

A Survey on Design Pattern Recovery Techniques

Ghulam Rasool1, and Detlef Streitfdert2

 1 Computer Science Department, Comsats Institute of IT Lahore, Pakistan
Lahore, Punjab 54000, Pakistan

2 Software Systems/Process Informatics, TU Ilmenau
Ilmenau, Thüringen 98693, Germany

Abstract

The evaluation of design pattern recovery techniques and tools is
significant as numbers of emergent techniques are presented and
used in the past to recover patterns from source code of legacy
applications. The problem of very diverse precision and recall
values extracted by different pattern recovery techniques and tools
on the same examined applications is not investigated thoroughly. It
is very desirable to compare features of existing techniques as
abundance of techniques supplemented with different tools has been
presented in the last decade. We believe that new innovations for
this discipline can be based on the empirical evaluation of existing
techniques. The selected techniques cover the whole spectrum of
state of the art research in design pattern recovery. The major
contribution of this paper is a comprehensive discussion on state of
the art in design pattern recovery research in the last decade
followed by a proposed framework for classification and evaluation
of existing design pattern recovery techniques. Finally we listed our
observations as lessons learned which hamper design pattern
recovery research and these observations can be used for future
research directions and guidelines for this discipline.
Keywords: Design patterns, Reverse engineering, Patterns
recovery, Pattern evaluation, Empirical studies

1. Introduction

The field of design pattern recovery has become mature
enough in the last decade due to new innovations and a
number of rather provoking presentations [1 2 3 4 5 6 7 8 9
10], but it still faces a number of key challenges. The central
objective of pattern recovery approaches is to accurately
detect patterns from the source code which facilitates
software maintenance, program comprehension, refactoring,
restructuring, reverse engineering and reengineering
disciplines. New patterns have been developed which are
used in different areas such as software architectures, user
interfaces, concurrency, security and services etc.
Developers adopting patterns and practices can expect an
average productivity increase of 25 to 40 percent, depending
on their skill level and complexity of application [32]. The
study [18] revealed that the information extracted through
design patterns is very important during the maintenance of

legacy applications. Furthermore, the reverse engineering of
patterns from existing legacy applications and their
reusability for developing new applications enable software
developers to leverage best practices encapsulated as design
patterns.

It is difficult to compare the efficacy and usability of the
pattern recovery tools in an accurate and controlled way,
especially when large numbers of tools are developed as
research prototypes which support only particular novel
methods, but they cannot be generalized. The customization,
integration, interoperability, scalability and accuracy of
presented tools are important factors while investigating
features of different tools. The disparity of results extracted
by different techniques and tools motivated us to investigate
the causes of disparity in the results. We focus on the
evaluation of design pattern recovery techniques and tools
with regards to their accuracy and highlight the problems
and limitations of existing design pattern recovery
techniques.

An empirical review and evaluation of existing techniques is
important to guide researchers through the strengths and
limitations of existing techniques. The results of evaluation
can be used for the adoption of existing techniques and an
iterative development of new tools. Pattern recovery
techniques and tools differ with respect to the applied
analysis techniques (structural, behavioral, semantic or
combination of two/three), matching mechanisms
(approximate, exact), pattern representations(FOL, ASG,
XMI, BPSL etc.), system representations(AST, graph, matrix
etc.), accuracy (precision, recall etc.), recovered pattern
instances(creational, structural, behavioral etc.), presentation
format(textual, graphical etc.), language support(C/C++,
Java etc.) and tool support(third party tools, self developed
tools etc). The evaluation of pattern recovery techniques
becomes difficult when the applied tools are not available
publicly for validation of their results. The implementation
variants of design patterns has a negative impact on the
accuracy of tools and are the major cause of disparity in the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 251

results of different techniques. Furthermore, the problem of
scalability has been recognized as an important stumbling
point.

The focus of the empirical study presented in this paper is to
evaluate what makes any technique different from others as
numbers of approaches are presented. The future of design
pattern recovery techniques and tools will be based on
evidence about the proven effectiveness and usefulness of
different techniques and tools. It is useful to gather results of
different studies in order to form a large body of knowledge
that can be used for the evaluation and adoption of existing
techniques and tools. For this purpose we collected,
organized and analyzed several sources of information
related with pattern recovery techniques. Both quantitative as
well as qualitative analysis of pattern recovery instances
extracted by different tools is important for the evaluation of
tools. Design pattern recovery techniques can be evaluated
based on different features, but we focus our analysis
specifically on evaluating the precision and recall of different
techniques. The motivation for evaluating precision and
recall stems from the disparity of results.
The assessment of pattern search algorithms used in
different techniques was done based on the following values
and terms:

1 A search result is true positive, in case a pattern was
found and is really existing in the source code.

2 A search result is true negatives if a pattern is not
recognized and not implemented. Of course this is just
mentioned for completeness.

3 A search result is false positive, in case a pattern was
found, but is not implemented in the source code.

4 A search result is false negative, in case a pattern is
implemented in the source code, but was not found.

5 Precision – is the ratio of found patterns divided by the
number of existing patterns.

6 Recall – is the number of the implemented patterns
divided by the number of found patterns.

7 F-Score – is the combined effect of precision and recall.
8 Accuracy – measures that how accurate the results of

any technique are.
The paper is organized as follows: Section 2 discusses an
overview of pattern recovery techniques and parameters
which are important for the evaluation. Section 3 discusses
the state of the art selection and statistics of approaches in
this area. Section 4 presents our proposed framework which
can be used for evaluation. The accuracy of the selected
pattern recovery techniques on the same examined systems is
discussed in section 5. Section 6 discusses disparity in
extracted results. Section 7 presents critical review and our
observations. Finally, section 8 concludes with our
recommendations and guidelines.

