
 

 

Learning Mechanisms and Local Search Heuristics for the Fixed 
Charge Capacitated Multicommodity Network Design 

Ilfat Ghamlouche1, Teodor Gabriel Crainic2, Michel Gendreau3 and Ihab Sbeity4 
 

 1 Faculté des Sciences Économiques et de Gestion, Université Libanaise 
Beirut, Hadath C.P: 6573-14 , Lebanon 

 
 

2 Département de management et technologie 
Université du Québec à Montréal 

and 
CIRRELT, Université de Montréal 

Montréal, Québec, Canada 
 
 

3 CIRRELT, Université de Montréal 
Montréal, Québec, Canada 

 
 

4 Faculté des Sciences, Université Libanaise 
Beirut, Hadath C.P: 6573-14 , Lebanon 

 
 

 
 

Abstract 
In this paper, we propose a method based on learning 
mechanisms to address the fixed charge capacitated 
multicommodity network design problem. Learning mechanisms 
are applied on each solution to extract meaningful fragments to 
build a pattern solution. Cycle-based neighborhoods are used 
both to generate solutions and to move along a path leading to 
the pattern solution by a tabu-like local search procedure. Within 
this concept, the method integrates important mechanisms such 
as intensification and diversification. Experimental results show 
that the proposed algorithm is effective for large structured 
instances with several commodities. 
Keywords:  Adaptive memories, Tabu search, fixed charge 
capacitated multicommodity network design, Meta-heuristics, 
Cycle-based neighborhoods. 

1. Introduction 

The fixed-charge capacitated multicommodity network 
design problem (CMND) has various applications in the 
field of transportation, telecommunication and production 
planning (Balakrishnan, Magnanti, and Mirchandani [9], 
Magnanti and Wong [1], Minoux [2]). In these 
applications, multiple commodities (goods, data, people, 
etc.) must be routed between different points of origin and 
destination over a network of limited capacities. Moreover, 
other than the routing cost proportional to the number of 
units of each commodity transported over a network link, a 

fixed cost must be paid the first time the link is used, 
representing its construction (opening) for improvement 
costs. The objective of CMND is to identify the optimal 
design that is, to select the links to include in the final 
version of the network in order to minimize the total 
system cost, computed as the sum of the fixed and routing 
costs, while satisfying the demand for transportation. 
 
The fixed-charge capacitated multicommodity network 
design problem is one of the most difficult NP-hard 
combinatorial optimization problems. Existing exact 
algorithms are not yet capable to handle problems of 
realistic sizes (Crainic, Frangioni, and Gendron[23], 
Gendron, Crainic, and Frangioni[11], Holmberg and 
Yuan[19], Sellmann, Kliewer et Koberstein [27]). 
Therefore, there is substantial interest in developing 
heuristic procedures for this problem (Crainic, Gendreau, 
and Farvolden [15], Crainic, Gendron and Hernu [10]). 
Currently, the best available heuristic procedures are the 
cycle-based tabu search and the path relinking algorithms 
developed by Ghamlouche, Crainic, and Gendreau 
([25],[26]). In the first paper, the authors propose a new 
class of neighborhood structures for the CMND and 
evaluate these neighborhoods using a very simple tabu-
based local search procedure. The approach appears robust 
in terms of solution quality and computing efficiency. 
However, it does not go beyond a rather local exploration 
of the search space. 
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Adaptive memories appear as important building blocks 
for designing a complete tabu search (Glover and Laguna 
[8], Glover [6], Glover, Taillard and de Werra [3]. 
Adaptive memories may be explicit or attributive. Explicit 
memory records complete solutions, typically consisting 
of elite solutions visited during the search while 
attributive memory records information about solution 
attributes that change in moving from one solution to 
another. Ghamlouche, Crainic and Gendreau [26] 
developed a path relinking method based on cycle-based 
tabu search that offers the best current performance 
among approximate solution methods for the CMND. The 
method makes use of explicit memory to record elite 
solutions. Then the process explores paths between elite 
solutions in order to generate improved new ones. 

 
The motivation of this paper is to investigate effects of 
adding learning mechanisms to the cycle based tabu search 
introduced in [25]. We aim in particular, to develop more 
general guidelines for the neighborhood exploration by 
focusing on attributive memories. Our main contribution is 
the adaptation to the fixed-charge capacitated 
multicommodity network design problem, of concepts 
widely used in Tabu search, such as intensification and 
diversification mechanisms. 

