or  to  a 
     failed state j without visiting any other 
     regenerative state in (0,t]. 
qij.kr (t),Qij.kr (t) : pdf and cdf of first passage time 
     from regenerative state i to a regenerative state j or 
     to  a failed state j visiting state k,r once in (0,t]. 
Mi(t) : P[system up initially in  state Si ∈ E is up at 
     time t without visiting to any other  regenerative 
    sate]  
Wi(t) : P[ server is busy in the state Si  up to time t 
    without making any transition to any other 
    regenerative state or returning to the same via one 
   or more non- regenerative states] 
mij : Contribution to mean sojourn time in state Si ∈ 
E     and non regenerative state if occurs before 
    transition to Sj∈E. 
®/ : Symbols for Stieltjes convolution/Laplace  
    convolution                                 
~|∗   : Symbols for Laplace Stieltjes 
    Transform(LST)/Laplace Transform (LT) 
'(desh) : Symbol for derivative of th function 
The following are the possible transition states of the 
system model 
S0 = (No, NCs),  S1 = (No, NFur),                   
S2 = (NFwr ,NFUR), S3 = (No, DCs),                 
S4 = ( Do, NFur),        S5 = (DFwi, NFUR), 
S6 = (Do, DCs),  S7 = (Do, DFui),                    
S8 = (Do, DFur),  S9 = (DFwi, DFUI),             
S10 = (DFwi, DFUR),  S11 = (DFur, DFWI), 
S12 = (No, DFui),  S13 = (No, DFur),                  
S14 = (NFur, DFwi), S15 = ( NFur,,DFwr)         
(1)                                                       
The states S0, S1, S3, S4, S6, S7, S8, S12, S13, S14 and 
S15 are regenerative states while S2, S5, S9, S10 and 
S11 are non-regenerative states. Thus E = {S0, S1, S3, 
S4, S6, S7, S8, S12, S13, S14, S15}.The possible 
transition between states along with transition rates 
for the model is shown in Fig.-1. 
 
 
 

3.   Transition Probabilities and Mean 
Sojourn Times 

 Simple probabilistic considerations yield the 
following expressions for the non-zero elements  

pij = Qij (∞) = ∫ qij (t) dt   as  
p01 = p34= p67=p14,7=p15,8      p13 = g*(λ),     
p12 = 1−g*(λ)= p14.2,           p46 = g*(λ1), 
p47.5 = 1-g*(λ1) =p45,           p7,3 = qh*(λ1),    
p7,8 = p h*(λ1),                    p7,9=  1- h*(λ1),            
p7,12.9 =[1- h*(λ1)]q,           p7,7.9,11= p[1- h*(λ1)],   
p8,6 = g

1
*(λ1),          p8,10 = 1- g

1
*(λ1) = p8,7.10,         

p12,13= ph*(λ),                     p12,0 =qh*(λ),                 
p12,14= 1-h*(λ),                   p13,3=g

1
*(λ),            

p13,15=1-g
1
*(λ)                                                          

(2) 
For these transition probabilities, it can be verified 
that 
p01=p34=p67=p14,7=p15,8=p12+p13=p14.2+p13=p45+p46 

        =p46+p47.5=p7,3+p7,8+p7,9=p7,3+p7,8+p7,12.9+p7,7.9,1

1 
     =p86+p8,10=p86+p8,7.10=p12,13+p12,0+p12,14 

        =p13,3+p13,15=1                                                    
(3)                                                                                                                                                                                                               
       The mean sojourn times µi in state Si are given 
by  
µ0 =

λ
1

= µ3,               µ1=
λ
1  [1−g*(λ)],      

µ4=
1λ
1  [1- g*(λ1)],   µ6=

1λ
1

  

µ7=
1λ
1 [1-h*(λ1)],     µ8=

1λ
1 [1-g1*(λ1)],  

µ12=
λ
1 [1-h*(λ)],      µ13=

λ
1 [1-g1*(λ)]                      

(4)                                                                                                                

The unconditional mean time taken by the system to 
transit from any state Si  
when time is counted from epoch at entrance into 
state Sj is stated as:  
   mij = ∫tdQij(t) = −qij*′(0) and    

   ∫ ∑
∞

=>==µ
0 j

ijmdt)tT(P)T(E
i

                     (5) 

where T denotes the time to system failure. 
Thus 
m01=µ0,                    m12+m13=µ1,             
 m13+m14.2=µ1