2. Overview of Recovery Techniques

We summarize the overall spectrum of research in the field
of design pattern recovery in this section. There are number

of factors which can be used for classification of available
literature as mentioned in the first section. We classify
pattern recovery techniques based on the type of analysis
used by the particular technique and the searching
methodology adopted.

2.1 Analysis Type

Pattern recovery approaches are classified into structural
analysis, behavioral analysis, semantic analysis and formal
specification/composition analysis to recover patterns from
the source code of different legacy applications.

Structural analysis approaches are based on recovering the
structural relationships from different artifacts available in
the source code. They focus on recovering structural design
patterns such as Adapter, Proxy and Decorator etc. Structural
analysis based approaches focus on inter-class relationships
to identify the structural properties of patterns, but they
completely miss the behavioral aspects. Structural analysis
approaches explore the relationships: class inheritance,
associations, friend relationships, interface hierarchies,
modifiers of classes and methods, method parameters,
method return types, attributes and data types etc. Some of
the structural analysis approaches extract inter-class
relationships from the source code using different third party
reverse engineering tools and then perform pattern
recognition based on extracted information. For example,
reference [14] parses the source code using the third party
commercial tool called Understand for C++ [44]. The tool
extracts the entities and the references from C++ source code
and stores its results in a database. Furthermore, queries are
performed on the database to extract different properties of
patterns. In [44] the authors recovered Singleton, Factory
method, Template method, Observer and Decorator from a
VCS (Version Control System). The experiments are
performed on a VCS containing only 125 classes that are not
available publicly. Thus, all the scalability measures of the
approach are questionable.

Behavioral analysis approaches take into account the
execution behavior of the program. These approaches are
based on dynamic analysis, machine learning and static
program analysis techniques to extract behavioral aspects of
patterns. They play important role when structural analysis
approaches fails to identify patterns accurately that are
structurally identical or have a weak structure. These
approaches are supplemented by the structural analysis
approaches to recover different patterns. For example, State
and Strategy patterns are structurally identical. Similarly,
Chain of responsibility, Decorator and Proxy have similar
structures. The behavioral analysis deals with a small
number of classes and gives many false positives when the
number of execution traces significantly increases. The
major difficulty in behavioral analysis is that there may be
various possible implementations for the same expected
behavior [4]. These approaches face problems of data
coverage in the case of large examined applications. The

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 252

behavioral analysis techniques narrow down the search space
using inter-class relationships and then use (machine
learning, dynamic analysis and static program analysis etc.)
techniques to extract patterns from a number of legacy
applications.

Semantic analysis approaches supplement the structural and
behavioral analysis approaches to reduce the false positive
rate for recognition of different patterns. The semantic
analysis approaches [4 5] used the naming conventions and
annotations which contain the role information about the
classes and methods. Semantic analysis becomes important
for recovery of patterns which have similar static and
behavior properties. For example, Bridge and Strategy
patterns have the similar structural and behavioral
characteristics as shown in fig 1. The semantic analysis can
be used in such cases. A number of “Gang of Four” patterns
are similar in structural and behavioral aspects to a large
extent but they only differ in intent for which they are used.
The Strategy, State and Bridge are examples of such
patterns. Different techniques are used for semantic analysis.
In [4], three options are discussed for semantic analysis and
we conclude that naming conventions are most appropriate
and feasible option.

Fig. 1 Bridge and Strategy Patterns.

The formalization of design patterns is another important
area that we take into account during our review because
some approaches extract patterns from source code based on
formal specifications of design patterns. The formal
specification [45] of patterns is also important for the
composition of different patterns. A number of approaches
focused on the formalization and composition of design
patterns to supplement different pattern detection approaches
by formally specifying the patterns [45 46 47 48]. Formal
specification languages are used to specify different design
patterns. Some design pattern detection techniques use
pattern specifications of other approaches in their
implementation to detect patterns based on the source code[5
14 50]. Most of the specification languages have tool support
to validate the specifications for correctness and
completeness [46]. Semi-formal approaches, such as UML

specifications and textual descriptions cannot capture the
essence and the intent of patterns. Finally, design patterns
have different implementation variants and any formal
specification of patterns can help to specify the possible
variations in different patterns as well as overcome the
challenges of capturing the semantics for patterns.

2.2 Detection Methods

Different pattern recovery techniques are using different
methods for searching patterns from the source code. The
overview of most important techniques is given below:

Database queries
Database queries are used by number of design pattern
recovery techniques [5 8 14 15 23] for extracting patterns.
These approaches transform source code into intermediate
representations like (ASG, AST, XMI, metadata and UML
structures etc.) and then use SQL queries to extract pattern
related information from particular representations. The
performance of the queries to extract related features of
design patterns is directly bound to the database in use and
can be scaled very well, but such queries are limited to the
information which is available in the intermediate
representations. To the best of our knowledge, no
intermediate representation format is currently available
which could store all the information present in source code.
The approaches based on SQL queries are also restrictive to
structural and creational design patterns so far and they only
partially support behavioral design pattern recovery.

Constraint resolver
The PTIDEJ[26] team developed the Ptidej tool suit, a
reverse engineering framework to identify idioms, macro-
patterns, design patterns and design defects using
explanation based constraints programming technique. It is a
very active group, continuously involved in extensive
research projects. They have developed different other tools
like (DPR, DeMIMA, DÉCOR etc.), and describe design
motifs as constraints systems where each role is represented
as a variable. Relationships among roles are represented as
constraints among variables. The PTIDEJ team recovers
patterns using a multilayered approach which focuses on
ensuring a 100% recall rate, but precision is scarified and
performance is low.