 
The outline of the paper is as follows. Section 2 describes 
the problem then Section 3 provides the necessary 
background and fundamentals. Section 4 details the 
implementation of our learning mechanisms. 
Section 5 is dedicated to experimental results. We 
conclude in Section 6. 

2. Problem Formulation and Notation 

The goal of a CMND formulation is to find the optimal 
configuration - the links to include in the final design - of a 
network of limited capacity to satisfy the demand of 
transportation of different commodities sharing the 
network. The objective is to minimize the total system cost, 
computed as the sum of the link fixed and routing costs. 
 
Given a set of commodities P , the CMND can be defined 
on a network ),( ANG =  where N is the set of nodes and 

A is the set of directed arcs. A cost p
ijC is associated to 

each unit flow of commodity p on arc ),( ji , and a fixed 
cost ijf  has to be paid in order to use arc ),( ji  at all. 
Without loss of generality, we assume that each 
commodity p has a single origin )( po , a single 

destination )( ps , and a flow requirement of pw units 

between its origin and destination nodes. The arc-based 
formulation of the CMND can then be written as 
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Where ijy , Aji ∈),( , represent the design variables that 
equal 1 if arc ),( ji is selected in the final design (and 0 
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ijx  stand for the flow distribution decision 
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The objective function (1) accounts for the total system 
cost, the fixed cost of arcs included in a given design plus 
the cost of routing the product demand, and aims to select 
the minimum cost design. Constraints (2) represent the 
network flow conservation relations, while constraints (3) 
state that for each arc, the total flow of all commodities 
cannot exceed its capacity if the arc is opened ( ijy =1) and 

must be 0 if the arc is closed ( ijy  = 0). Relations (5) and 
(4) are the usual non-negativity and integrality constraints 
for decision variables. Recall that, for a given design 
vector y , the arc based formulation of the CMND becomes 
a capacitated multicommodity minimum cost flow problem 
(CMCF) 
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where )(yA  stands for the set of arcs corresponding to the 
design y . A solution to the CMND may then be viewed as 
an assignment y  of 0 or 1 to each design variable, plus 
the optimal flow of the corresponding multicommodity 
minimum cost flow problem )(* yx . Similarly, the 

objective function value associated to a solution ))(,( * yxy  
is the sum of the fixed cost of the open arcs in y and the 

objective function value of the CMCF associated to )(* yx  
 

)7())(())(,(
)(),(

** yxzyfyxyz
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3. Background and Fundamentals 

The necessary background of the cycle-based tabu search 
is outlined here. For more details, see Ghamlouche, 
Crainic and Gendreau [25]. The class of neighborhood 
structures proposed by Ghamlouche, Crainic and Gendreau 
[25] for the CMND explores the space of the arc design 
variables by redirecting flow around cycles and closing 
and opening design arcs accordingly. The neighborhood 
defines moves that explicitly take into account the impact 
on the total design cost of potential modifications to the 
flow distribution of several commodities simultaneously. 
 

The fundamental idea is that one may move from one 
solution to another by 1) identifying two points in the 
network together with two paths connecting these points, 
thus closing a cycle; 2) deviating the total flow from one 
path to another such that at least one currently open arc 
becomes empty; 3) closing all previously open arcs in the 
cycle that are empty following the flow deviation and, 
symmetrically, opening all previously closed arcs that now 
have flow. Such neighborhoods are huge, however, and their 
explicit and exhaustive exploration is not practical in most 
situations. Moreover, the complete evaluation of any design 
modification involves the resolution of a capacitated 
multicommodity network flow problem, which rapidly 
becomes extremely computation intensive. Thus, in order to 
select the best move out of a given solution, the method 
implements an efficient procedure that 1) avoids the 
complete evaluation of every examined move and 2) 
generates a limited number of cycles that include the “good” 
moves. Note that not all cycles are of equal interest. The 
method seeks moves that modify the status of several arcs 
and that lead to a significant modification of the flow 
distribution. Therefore, moves that close at least one arc and 
open new paths for a group of commodities appear attractive. 
To close an arc, one must be able to deviate all its flow. The 
residual capacity of any cycle that includes that arc must 