1 (say),     m34=µ3,                  
m45+m46=µ4 ,               m46+m47.5=µ1

4 (say),                                                                                                                    
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m67=µ6,                       m7,8+m7,3+m7,9=µ7,           
m7,8+m7,3+m7,12.9+m7,7.9,11=µ1

7, 
m86+m8,10=µ8,         m86 + m8,7.10 = µ1

8 (say),   
m12,13 + m12,0+ m12,14= µ12 

m13,3+m13,15=µ13,                                                          
(6) 
 
 4.  Mean Time to System Failure 
              Let φ i(t) be the cdf of the first passage time 
from regenerative state i to a failed state. Regarding 
the failed state as absorbing state, we have the 
following recursive relations for φ i(t) : 
      ( ) ( ) ( ) ( )∑∑ +φ=φ

k
k,i

j
jj,ii tQttQt

               

(7) 

where  j is an operative regenerative state to which 
the given regenerative state i can transit and k is a 
failed state to which the state i can transit directly. 

Taking LST of Eq. (7) and solving for φ
~

0(s).  
Using this, we have 

             s))s(~1()s(R 0
* φ−=                                   (8) 

The reliability R(t) can be obtained by taking Laplace 
inverse transform of Eq. (8).  
The mean time to system failure can be given by                    

 
11

11*

0s1 D
N

)s(Rlim)T(MTSF ==
→

                            (9) 

Where 
N11=(p78m86+p78p86m67+m78p86)+(p46m73+p46p73m3

4 
    +m46p73+p46m67p73)+m01[(p13p45+p12)(1-p78p86) 
   -p12p46p73+p46p13(p79+p78p810)] +[(p45p13+p12) 
    (-m86p78-p86m78p86m67p78)+(1-p86p78)(m45p13 

      +m34p45p13+p45m13+m12)+p12p46m73+p73p12p46m
67       +p73p12m46 
+p12p46m34p73+m12p46p73+p13p46(m79 
    +p8,10m78+m8,10p78)+(p79+p78p8,10)(p13p46m67+p13
m46 
    +p13p46m34+m13p46)]     
and 
D11=1-p46p73-p78p86 

 

5.  Availability Analysis 
        Let Ai(t) be the probability that the system is in 
up-state at instant t given that the system entered 
regenerative state i at t=0. The recursive relations for 
Ai(t) are  given by : 
     ( ) ( ) ( ) ( ) ( )∑ +=

j
j

n
j,iii tAtqtMtA

                    
(10) 

where j is any successive regenerative state to which 
the regenerative state i can transit  
through n≥1  (natural number) transitions. 
We have,  

M0(t)=e−λt=M3(t),       M1(t)=e−λt
)t(G ,            

M4(t)=e−λ1
t

)t(G ,    M6(t)=e−λ1
t,                      

M7(t)=e−λ1
t )t(H ,        M8(t)=e−λ1

t )t(G1 , 

M12(t)=e−λt 
)t(H ,          M13(t)=e−λt )t(G1         

(11)  

Taking LT of Eq. (10) and solving for A0*(s). 
The steady-state availability of the system can be 
given by 

 ( ) ( )
12

12*
00s0 D

N
sAslimA ==∞

→
                      (12) 

Where 
N12=p7,12.9p12,0(µ0+µ1)+[1-p7,7.9,11-p12,14p7,12.9(p78 

        +p7,12.9p12,13p13,15)](p13µ3+µ4+p1,4.2µ3(p73 

        +p7,12.9p12,13p13,3)-µ6[(p46p8,7.10-p4,7.5p8,6)(p78 

        +p7,12.9p12,13p13,15)-p46(1-p7,7.9,11-p12,14p7,12.9)] 
     +[µ7+p7,12.9(µ12+µ13p12,13+µ8(p78+p7,12.9p12,13p13,15)] 
 
D12=µ1

7+µ12p7,12.9+m14,7p12,14p7,12.9+(µ8
1+p86µ6)(p78 

         +p7,12.9p12,13p13,15)+m15,8p12,13p7,12.9p13,15 
      +µ13p7,12.9p12,13+(µ1

4+p46µ6)[(p73+p7,12.9p12,13p13,3) 
      +p12,0p7,12.9]+µ3(p73+p7,12.9p12,13p13,3) 
      +µ0p12,0p7,12.9+p12,0p7,12.9 (µ1

1+p1,3µ3) 
 
6.  Busy Period Analysis for Server 

Let Bi(t) be the probability that the server is busy 
at an instant t given that the system entered 
regenerative state i at t = 0. The following are the 
recursive relations for Bi(t) 