Metrics
Metric based techniques compute program related metrics
(generalizations, aggregations, associations, interface
hierarchies etc.) from different representations of source
code and then use different techniques to compare metric
values of each design pattern definition with source code
metrics. Metric based techniques are computationally
efficient because they reduce search space through filtration
[7]. These approaches [24 43 50 51] performed experiments
on very few patterns and their generalization for recovery
towards all types of the GoF [25] patterns is questionable. In

Strategy Pattern

Bridge Pattern

Abstraction

+ Operation()
imp->Operation();

Implementor

+ OperationImp()

RefinedAbstraction

ConcreteImplementorA

+ OperationImp()

ConcreteImplementorB

+ OperationImp()

Context

+ ContextInterface()

Strategy

+ AlgorithmInterface()

ConcreteStrategyA

+ AlgorithmInterface()

ConcreteStrategyB

+ AlgorithmInterface()

ConcreteStrategyC

+ AlgorithmInterface()

-imp

+strategy

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 253

addition, these approaches are also not interactive and report
low precision and recall.

XPG formalism and parsing
These techniques are using the SVG (scalable vector
graphics) format for the intermediate representation of the
source code and design patterns are represented in a visual
language. Patterns are recovered using a visual language
parsing technique by mapping the visual language grammar
of each pattern with the graph representation. These
approaches have the advantage of their visualization, have a
good precision, but are limited only to structural design
patterns. Authors presented a new approach for recovering
behavioral design patterns which include only the Observer,
Strategy and State pattern [17]. The authors did not report
any recall rates for the examined applications. The pattern
instances detected by these approaches have variations with
the other approaches [1 2 5] as shown in Table 4.

 UML structures and matrices
These techniques [2 4 24] represent structural and behavioral
information of software systems as UML structures and
matrices. They apply different techniques to match the
design pattern template metrics with the matrices generated
for the system. These approaches are computationally
efficient, have good precision and recall rates, but they are
not interactive. They are not capable to extract the
implementation variants of similar design patterns.
Furthermore, matrix based approaches are only restrictive to
few number of patterns and they are not able to recover the
complete set of the GoF [25] patterns.

Miscellaneous techniques
The remainder of the well known techniques which are
presented in different papers are given in Table 1.

Table 1: Miscellaneous Techniques
Authors Technique
Niere et al [19] Fuzzy reasoning
Kaczor et al [7] Bit vector
Shi and osslon [6] Data flow and control flow
Philippow et al [10] Minimum key structure
Bayer et al[12] Predicate calculus
Smith et al [13] rho calculus
Heuzeroth et al [21] Runtime analysis
Blewitt [22] Formal Semantic
Balanyi et al [20] XML matching
Wang et al [34] REQL query
Frenc et al [36] Machine learning
Huang et al[37] Structural and behavioral parsing
Park et al [39] Static Reference Flow analysis
Tonella et al [40] Concept Analysis
Arceli et al [41] Data Mining

The empirical evaluation of above mentioned techniques
demands that each applied technique should be evaluated on
the basis of certain criteria. Different authors have suggested
taxonomies and/or frameworks for the evaluation of

techniques used in the area of reverse engineering. Such
taxonomies can be used by the researchers for the empirical
evaluation of studies presented in the past. The definition of
common and agreed criteria for evaluation of design pattern
recovery techniques requires a major effort from the design
pattern research community. We suggest the following
parameters to evaluate different techniques which are also
partially suggested by different other authors [3 16 30 35].
Input: What type of input (source code, source code
language, executable, documentation, tests, and intermediate
representations) it accepts.
Output: What output it produces, e.g., textual, visual,
diagrams, hypertext etc.
Analysis type: What type of analysis it uses, e.g., structural,
behavioral, semantic and combination of these two/three.
Automated/Semi-automated: Is it completely automated
(require no user involvement) or is it semi-automated
(human involvement for certain steps)?
Variant handling (customization): Does it accept
customizable pattern definitions to recognize variations or
will it only recognize standard pattern definitions?
Scalability: What is the scalability of an applied tool?
Recovered patterns: Which pattern types it recovers
(creational, structural, behavioral, user defined etc.)
Intermediate representations: Which type of intermediate
representation it uses?
Experiments: Which case studies are selected as
experiments? What is size of case studies? Is source code of
these case studies available?
Accuracy: What are the precision, recall and F-score?
Pattern representation: How patterns are represented (formal
specification, visual specification etc.)
Matching roles: Which type of matching mechanism is
adopted (partial match, exact match etc.)

3. State of the Art Selection

We reviewed and selected 89 papers published in highly
ranked journals and conferences in the last decade in the
area of design pattern recovery as given in Table 2. A
number of selected papers published in IEEE/ACM
conference proceedings are also included in our review. We
found only one volume of workshop proceedings in the area
of design pattern recovery [27] and those published papers
are part of our review. We filtered out 16 papers based on
our selection criteria which are examined on very small
examples and they extracted a few patterns which are
relatively easy to detect. 73 papers which directly focus on
the topic of design patterns and their recovery are part of our
statistical analysis.

Firstly, we classified papers according to their use of
different techniques in the area of design pattern recovery as
shown in the first section of Table 3 (“Objects of Study”).
Objects are the entities under study in empirical
investigation [33]. The object of our empirical study is the
discipline of design pattern recovery. The large number of

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 254

papers aims at pattern recovery and they present their results
in different formats (incomplete roles, complete roles etc.)
without visualization. A small number of papers focused on
visual presentation of extracted results which is very
important for the comprehension and maintenance of legacy
source code. We also included papers in this category, which
focus on design pattern visualization at the design level. The
objective of a third category is to formalize design patterns
in order to highlight overlapping and compositions among
design patterns. A number of techniques used formal
definitions of these approaches as input in their
implementations. Pattern recovery techniques paid little
attention on the recovery of overlapping and compositions in
extracted pattern instances.