then be at least equal to the total flow on the arc. 
Consequently, the cycles of interest are those that display a 
residual capacity equal to one of the values in the set of the 
total (strictly positive) volumes on the open arcs. 
Cycles are thus to be identified on residual networks and 
the one leading to the network modification that yields the 
largest improvement (smallest deterioration, eventually) in 
the design objective function corresponds to the best move. 
To reduce the computational burden, cycles are identified 
and evaluated for a set of candidate links C. The “lowest” 
cost cycle for each candidate link is identified by an 
optimization heuristic based on a modification of the 
shortest path label-correcting algorithm that avoids getting 
trapped in negative directed cycles. The method thus 
progressively builds a set of good candidate neighbors 
(cycles) among which the best move is then selected. 
To evaluate these concepts, Ghamlouche, Crainic, and 
Gendreau [25] developed a simple tabu search-based local 
search procedure that integrates two versions of the cycle-
based neighborhood: One that considers the flow of all 
commodities when determining cycles, and a second one 
that refines the search by implementing moves resulting 
from the deviation of the flow of only one commodity at a 
time. 
Following an initialization phase, the tabu search 
procedure explores the design variables solution space 
using a simple local search framework: at each iteration, 
the best non-tabu move is determined and implemented 
regardless whether it improves the overall solution or not. 
A short-term tabu memory is used to record characteristics 
of visited solutions to avoid cycling. When a particularly 
good solution is encountered, the search is intensified 
using a particular implementation of cycle-based 
neighborhoods that consider the flow distribution of one 
commodity only. A solution is considered particularly 
good when it improves the best overall solution or is close 
to it by at least a pre-defined percentage. The method 
terminates whenever a predefined stopping criterion 
(number of iterations, CPU time, etc.) is met. 
Computational results on a large set of instances, with 
various characteristics, show that the cycle-based tabu 
search produces superior solutions. 
Ghamlouche, Crainic and Gendreau [26] explore the 
adaptation of path relinking to the (CMND). Path relinking 
(Glover [7]; see also Glover and Laguna [8] and Glover, 
Laguna, and Marti [16]), is a meta-heuristic that operates 
on a set of elite solutions, called the reference set, and 
generates paths between solutions in this set to create 
improved new ones. Starting from an “initial” solution, the 
primary goal of the search is to find a path to reach another, 
“guiding” solution, by performing moves that 
progressively introduce into the current solution attributes 
contained in the guiding solution. Thus, the method does 
not progress by choosing a “best” move from the 
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neighborhood set, but by selecting the “best” move from 
the restricted set of moves that incorporate some or all of 
the attributes of the guiding solution. This exploration 
allows the search to perform moves that may be considered 
unattractive according to the objective function value but 
which appear essential in reaching solutions with given 
characteristics. 
 
To implement path relinking, Ghamlouche, Crainic and 
Gendreau [26] used the cycle-based neighborhoods both to 
move along a path between elite solutions and to generate 
the elite candidate set by a tabu-like local search procedure. 
The authors proposed and compared several strategies to 
build the reference set and to select initial and guiding 
solutions from this set. The best strategies for the fixed 
charge capacitated multicommodity network design 
problem is to build the reference set with improving local 
minima, that is local minimum solutions that offer a better 
evaluation of the objective function than those already in 
the reference set, and to build paths between the most 
distant solutions in this set, that is with solutions having the 
maximum Hamming distance. 
 
Extensive computational experiments indicate that the path 
relinking procedure offers excellent results. It 
systematically outperforms the cycle-based tabu search 
method in both solution quality and computational effort 
and offers the best current metaheuristic for this difficult 
class of problems. 

4. Learning Mechanisms 

During the cycle-based tabu search, each solution found 
depends only on the previous one. To take into 
consideration the history of the search, we decided to 
modify the cycle-based tabu search by adding learning 
mechanisms performed at each iteration and use this 
knowledge to build further solutions. To this end, we use 
adaptive memories that give us an overview on each arc of 
the network. For each arc, two adaptive memories 
ArcToOpen and ArcToClose are used for intensification 
purposes and one adaptive memory, ArcResidency, is used 
for diversification. Intensification adaptive memories 
record how many times it was useful to have the arc 
opened and how many times it was not. In particular, 
ArcToOpen ),( ji indicates the number of times arc ),( ji is 
useful to be opened while ArcToClose ),( ji indicates the 
number of times arc ),( ji  is useful to be closed. The third 
memory, ArcResidency ),( ji , stores the number of times 
arc ),( ji  has been used in a solution. ArcResidency is later 
used to diversify the search by penalizing highly used arcs 
and favor not much used arcs (see section 4.6). 