 ( ) ( ) ( ) ( ) ( )∑ +=
j

j
n
j,iii tBtqtWtB

                     
(13) 

where j is a subsequent regenerative state to which 
state i transits through n≥1(natural number)  
transitions.  
We have, 
W1(t)=[e−λt+(λe−λt1)] )t(G ,     

W4(t)=e−λ1t )t(G +[(λ1e−λ1t1)] )t(G ,               

W7(t)=e−λ1t
)t(H +[(λ1e−λ1t1)] )t(H +(λ1e−λ1t  

           ph(t)1) )t(G1 ,               

W8(t)=e−λ1t )t(G1 +[(λ1e−λ1t1)] )t(G1 ,    
W12(t)=e−λt

)t(H ,   
W13(t)= e−λt )t(G1 , 

W14(t)= )t(G = W15(t)                                             

(14) 
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Taking LT of Eq. (13) and solving for B0*(s) and 
using this, we can obtain the fraction of time for 
which the repairman is busy in steady state  

 * 13
0 0

         s 0 12

NB =Lim sB (s)=
D→                            

(15)                                            

N13=p7,12.9p12,0W1
*(0)+W4

*(0)[1-p7,7.9,11-p12,14p7,12.9-
(p78          +p7,12.9p12,13p13,15)]+[W7

*(0)+p7,12.9(W12
*(0) 

      +W13
*(0)p12,13+W14

*(0)p12,14+W15
*(0)p12,13p13,15) 

      +W8
*(0)(p78+p7,12.9p12,13 p13,15)] 

 and   D12 is already mentioned. 
 
7.   Expected Number of Visits 

Let Ni(t) be the expected number of visits by 
the server in (0,t] given that the system entered the 
regenerative state i at t=0. We have the following 
recursive relations for Ni(t) : 

( ) ( ) ( )[ ]∑ +δ=
j

jjj,ii tNtQtN

 

                         (16) 

Where j is any regenerative state to which the given 
regenerative state i transits and iδ =1, if j is the 
regenerative state where the server does job afresh, 
otherwise iδ = 0.  
Taking LST of Eq. (16) and solving for )s(N~ 0 . 
The expected number of visits per unit time are given 
by  

 ( )
12

14
00s0 D

N
sN~slimN ==

→
                         (17) 

N14=p7,12.9p12,0+[1-p7,7.9,11-p12,14p7,12.9-(p78 
     +p7,12.9p12,13p13,15)]p13+p1,4.2(p73+p7,12.9p12,13p13,3) 
     -[(p46p8,7.10-p4,7.5p8,6)(p78+p7,12.9p12,13p13,15) 
    -p46(1-p7,7.9,11-p12,14p7,12.9)]  
 
8.   Cost-Benefit Analysis 

    Profit incurred to the system model in steady 
state is given by 

                    P1=K1A0−K2B0−K3N0 
where K1 = Revenue per unit up time of  

                               the system  
                    K2 =   Cost per unit time for which server 
                            is busy                                                 

               K3 = Cost per visit by the server 
 

9.   Particular Case 
            In real life, various systems have constant 
failure and repair rates. Also, to improve the 
importance of results and to study the system 
graphically, here we assume inspection and repair 
times as exponentially distributed that is    
Let us take g(t)=θe−θt

,  g1(t)=θ1e−θ1
t and  h(t)=αe−αt

  

By using the non-zero elements pij, we get the 
following results: 

MTSF(T1)=N11/D11 ,                      
Availability(A0)=N12/D12 
Busy Period(B0)=N13/D12 ,            
Expected no. of visits(N0)=N14/D12  

Where 
D11=[(θ+λ1)(α+λ1)(λ1+θ1)-qθα(λ1+θ1)-pθ1α(λ1+θ)] 
      λλ1(θ+λ1)(α+.λ1)(λ1+θ1)(θ+λ)2  
 
 
 
 
N11=pαθ1λ(λ1+θ)2(θ+λ)2[(α+λ1)(2λ1+θ1)+λ1(λ1+θ1)
] 
+αqθ(λ1+θ1)2(θ+λ)2[λλ1(α+2λ1+θ)+(θ1+λ1)(α+λ1) 
(λ+λ1)]+λ1(θ+λ1)(θ+λ)(α+λ1)(λ1+θ1)[(θλ1+λ(λ1+θ)
) 
((α+λ1)(λ1+θ1)-pαθ1)-qαθλ(λ1+θ1)+θ2(λ1(θ1+λ1) 
+pαλ1)]+(θ1+λ1)2 (α+.λ1)2λ1[θλ1(λ+λ1+θ)(λ+θ) 
+θλ1λ(λ1+θ)+(θ+λ1)2λ2] +λqαθ(θ1+λ1)2 