Table 2: Names and Sources of Selected Proceedings
Journals Conferences
IEEE Transactions on
Software Engineering
http://www.computer.org/po
rtal/web/tse/

International Conference on
Software Engineering(ICSE)
http://www.icse-conferences.org/

ACM Transactions on
Software Engineering
http://tosem.acm.org/

Automated Software Engineering
(ASE)
http://ase-conferences.org/

Journal of System and
Software
http://www.elsevier.com/loc
ate/jss

Software Engineering and
Knowledge Engineering(SEKE)

Journal of Information and
Software Technology
http://www.elsevier.com/loc
ate/infsof

Reverse Engineering(WCRE)
www.informatik.unitrier.de/~ley/
db/conf/wcre/

Empirical Software
Engineering Journal
http://www.springer.com/co
mputer/swe/journal

International Symposium on
Empirical Software Engineering
and Measurement(ESEM)
http://www.esem-
conferences.org/

The second section of Table 3 classifies papers according to
their pattern search approach (“Purpose of Study”). Different
authors have used these parameters for empirical evaluation
of studies in the area of software engineering and reverse
engineering. We found only few papers which focused on
pure theoretical concepts without any tool support. A large
number of papers focus on measuring accuracy of
techniques through eliminating false positives and by
recovering false negatives which is the central goal of each
presented technique. Most of the papers which compute
precision and recall also compare their accuracy with other
techniques and claim to have improved precision and recall
rates. The last category of papers presented reviews about
state of the art in the area of design pattern recovery and
highlights strengths and limitations of different techniques.

In the nutshell, pattern recovery approaches are classified
into structural analysis, behavioral analysis, semantic
analysis and formal specification/composition analysis to
recover patterns from the source code of different legacy
applications. The papers, in the third section of Table 3
(“Analysis type of study”), are classified on the basis of
analysis type used by each design pattern recovery

technique. The early approaches used only structural
analysis methods to recover patterns and the accuracy of
these approaches was very low. We found only a number of
papers which recover pattern through pure behavioral
analysis. Most of the papers used structural analysis methods
supplemented with behavioral analysis to extract patterns
with improved accuracy. Semantic analysis methods are
used in combination with structural and behavioral analysis
to recover patterns which have similar structural and
behavioral properties.

We evaluated the scope of studies by the targeted patterns
and targeted languages. The forth section of Table 3 (“Scope
of Study”) gives statistical information about papers based
on the type of extracted patterns. The targeted language for
most of the papers turned out to be Java with the exception
of few papers which examine small case studies of C/C++
systems for the extraction of patterns. The domain of
multiple language and language independent design pattern
recovery still did not get major attention of researchers.

Lastly, we investigated the state of the art studies on the
basis of their accuracy which is the main focus of this paper.
The accuracy of pattern recovery techniques is measured
using variable parameters as suggested by other authors [9
16]. The papers are classified in the last section of Table 3
(“Accuracy of study”) on the basis of precision, recall and F-
score. We evaluate accuracy of selected studies on the basis
of precision and recall which is discussed in detail in section
5.

Table 3: Statistics and Classification of Literature Review
Section Technique No. of

References
Object of Study

Design Pattern Recovery 47

Pattern Recovery and
Visualization

4

Design pattern
Formalization

22

Purpose of Study

Theoretical concept 12
Quantification 32
Comparison 18
Review 11

Analysis type of
study

 Structural analysis 7
Behavioral analysis 3
Structural and Behavioral
analysis

30

Structural, Behavioral and
Semantic analysis

3

Scope of Study Creational patterns 3
Structural patterns 11
Behavioral patterns 4
All GOF type patterns 30

Accuracy of Study Precision 23
Precision and Recall 15
No Precision and Recall 9
F-Score 1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 255

4. Classification and Evaluation Framework

In different studies[16 28 29 30], the frameworks are
presented for the evaluation of reverse engineering
techniques and tools, but there is still no common framework
for evaluating design pattern recovery techniques. Authors
in [16] have presented the review of design pattern recovery
techniques but they did not focus on evaluation of pattern
recovery techniques which is important for empirical
evaluation. We adopted a framework for evaluation of design
pattern recovery techniques based on key concepts of studies
in section 2 and further classification of these studies given
in section 3. The underpinning theory of our framework
adoption is based on the existing state of the art and from the
analysis of similar measures in the broader area of software
engineering, reverse engineering and design pattern recovery
[29 30 31]. The metrics used in our framework can be
extended by researchers and can be used for creating
taxonomies. The suggested framework is based on the
following dimensions as discussed in the previous section:

1 Object of study
2 Purpose of study
3 Analysis type of study
4 Scope of study
5 Accuracy of study

The stance of this paper is to present the state of the art work
at different levels of abstraction that can fulfill requirements
of different reviewers. Section 2 classified the state of the art
at a higher level of abstraction which can be used for a quick

review. Section 3 elaborated the methods used in section 2 in
detail based on object, purpose, analysis type, scope and
accuracy of each study. We evaluated accuracy of selected
approaches in Section 5.