For each solution, to decide whether it is good or not to 
open each arc, we investigate two strategies: both study the 
contribution of the arc to the solution cost. However in the 
first one, identified as arc strategy, we evaluate each arc 
independently while in the second, identified as node 
strategy, we evaluate each arc within a subset of arcs 
having the same origin node. 

4.1 Arc Strategy 

Two measures are used to evaluate the status of arcs of 
each solution of the modified cycle-based tabu search: the 
flow and the fixed cost. Ideally, we would like to use arcs 
with low fixed cost; in addition, we would like those arcs 
to have a very high flow. Such arcs are the most attractive 
and thus one would like to open these arcs in the next 
solutions. Arcs with high fixed cost and low flow are poor 
candidates to be included in the next solutions and one 
would like to close all these arcs when building further 
solutions. Arcs with high fixed cost and high flow cannot 
be rejected (closed) unless we take a closer look to the 
fixed cost over capacity ratio. In fact, those arcs can be 
distributed in two subsets: those having high fixed cost 
over total flow ratio and those having low fixed cost over 
total flow ratio. 
Arcs in the first set (high fixed cost, high flow and high 
fixed cost over total flow ratio) lead to a costly objective 
value and should be closed in the next solutions. On the 
other hand, arcs in the second set (high fixed cost, high 
flow and low fixed cost over total flow ratio) are less 
expensive than those in the first set but we still do not like 
to open them in the next solutions because of the high 
fixed cost. The same argument applies on arcs having low 
fixed cost and low flow. Section 4.3 gives an evaluation 
mechanism to determine, for each arc, whether the flow 
and the fixed cost are high or low. Adaptive memories are 
updated for each arc of the solution by incrementing 
ArcToOpen or ArcToClose depending on how we would 
like to have the status of the arc in the next solutions. 
Table 1 summarizes the arc strategy. 
In order to identify at each solution ),( yx arcs with the 
highest or lowest fixed cost over total flow ratio, let H be 
the set of all arcs having high fixed cost and high flow and 
L  be the set of all arcs having low fixed cost and positive 
low flow. An arc ),( ji belonging to H  is considered to 
have a high fixed cost over its total flow ratio if this ratio 
exceeds the threshold 1t (i.e. 1/ txyf

Pp
p

ijijij >∑ ∈
) where: 
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In the same way, an arc ),( ji belonging to L is considered 
to have a low fixed cost over its total flow ratio if this ratio 
is less than 2t (i.e. 2/ txyf

Pp
p

ijijij <∑ ∈
) where: 
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Table 1: Arc Strategy 

ARCS HIGH FLOW LOW FLOW 

HIGH FIXED 
COST 

Increment 
ArcToClose 

for arcs having the 
highest fixed cost 

over total flow ratio 

Increment 
ArcToClose 

for all used arcs  

LOW FIXED 
COST 

Increment 
ArcToOpen 

for all used arcs  

Increment 
ArcToOpen 

for arcs having the 
lowest fixed cost 

over total flow ratio 

4.2 Node Strategy 

In another attempt to use flow and fixed cost to build 
adaptive memories, information on arcs are grouped and 
transferred to their originated nodes as follow: 
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Where ),( yx denote the current solution and j  is the node 
successor of i . Section 4.3 gives an evaluation mechanism 
to determine, for each node, whether the flow and the fixed 
cost are high or low. 
Transferring information from arcs to nodes is based on 
the fact that flow is traveling on arcs; flow is then grouped 
on nodes and then redistributed on arcs. Consequently, at 
each node, the cost of this redistribution is the total cost on 
outgoing arcs. In node strategy, adaptive memories are 
updated according to the influence of this redistribution on 
the objective value as follows: 
 

_ If node i  has a high fixed cost and a low flow, 
the distribution of the flow is very costly and we 
want to avoid this redistribution in the next 
solutions. In fact, we want to push the flow back to 
use different distribution channels. This can be 
realized by closing all used arcs originating from 

node i  and thus ArcToClose will be incremented 
for those arcs. 
 
_ If node i  has a low fixed cost and a high flow, 
the distribution cost of the flow is very low, thus we 
want to favor this distribution in next solutions. This 
can be realized by keeping all used arcs originating 
from node i  opened. Consequently, ArcToOpen 
will be incremented for those arcs. 