[λλ1(θ+λ)(α+2λ1+θ)+(λ+θ)(θ+λ1)(α+.λ1)(λ+λ1) 
+λ .λ1(θ+λ1)(α+λ1)]+λλ1

2θ2(θ+λ1)(λ+θ)[pα(α+θ1+2
λ1) +(λ1+θ1)2]+θ2(α+λ1)(θ1+λ1) [(λ1(θ1+λ1) 
+pαλ1)(θ+λ)(λ1+θ)(λ+λ1)+(2θ+λ1+λ) λ1λ] 
 
D12=[Aλ1θ1θλ(α+λ)2(α+λ1)2(θ+λ)(θ1+λ)2(θ+λ1)(θ1 

+λ1)+λ1θ1λ
2(α+λ1)(θ+λ)(θ1+λ)2(θ+λ1)(θ1+λ1)[λ1θ

q 
+(α+λ){Bθ(λ1+α)+qλ1}]+λθpα(α+λ)(α+λ1)(θ+λ)(θ
1+λ)(θ+λ1)[λ1(θ1+λ1)+θ1

2][(α+λ)(θ1+λ)+λqλ1]+pλ
1θ1λα(θ+λ)(θ1+λ1)(θ+λ1)[θ(α+λ)(θ1+λ){(α+λ)(θ1+
λ)+Bλ(α+λ1)2)+θλλ1q(α+λ1)(θ1+2λ+α)+λqλ1(α+λ)
(α 
+λ1)(θ1+λ)]+qλθ1α(α+λ)(α+λ1)(θ+λ)(θ1+λ)(θ1+λ1
) 
[θ2+λ1(θ+λ1)][(α+λ+qλ1)(θ1+λ)+pλ1θ1]+qλ1θ1αθ(
α 
+λ)(α+λ1)(θ+λ)(θ1+λ)(θ+λ1)(θ1+λ1)[pλ1θ1+(λ+α)(
θ1+λ)]+λ1θ1λθ(θ1+λ1)(θ+λ1)(θ+λ)[(α+λ)2(θ1+λ)2q
α 
+αBpθ1(α+λ)(α+λ1)2(θ1+λ)+αpqλ1θ1(α+2λ+θ1) 
(α+λ1)]+λ1θ1θ(α+λ1)(θ1+λ)2(θ+λ1)(θ1+λ1)(θ+λ) 
[αq2λ1λ+αq(α+λ){Bλ(α+λ1)+qλ1}]+λ1θ1(α+λ1) 
(θ1+λ)2(θ+λ1)(θ1+λ1)(α+λ)[αq2λ1(θ2+λ(θ+λ))]]/[λ1

θ1θλ(α+λ)2(α+λ1)2 (θ+λ)(θ1+λ)2 (θ+λ1)(θ1+λ1)]   
 
N12=[q2λ1

2α(λ+θ1)(θ+2λ)(θ+λ1)(θ1+λ1)+λ1(θ1+λ1) 
[q(α+λ)(α+λ1)(θ1+λ)-qλλ1(pα+λ+θ1)][θ(θ+λ1) 
+(θ+λ)λ]+λαqλ1(θ+λ1)(θ1+λ1)[(α+λ)(θ1+λ)+λ1pθ1

]-λ(θ+λ)[λ1αp(θ-θ1){(α+λ)(θ1+λ)+λ1λq}-θ(θ1+λ) 
(θ1+λ1){(α+λ)(α+λ1-pλ1)-qλ1λ}]+λλ1(θ+λ)(θ+λ1) 
[(α+λ)(θ1+λ)(θ1+λ1)+qλ1(θ1+λ+pα)(θ1+λ1) 
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+pα{(α+λ)(θ1+λ)+λqλ1}]]/[λ1λ(α+λ)(α+λ1)(θ+λ) 
(θ1+λ) (θ+λ1)(θ1+λ1)] 
 