5. Evaluating Accuracy
The accuracy of design pattern recovery techniques is the
key concern for the adoptability and reusability of pattern
design pattern recovery studies. Different design pattern
recovery techniques [1 2 3 4 5] have wide disparity in the
results, although they examined the same systems. Petterson
et al. [9] presented an approach which evaluates the accuracy
of pattern recovery approaches based on different
parameters. The authors discuss different factors which
influence the accuracy of different pattern recovery
approaches but they did not investigate the extracted
accuracy of different approaches which is important for the
adoption of any methodology. We focus on a micro analysis
of true positives, false positives, and false negatives to
compare the accuracy of different studies in detail.
The collection of similar examples for different studies was
important for the comparison and the evaluation of accuracy
extracted by design pattern recovery techniques. We were
not able to compare accuracy of all approaches discussed in
sections 2&3 because we cannot find the common evaluated
examples and recovered patterns for all techniques. We
selected seven studies [1 2 3 4 5 6 11] for micro comparison
on the basis of the following grounds:

Table: 4 Extracted Pattern Instances
Software JHotDraw5.1 JUnit3.7 JRefactory2.6.24 Quick

UML2001
Apache Ant
1.6.2

Reference [2] [1] [3] [4] [5] [2] [1] [11] [4] [5] [2] [1] [6] [2] [1] [3] [3] [6] [2]

Singleton 2 2 x x 2 0 0 2 x 0 12 2 1 1 1 x x 1 7

Adapter 18 1 41 4 24 6 0 0 3 6 7 17 16 11 0 27 13 41 4

Composite 1 1 0 0 1 1 1 1 3 1 0 0 x 1 2 0 4 44 14

Decorator 3 1 0 x 3 1 1 1 x 1 1 0 x 0 0 0 0 12 14

Factory
Method

3 3 x x 3 0 0 0 x 0 4 1 0 0 0 x x 6 38

Observer 5 2 x x 2 4 3 3 x 2 0 0 x 0 1 x x 5 0

Prototype 1 2 x x 1 0 0 0 x 0 0 0 x 7 0 x x x 0

Command 0 1 x x 0 0 2 x x 0 0 0 0 0 1 x x x x

Template
Method

5 2 x x 5 1 0 0 x 1 17 0 x 5 0 x x 4 6

Visitor 1 0 x x 1 0 0 0 x 0 2 2 2 0 0 x x 1 0

State/Strategy 23 2 x 64 20 3 0 0 6 3 12 2 3 15 0 x x 26 -

Abstract
Factory

x 0 x x 0 x 0 0 x 0 x 0 x x 2 x x 6 x

 x: Technique is not used to recover pattern
1 These papers are selected because most of the authors

performed experiments on one or more of similar
benchmark examples and we can compare the results
of different tools on the same examples.

2 Secondly, the source code of these examples is
available freely to validate the results of approaches
manually or using tools.

3 Thirdly, the size of these systems varies from few
lines of source code to over a million lines of code,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 256

which is important to validate the scalability of
different approaches.

4 The documentation and executables of tools used by
different approaches are available online.

5 Finally, most of these systems have been developed
using different design patterns.

4.1 Accuracy Comparisons
The precision and recall metrics are used for the evaluation
of information retrieval techniques including design
pattern detection approaches. Recall is especially
problematic when the number of extracted patterns is large
and the false negatives cannot be assured without trusted
benchmarks. The relationship between precision and recall
metrics determines the correctness of the approaches.
Ideally, precision should remain high as recall increases,
but in practice this is difficult to achieve [38]. Precision
and recall also depend on the type of analysis used by the
pattern recovery approaches and is measured on the basis
on the basis of the metrics true positives (TP), true
negatives (TN),false positives (FP), and false negatives
(FN).

Precision and recall are important for measuring the
accuracy and the completeness of pattern recovery
approaches, but the integration of both factors yield
combined effect. Peterson et al. [9] have suggested an
integrated common factor for measuring precision and
recall metrics for any pattern recovery approach as
standard solution to use the weighted harmonic means of P
and R(weighted F-Score). They define weighted F-Score
Fw, w€ R as:
 (1 + w²)PR
 Fw= -------------
 w²P + R
Thus, the highest F-Score is obtained if both precision and
recall are high. The suggested value of w =2.28. For
precision of 100% and recall of 50%, the value of Fw will
be 61% and if precision is 50% and recall is 100% then
Fw=72%.

Table 5: Accuracy Comparisions
Reference Precision (%) Recall

(%)
F-Score

(%)
[1] 39 100 80
[2] 100* 100* 100*
[3] 62-97 NM ??
[4] 95 89 90
[5] 94 92 92
[6] NM NM -

NM: Not Mentioned, *: Suspected Values

6. Disparity Analysis
The wide disparity in the results of selected approaches in
table 6 motivated us to investigate the causes of disparity
in the results of these approaches. This requires the
manual analysis of extracted patterns results by comparing

complete roles of patterns. Unfortunately, most authors
only present information about the number of patterns, but
they do not give information about the complete roles and
location of these roles in the source code. Even it becomes
worse when the extracted roles are not in any standard
format because different techniques extract pattern
instances using partial or complete roles.
A wide disparity has been noticed in the results of [1 2 3 4
5] on the Adapter pattern in JHotDraw 5.1 as shown in
Table 4. These techniques detected 1, 18, 41, 4, 24
instances of the Adaptor pattern respectively which reflect
wide disparity in the results of these techniques. It is
difficult to realize how many common instances are
detected by all approaches because each applied tool
displays its results in different formats. Some tools only
show the number of patterns extracted and it becomes
difficult to realize the extracted location of patterns
instances in such tools. We further analysed that major
reasons of disparity in adapter patterns are generalization
hierarchy and implementation of delegation operation. For
example, [2,4, 6] do not take into account all the levels of
generalization while detecting patterns from the source
code. The level of complexity increases when super
classes are implemented as header files. Further, some
approaches do not check negative generalization between
adaptee class and target class while detecting adapter
pattern. Similarly, Dong et. al[16] discussed that
developers implement delegation operation using different
ways and all approaches do not consider all the
possibilities of handling delegation in their pattern
detection methods which cause disparity in the results of
different approaches. In another example, Table 4 shows
the results for the Composite pattern, extracted by [3 6 2]
on Apache Ant 1.6.2. The approaches have extracted 4, 14
and 44 instances respectively. It shows that only 4
instances are commonly extracted by all approaches. The
dilemma still remains on the realization of common
instances. The reasons of different results are handling of
aggregation /composition relationship between composite
and component classes. Another reason of variation in
results of this pattern is its different variants The
approaches which detect patterns based on intermediate
representation are not able to accurately detect
aggregation/compositions between classes which cause
disparity in the results of these approaches . Similarly, the
approach presented in [4] extracted adapter pattern
instances from JHotDraw v6.0b1 with AbstractFigure,
NullFigure and HandleEnumeration playing the roles of
Target, Adapter and Adaptee classes. The handle method
in the NullFigure which delegate request is missing in the
AbstractFigure. Moreover, the AbstractFigure is a concrete
class which extends to another class. We also tested the
standalone version of the DP-Miner tool on Junit 3.8.2
with the XMI file that is available on the website of the
tool. It detected “0” results for the adapter and composite