 
_ If node i  has a high fixed cost and a high flow, 
the distribution cost is more or less acceptable. In 
this case, we might need to tighten the flow by 
closing some arcs. In fact we are interested in 
preventing part of the flow (i.e. causing high 
redistribution cost) to be redistributed on outgoing 
arcs in the next solutions. To identify the part of the 
flow to be pushed back, let iH  be the set of used 
arcs originating from node i . An arc ),( ji belonging 
to iH  should be closed (ArcToClose incremented) 
if its fixed cost over total flow ratio exceeds the 
threshold cit , computed as the average fixed cost 
over total flow of all used arcs originating at node i . 
Explicitly, ArcToClose ),( ji  is incremented if: 
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_ If node i  has a low fixed cost and a low flow, the 
distribution cost is also more or less acceptable. In 
fact, only the part of the flow leading to the lowest 
redistribution cost is attractive and we would like to 
keep this part redistributed on outgoing arcs in the 
next solutions. To identify the part of the flow to be 
pushed forward, let Li be the set of used arcs 
originated at node i . An arc ),( ji belonging to iL  
should be kept opened (ArcToOpen incremented) if 
its fixed cost over total flow ratio is lower than a 
threshold oit , computed as the average fixed cost 
over total flow of all used arcs originated at node i . 
Explicitly, ArcToOpen ),( ji  is incremented if: 
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4.3 Arc Strategy 

Two thresholds are used to explicitly identify low/high 
fixed cost and low/high flow on arcs (or nodes) at each 
solution of the modified cycle-based tabu search. These 
thresholds depend on the current best solution found and 
thus are tighter when progresses the search. Those 
thresholds are calculated as follows: 
Let x and f denote respectively the percentage of used 
capacity and the average used fixed cost of the current best 
solution )~,~( yx : 
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In arc strategy, an arc ),( ji of the current solution ),( yx  
has a high fixed cost if its used fixed cost exceeds 
f ( fyf ijij > ) otherwise the arc has a low fixed cost 

( fyf ijij ≤ ). In the same way, arc ),( ji has a high flow if 
its total flow over total capacity ratio exceeds x  
( xux ijPp

p
ij >∑ ∈

/ ) otherwise the arc has a low flow. 

 
Following the same analogy with node strategy, a node i  
of the current solution ),( yx has a high fixed cost if the 
average fixed cost on outgoing arcs from node 
i exceeds f . Explicitly: 

f
y
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In the same way, node i  has a high flow if the percentage 
of used capacity on outgoing arcs from node i  exceeds x .  
Explicitly: 

x
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4.4 Pattern solution 

To move from a current solution to a neighboring one in 
our approach, we select a set of candidate arcs from the 
network and we perform cycle-based tabu search to get the 
best move. Remember that at least one of the candidate 
arcs will have its status changed after the move. In the 
original form of the cycle-based tabu search, the candidate 
arcs were selected randomly from the set of closed arcs. In 
our approach, we will use the learning mechanisms to 
decide which arcs should be included in the candidate set. 

Each closed arc is a candidate arc if ArcToOpen exceeds 
ArcToClose by a predefined value. This means that during 
the search, it was more useful to have the arc opened than 
to have it closed. However, since the arc is closed in the 
current solution, we want to direct the search to open the 
arc without forcing it to be opened. Similarly, each opened 
arc is a candidate arc if ArcToClose exceeds ArcToOpen 
by a predefined value. 
 
Pattern solution is the result of our learning during the 
search. In pattern solution, an arc is opened if its 
associated ArcToOpen exceeds ArcToClose by a 
predefined value OpenTheArc and an arc is closed if its 
associated ArcToClose exceeds ArcToOpen by a 
predefined value CloseTheArc. Originally, all arcs in 
pattern solution have an undecided status. In this way, arcs 
with different status between current and pattern solution 
constitute the set of candidate arcs when performing a 
cycle-based tabu search. 

4.5 Intensification 

Building the set of candidate arcs as in section 4.4 
constitute intensification in the already explored 
neighborhood since we seek, via the pattern solution, to 
open arcs found good during the search and to close arcs 
found to be costly. The intensification consists on using the 
cycle-based tabu search to find the best move starting from 
the current solution and building and maintaining the 
pattern solution as in section 4.4. The intensification phase 
ends after a given number of iterations, MaxInt, without 
improvement of the objective function value. 
Note that, even if adaptive memories are updated after 
each iteration of the search, the pattern solution is only 
updated when no improvement to the current solution is 
noticed. This is to avoid disturbing the search when 
improvement is taking place. 