N13=[θ1q2λ1α

2(λ+θ1)(α+θ1)(θ1+λ1)+θ1qα(α+θ1) 
(θ1+λ1)[(α+λ)(α+λ1)(θ1+λ)-λλ1(θ1+λ+pα)]+[θ1θ 
(α+λ)(α+λ1)(θ1+λ){(θ1+λ1)(α+θ1)+pαλ1}+pα2θ 
(α+θ1)(θ1+λ1){(α+λ)(θ1+λ)+qλλ1}+θ1qλ1α(λ+θ)(α
+θ1)(θ1+λ1) 
{(λ+θ1)+pα}]]/[θθ1α(λ+θ1)(α+θ1)(θ1+λ1) 
(α+λ)(α+λ1)] 
 
N14=[q2λ1α(θ+λ)(θ1+λ)(θ+λ1)(θ1+λ1)+qθ(θ+λ1) 
(θ1+λ1)[(α+λ)(α+λ1)(θ1+λ)-λλ1(θ1+λ+pα)]+αqλ 
(θ+λ1)(θ1+λ1)[(α+λ)(θ1+λ)+pλ1θ1]-(θ+λ)[λ1pα(θ-
θ1) {(α+λ)(θ1+λ)+qλλ1}-
θ(θ1+λ1)(θ1+λ){(α+λ)(α+λ1-pλ1)-
qλλ1)}]]/[(α+λ)(α+λ1)(θ+λ)(θ1+λ)(θ+λ1) 
(θ1+λ1)]  
A=[p(α+θ1)(α+λ1)2-α2p(α+θ1+λ1)]/[(θ1α(α+λ1)2]    
and   B=[qλ1(2α+λ1)]/[α(α+λ1)2] 
 
10.   Conclusion 

     Fig.-2 shows that mean time to system failure 
decreases rapidly with increase the failure rates λ and 
λ1. But it increases with increase the repair rates θ 
and θ1 for fixed values of other parameters. The 
behavior of availability and profit of the system 
model are shown in Fig.-3 and 4 respectively. From 
these figures it can be seen that availability and profit 
of the system model decrease with the increase of 
failure rates λ and λ1. However, their values increase 
if repair rates θ and θ1 increase. It is also observed 
that system becomes more available to use and thus 
profitable if the degraded unit at its failure is 
replaced by new one. Hence, on the basis of the 
results obtained for a particular case it is concluded 
that the concepts of priority for operation and repair 
to new unit over the degraded unit and replacement 
of the degraded unit at its failure are economically 
beneficial to use. 

 
11.   References 
[1]  S. Chander, “Reliability models with priority for 

operation and repair with arrival time of the 

Server”, Pure and Applied Mathematika Sciences, 
Vol. LXI, No. 1-2, 2005, pp. 9-22. 

[2] L. R. Goel, G. C. Sharma and R. Gupta, “Cost 
analysis of a two-unit cold standby system under 
different weather conditions”, Microelectron. 
Reliab., Vol. 25, No. 4, 1985, pp. 655-659. 

[3] M. N. Gopalan and R. S. Naidu, “Cost-  benefit 
analysis of a one server system  subject to 
inspection”, Microelectron.  Reliab., Vol. 22, No. 
4, 1982, pp. 699-705. 

[4] S. C. Malik, P. Chand, and J. Singh, “Stochastic 
analysis of an operating  system with two types of 
inspection  subject to degradation”, Journal of 
 Applied Probability and Statistics, Vol. 3, No. 2, 
 2008, pp. 227-241. 

[5] K. Murari, and V. Goyal, “Comparison  of two 
unit cold standby reliability  models with three 
types of repair  facilities”, Microelectron. Reliab., 
Vol. 24, No. 1,  1984, pp. 35-49. 

[6] S. K Singh, “Profit evaluation of a two- unit cold 
standby system with random   appearance and 
disappearance time of  the service facility”, 
Microelectron.  Reliab., Vol. 29, No. 1, 1989, 
pp.21-24.  

[7] Jitender Kumar, M. S. Kadyan and S. C. Malik,  
 “Cost-Benefit Analysis of a two-unit parallel 
 system subject to degradation after repair”, 
Applied Mathematical Sciences, Vol. 4, No. 5, 
2010, pp. 2749-2758. 

 
 
Dr. Jitender Kumar is lecturer in School of 
Mathematics and Computer Applications, Thapar 
University, Patiala, India. He obtained his Ph. D. 
degree in 2010 from Kurukshetra University, 
Kurukshetra, India. He has published more than 15 
papers in the area of reliability modeling. His 
research interest is reliability modeling and analysis.  
  
 

    

 

 

 

 

 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 318



 

 

 

 

 

 

State Transition Diagram 
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