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 257

patterns while the author mentions 3 instances of the
adapter and composite pattern in their approach presented
in [4]. It is important to run each tool individually and
analyse its results instead of just comparing results
published in papers. Unfortunately, all tools are not
available publically for verification of extracted results.
Lastly, Table 5 shows the common instances shared by
[2 1]. We manually analysed these results by inspecting
the source code artifacts which contain none of these
common patterns instances. The approaches [2 1] extract
1, 2 instances of the prototype from JHotDraw 5.1 and
they are completely different instances. Similar other
disparities are also visible from Table 6. The analysis of
shared common instances was a very laborious and time
consuming task. It is important for the benchmark systems
that their published results should be analysed manually
before publishing results on their websites. “CI” in Table 6
stands for Common Instances shared by the more than one
approach.

Table 6: Disparity Analysis
Software JHotDraw5.1 JUnit3.7
Reference [2] [1] [CI] [2] [1] [CI]
Singleton 2 2 2 0 0 0
Adapter 18 1 1 6 0 0
Composite 1 1 1 1 1 1
Decorator 3 1 1 1 1 1
Factory
Method

3 3 3 0 0 0

Observer 5 2 1 4 3 2
Prototype 1 2 0 0 0 0
Command 0 1 0 0 2 0
Template
Method

5 2 2 1 0 0

Visitor 1 0 0 0 0 0
State/Strategy 23 2 2 3 0 0

6. Critical Analysis and Lessons Learned
Through extensive review of the whole spectrum of
research in the area of design patterns and evaluation of
the selected techniques we learned the following lessons
which are our observations:
1 The standard evaluation frameworks and benchmark

systems are very desirable for the evaluation of
existing and new design pattern recovery approaches
and tools.

2 Most pattern recovery techniques target open source
systems for pattern recovery which do not have proper
documentation. It is very difficult to compare the
results of the techniques because wide disparity exists
in the recovered results on same systems. The
experiments on commercial and industrial
applications are very rarely performed which can

realize the application of applied technique.
3 Most techniques experimented only with systems

implemented in C++/Java languages to recover
patterns. The generalization of these techniques for
multiple language pattern recovery is still
questionable.

4 Most techniques recover only a few patterns which are
relatively easy to detect with good precision and
recall, but the real applications are developed using a
broader range of patterns. The scalability and
generalization of these approaches for complex
systems needs to be investigated.

5 The recovered results of design pattern instances are
very important for software maintenance and
comprehension. The results of pattern recovery
techniques reveal the number of recovered patterns,
but they do not give any information about the exact
location of these patterns in the source code.
Furthermore, the visualization of detected design
pattern instances is very important for comprehension
of examined applications. Pattern recovery approaches
paid very little attention on visualization of recovered
results.

6 In large applications, parts of the system architecture
are based upon patterns, which are interrelated. State
of the art pattern detection approaches and tools
overlook the detection of composition and
overlapping of design patterns.

7 Most approaches performed experiments on one or two
examples and they do not cross validate their results
against other approaches.

8 Most approaches applied structural and behavioral
analysis for pattern recovery with the sole exception
of the approaches [4 5]. Through micro analysis of
disparity in the results, we came to the conclusion that
semantic analysis is very important because a number
of patterns have similar structural and behavioral
properties and they cannot be correctly recognized
without semantic analysis.

9 Little attention is paid on development of common
design pattern recovery tools which should support
different methodologies. Research community should
put efforts to develop tools which should be general
and may be integrated with other tools.

10 Last but not least is the requirement of common
formalized definitions of all GoF[25] patterns and
their variants. The varying definitions hamper the
accuracy of pattern recovery approaches.

7. Conclusions
We presented a review on the state of the art techniques
used for design pattern recovery with key focus on

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 258

evaluating the accuracy of selected techniques. The
proposed empirical framework can be used for the
evaluation of design pattern recovery techniques and it can
be extended by researchers. Our statistical analysis and
critical review reveal future research directions as needs in
the area of design pattern recovery. Tool developers can
use results of this empirical study for developing new
design pattern recovery tools. The difficulty of measuring
accuracy is due to the unavailability of trusted benchmark
systems. Design pattern recovery tools should be
developed with standard input/output formats and they
should be capable of visualizing extracted pattern
information, which is important for the maintenance and
comprehension of legacy applications. Furthermore, we
realized that researchers should develop new techniques
which should be flexible for customization to handle the
variations in design pattern detection.

References
[1] Y.-G. Guéhéneuc, and G. Antoniol, “DeMIMA: A

Multilayered Approach for Design Pattern Identification”,
IEEE Transactions on Software Engineering, Vol, 34, No.5,
2008, pp. 667-684.