4.6 Diversification 

Intensification by itself is insufficient to yield the best 
outcome to our difficult problem. Diversification must be 
invoked to allow the most effective search over the 
solution space. To do this, we exploit additional memory 
means (i.e. residency based memories) to penalize 
frequently occurred arcs in visited solutions and 
consequently reach a new search trajectory over the 
solution space. As in the intensification phase, we use the 
pattern solution to build the set of candidate arcs and the 
cycle-based tabu search to move from one solution to 
another. However, the pattern solution is modified to 
introduce the residency based memory as follow: An arc 

),( ji is set to be opened in pattern solution if its current 
status is not decided and its ArcResidency is less than a 
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predefined threshold ResidMeasure. An arc ),( ji is set to 
be closed in pattern solution if its current status is not 
decided and its ArcResidency exceeds a ResidMeasure. All 
other arcs of the pattern solution will receive a not decided 
status. The diversification is launched after the 
intensification phase and performed for MaxDiv iterations 
without improvement of the best solution. 

4.7 Path relinking 

In our approach, path relinking is implemented to explore 
trajectories connecting best solutions found during the 
intensification and the diversification phases. 
In particular, when moving toward pattern solution in the 
intensification phase, we keep track of the best r solutions 
to build a first reference set, then, when the method 
switches to a diversification phase a second reference set is 
built with another r  best solutions. The method then starts 
to explore trajectories connecting those solutions: at each 
iteration, two solutions, one from each reference set, that 
satisfy the maximum Hamming distance are chosen, the 
worst one is set to be the starting solution and is removed 
from its reference set. If during the path relinking 
exploration, we reach a solution that improves the best 
overall solution, this solution is added to the reference set 
of the starting solution. If one of the reference sets is 
empty, path relinking keeps exploring trajectories between 
solutions in the remaining reference set. Path relinking 
ends when both reference sets are empty. 

4.8 Warming up 

The method needs time to learn therefore a warming up 
phase is performed. It consists on identifying arcs to open 
or to close and applying cycle-based tabu search on these 
arcs to get the best move. At each iteration of the warming 
up phase, adaptive memories are updated and used to build 
pattern solution. However, at this stage, pattern solution is 
not yet mature to guide the search in the solution space and 
will be used only at the end of the warming up phase.  
 
Two warming up phases are performed: the first one 
consists in closing arcs with high fixed cost over total flow 
ratio while the second consists in opening arcs with low 
fixed cost over capacity ratio. The percentage of arcs to be 
closed or opened is set to 50% of the total number of 
opened or closed arcs. This value was selected as the best 
during the experimental results reported in Ghamlouche, 

Crainic and Gendreau [25]. The warming up stops after a 
given number of iterations, MaxWarmingUp, without 
improvement in the objective function value. 

4.9 The search strategy 

After some initialization, the method performs a warming 
up phase to create pattern solution. When no improvement 
is observed, the search proceeds to an intensification phase 
until a number of iterations without improving the best 
overall solution is reached. 
 
The method switches then to a diversification phase as 
indicated in Section 4.6. Path relinking is applied to 
explore paths connecting best solutions found during the 
intensification and the diversification phases. The overall 
process is repeated by starting with the best overall 
solution. Figure 1 summarized the structure of the search 
while figure 2 details the learning phase. 

5. Experimentation and Computational 
Results 

Experiments have been performed to evaluate the behavior 
and the performance of the learning algorithm proposed in 
this paper. To ensure meaningful comparisons, we employ 
the same two sets of problem instances as used in 
Ghamlouche, Crainic, and Gendreau ([25],[26]). The 
heuristic in this paper was implemented in C++. The exact 
evaluation of the capacitated multicommodity network 
flow problems is done using the same environment as in 
Ghamlouche, Crainic and Gendreau [26]. Computing times 
are reported in seconds. 

5.1 Parameter settings 

We first performed a calibration phase. An initial set of 
results (not shown here in order not to overcharge the 
paper) allowed us to fix the value of MaxWarmingUp, 
MaxInt and MaxDiv to 10, 40 and 40 respectively. Ten 
problems have been selected for calibration purposes. The 
ten problems cover networks sizes from 100 to 700 design 
arcs and from 10 to 400 commodities. They also display 
relatively high fixed cost compared to routing cost and are 
tightly capacitated. We tested the following combinations 
of parameters: 
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Initialization 
Generate an initial feasible solution to initiate BestSolution and 
CurrentSolution. 