[2] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, ”Design Pattern Detection Using Similarity
Scoring”, IEEE Transaction on Software Engineering, Vol.
32, No. 11, 2006, pp. 896-909.

[3] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design
pattern recovery through visual language parsing and source
code analysis”, Journal of Systems and Software, Vol 82,
Issue 7, 2009, pp. 1177–1193.

[4] J. Dong, J. Zhao, and Y. Sun, “ A Matrix based Approach
to Recovering Design Patterns”, IEEE transactions on
Systems, Man and Cybernatics, Vol 39, No. 6, 2009, pp.
1271-1282.

[5] G. Rasool, I. Philippow, P. Mader, “Design Pattern Recovery
Based on Annotations” International Journal of advances in
Engineering Software, Vol 41, Issue 4, 2010, pp. 519-526.

[6] N. Shi, and R. A. Olsoon, “Reverse Engineering of Design
Patterns from Java Source Code”, In Proceedings of the 21st
IEEE/ACM International Conference on Automated
Software Engineering (ASE'06), Vol 00, 2006, pp. 123-134.

[7] Y-G. Gueheneuc, J-Y. Guyomarc’h, and H. Sahraoui,
“Improving design-pattern identification: a new approach and
an exploratory study”, Software Quality Journal, Volume 18,
Issue 1, 2010, pp. 145-174.

[8] K. Stencel, and P. Wegrzynowicz, “Detection of Diverse
Design Pattern Variants”, 15th Asia-Pacific Software
Engineering Conference, 2008, pp. 25-32.

[9] N. Pettersson, W. Löwe, and J. Nivre, "Evaluation of
Accuracy in Design Pattern Occurrence Detection", IEEE
Transactions on Software Engineering, Vol 36, No. 4, 2010,
pp. 575-590.

[10] I. Philippow, D. Streitferdt, M. Riebisch, S. Naumann, “An
approach for reverse engineering of Design patterns”, Journal
of Software and System Modeling, Vol 4, No. 1, 2004, pp.
55-70.

[11] O. Kaczor, Y.-G. Gueheneuc, and S. Hamel, “Efficient
Identification of Design Patterns with Bit-vector Algorithm”,
In Proceedings of the Conference on Software Maintenance
and Reengineering (CSMR), 2006, pp. 175-184.

[12] D. Beyer and C. Lewerentz, “CrocoPat: efficient pattern
analysis in object-oriented programs”, In Proceedings of the
International Workshop on Program Comprehension
(IWPC’03), 2003, pp. 294–295.

[13] J. M. Smith and D. Stotts “SPQR: Flexible automated
design pattern extraction from source code”, In Proceedings
of Automated Software Engineering, 2003, pp. 215-224.

 [14] M. Vokac, “ An efficient tool for recovering design patterns
from C++ code”, Journal of Object Technology, Volume 5,
No. 1, 2006, pp. 139–157.

[15] H. Lee, H. Youn, and E. Lee, "Automatic Detection of
Design Pattern for Reverse Engineering", In Proceedings of
5th ACIS International Conference on Software Engineering
Research, Management & Applications, 2007, pp. 577-583.

[16] J. Dong, Y. Zhao, and T. Peng, “A Review of Design
Pattern Mining Techniques”, International Journal of
Software Engineering and Knowledge Engineering
(IJSEKE), Vol 16, Issue 6, 2009, pp. 823-855.

[17] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi,
"Behavioral Pattern Identification through Visual Language
Parsing and Code Instrumentation", In Proceedings of
European Conference on Software Maintenance and
Reengineering, 2009, pp.99-108.

[18] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, L. G. Votta,
“A Controlled Experiment in Maintenance Comparing
Design Patterns to Simpler Solutions”, IEEE Transactions in
Software Engineering, Vol 27, No. 12, 2001, pp. 1134-1144.

[19] N. J. Shafer, W. Wadsack, J.P. Wendehals, and L. Walsh,
“Towards pattern design recovery”, In Proceedings of
International Conference on Software Engineering
(ICSE’02),2002, pp. 338–348.

[20] Z. Balanyi, and R. Ferenc, “Mining design patterns from
C++ source code”, In Proceedings of International
Conference on Software Maintenance (ICSM’03), 2003, pp.
305–314.

 [21] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe,
“Automatic design pattern detection”, In Proceedings of the
11th IEEE International Workshop on Program
Comprehension, 2003, pp. 94–103.

[22] A. Blewitt, A. Bundy, and I. Stark, “Automatic verification
of design patterns in Java”, In Proceedings of 20th
International Conference on Automated Software
Engineering, 2005, pp. 224–232.

[23] R. Keller, R. Shauer, S. Robitaille, and P. Page, “Pattern-
based reverse-engineering of design components”, In
Proceedings of the 21st International Conference on Software
Engineering, 1999, pp. 226–235.

[24] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A. I.
Verkamo, “Software Metrics by Architectural Pattern
Mining”, In Proceedings of the International Conference on
Software: Theory and Practice, 2000, pp. 325–332.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Massachusetts, 1995.

[26] Ptidej team home page, www.ptidej.net/
[27]http://www.rcost.unisannio.it/wcre2006/colocated_events/DP

D4RE.htm

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 259

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tichy:Walter_F=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Br=ouml=ssler:Peter.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Votta:Lawrence_G=.html
http://www.ptidej.net/

[28] L. J. Fulop, R. Ferenc, and T. Gyimothy “Towards a
Benchmark for Evaluating Design Pattern Miner Tools”, In
Proceedings of the 12th European Conference on Software
Maintenance and Reengineering, 2008, pp. 143-152.

 [29] Y.-G. Gueheneuc, Y. K. Mens and R. Wuyts, “A
Comparative Framework for Design Recovery Tools”, In
Proceedings of Conference on Software Maintenance and
Reengineering (CSMR'06), 2006, pp.123-134.

[30] P. Tonella, M. Torchiano, B. Du Bois and T. Systä,
“Empirical studies in reverse engineering: state of the art and
future trends”, Empirical Software Engineering, , Vol 12, No.
5, 2007 ,pp. 551-571.

[31] D. Sjoberg, J. Hannay, O. Hansen, V. Kampenes A.
Karahasanovic, N. Liborg, and A. Rekdal, “A survey of
controlled experiments in software engineering”, IEEE
Transaction in Software Engineering, Vol 3, No. 9, 2005, pp.
733–753.

[32] Nucleus: Nucleus Research Report: Microsoft Patterns and
Practices, August 2009 http://msdn.microsoft.com/en-
us/practices/ee406167.aspx

[33] C. Wohlin , P. Runeson , M. Höst, M. C. Ohlsson , B.
Regnell , A. Wesslén, “Experimentation in software
engineering: an introduction”, Kluwer Academic Publishers,
Norwell, MA, 2000.

[34] W. Wang and V. Tzerpos, “Design pattern detection in
Eiffel systems”, In Proceedings of 12th Working Conference
on Reverse Engineering (WCRE), 2005, pp. 1-10.

[35] D. I.K. Sjoberg, J. E. Hannay, O. Hansen, V. B. Kampenes,
A. Karahasanovic, N.-K. Liborg, and A. C. Rekdal, "A
Survey of Controlled Experiments in Software Engineering"
,IEEE Transactions on Software Engineering, Vol. 31, No. 9,
2005, pp. 733-753.

[36] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, “Design
pattern mining enhanced by machine learning”, In
Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM’05), 2005.

[37] H. Huang, S. Zhang, J. Cao, and Y. Duan, “A practical
pattern recovery approach based on both structural and
behavioral analysis”, Journal of Systems and Software, 75(1-
2), 2005, pp.69-87.

 [38] C. K. Roy, “Detection and Analysis of Near-miss Software
Clones”, PhD thesis, pp. 164, Queen’s University Kingston,
Ontario, Canada, August 2009.

[39] C. Park, Y. Kang, C. Wu, and K. Yi, “A static reference
analysis to understand design pattern behavior”, In
Proceedings of the 11th Working Conference on Reverse
Engineering (WCRE’04), 2004.

[40] P. Tonella, G. Antoniol, “Object oriented design pattern
inference.” In Proceedings of International Conference on
Software Maintenance (ICSM’99), 1999.

[41] F. Arcelli and L. Cristina, “Enhancing Software Evolution
through Design Pattern Detection”, In Proceedings of the 3rd
International Workshop on Software Evolvability
(PCODA'08), 2007, pp. 7-14.

[42] C. K. Roy, “Detection and Analysis of Near-miss Software
Clones”, PhD thesis, pp. 164, Queen’s University Kingston,
Ontario, Canada, August 2009.

[43] Fujaba Home Page :<
http://wwwcs.unipaderborn.de/cs/fujaba

[44] Scientific Toolworks Inc. Understand for C++, 2003,
http://www.scitools.com/.

[45] I. Bayley and H. Zhu , ”On the Composition of Design
Patterns”, In Proceedings of Eighth International Conference
on Quality Software, 2008, pp. 27-36 .

[46] R. B. France, D.-K. Kim, S. Ghosh and E. Song, "A UML-
Based Pattern Specification Technique," IEEE Transactions
on Software Engineering, Volume 30, No. 3, 2004, pp. 193-
206.

 [47] Y. Wang, and J. Huang, “Formal Modeling and
Specification of Design Patterns Using RtPA”, International
Journal of Cognitive Informatics and Natural Intelligence,
Volume 2, Issue 1, 2008, pp. 100-111.

[48] T. Tabi, D. Chek and L. Ng, “Modeling of Distributed
Objects Computing Design Pattern Combinations using
Formal Specification Language”, International Journal of
Applied Mathematics and Computer Science, Volume 13,
No. 2, 2003, pp. 239-253.

[49] G. Kniesel, and A. Binun,” Standing on the Shoulders of
Giants -A Data Fusion Approach to Design Pattern
Detection”, In Proceedings of 17th International Conference
on Program Comprehension, 2009, pp. 208-217.

[50] G. Antoniol, R. Fiutem, and L. Cristoforetti, , “Design
pattern recovery in object-oriented software”, In Proceedings
of the 6th international workshop on program comprehension
, 1998, pp. 153–160.

[51] M. V. Detten, and S. Becker, “Combining Clustering and
Pattern Detection for the Reengineering of Component-based
Software Systems”, In Proceedings of the 7th International
Conference on the Quality of Software Architectures, QoSA
,pp. 23-32, 2011.

Ghulam Rasool did his PhD from TU Ilmenau, Germany in March
2011. Dr. Rasool is recently working as Assistant Professor at the
Department of Computer Science, Comsats Institute of Information
Technology, Lahore Campus. The topics of his research are
reverse engineering, design patterns recovery, program
comprehension and source code analysis. He is actively engaged
in different research projects and has published number of papers
in different conferences and journals. He also is reviewers of
different international journals.

Detlef Streitferdt did his PhD from T|U Ilmenau in 2004. He is
recently working as Professor at Software Systems/Process
Informatics group in TU Ilmenau, Germany. He has vast
experience of working in different industries and has actively
participated in different collaborative research projects. His area of
research includes Software architectures, Software Products
Lines, Requirement Engineering and Goal Oriented Requirement
Engineering. He organized number of conferences and
workshops.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 260

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Kim%20Mens
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Roel%20Wuyts