 
Let )~,~( yx , ),( yx  and ),( tt yx  denote the BestSolution, 
CurrentSolution and PatternSolution  respectively. Set 
WarmingUpStatus = closed 
 

Main search loop 
Repeat the following until a stopping condition is met 
• Initialize memories 
• Repeat until MaxWarmingUp is reached 

_ if (WarmingUpStatus = opened) 
_ Sort closed arcs of the current solution according 

to ijij uf /  

_ Let }//),{( lowisufandclosedyji ijijij ==Γ  

_ else if (WarmingUpStatus = closed) 
_ Sort used arcs of the current solution according to 

∑ ∈Pp
p

ijij xf /
 

_ Let }/),{( highis
x

f
andopenedyji

Pp
p

ij

ij
ij

∑ ∈

==Γ  

_ Perform one iteration of cycle-based neighborhood by 
considering arcs in Γ  to get a new current solution ),( yx  

_ Perform a Learning phase 
_ If CurrentSolution < BestSolution update BestSolution 

• Intensification Loop 
Repeat until MaxInt is reached 
_ Perform one tabu search iteration by introducing arcs 

present in Pattern solution to get a new solution ),( yx  
_ Perform a Learning phase 
_ Save best solutions in the  first reference set   

• Perform a Diversification phase by changing Pattern solution 
Repeat until MaxDiv is reached 
_ Perform one tabu search iteration by introducing arcs 

present in Pattern solution to get a new solution ),( yx  
_ Perform a Learning phase 
_ Save best solutions in the second reference set 

• Perform a Path Relinking phase between best solutions 
found during both Intensification and diversification 
phases 
_ Set CurrentSolution to BestSolution 
_ WarmingUpStatus = opened 

 
 

_ for each arc ),( ji  of CurrentSolution ),( yx  with ijy  = 1 

increment ArcResid ),( ji  
_ Calculate x  and f  as in section 4 
_ If arc strategy 

Low fixed cost, high flow 

_ If fyf ijij <  and xux ijPp
p

ij >∑ ∈
/ then increment 

ArcToOpen ),( ji  
High fixed cost, low flow 

_ If fyf ijij >  and xux ijPp
p

ij <∑ ∈
/ then increment 

ArcToClose ),( ji  
High fixed cost, high flow 

_ Calculate the threshold 1t  
_ Increment ArcToClose for each arc having 

1/ txyf
Pp

p
ijijij >∑ ∈

 Low fixed cost, low flow 

_ Calculate the threshold 2t  
_ Increment ArcToOpen for each arc having 

2/ txyf
Pp

p
ijijij <∑ ∈

  

_ if node strategy 
_ for each node i  of CurrentSolution ),( yx  

_ Calculate fixedcost( i ) and flow( i ) as in section 4.2 
Low fixed cost, high flow 

_ If fixedcost( i ) < f  and flow( i ) > x  then for each arc 

),( ji  of CurrentSolution ),( yx with 1=ijy and +∈ ij . 

Increment ArcToOpen ),( ji  
High fixed cost, low flow 

_ If fixedcost( i ) > f  and flow( i ) < x  then for each arc 

),( ji  of CurrentSolution ),( yx with 1=ijy and +∈ ij . 

Increment ArcToClose ),( ji  
High fixed cost, high flow 

_ If fixedcost( i )> f  and flow( i )> x  then calculate the 
threshold cit Increment ArcToClose for each arc 

outgoing having ciPp
p

ijijij txyf >∑ ∈
/ Low fixed 

cost, low flow 
_ If fixedcost( i )< f  and flow( i )< x  then calculate the 

threshold oit Increment ArcToOpen for each arc outgoing 

having oiPp
p

ijijij txyf <∑ ∈
/  

_ if (Warming up) or (CurrentSolution ≥  PreviousSolution) 
_ for each arc ∈),( ji  PatternSolution do 
_ if ArcToOpen ),( ji - ArcToClose ),( ji ≥ OpenTheArc 

then t
ijy = Opened 

_ - if ArcToClose ),( ji - ArcToopen ),( ji ≥  CloseTheArc 

then t
ijy = Closed 

 
• OpenTheArc: This parameter indicates the 

threshold to exceed in order to open the arc in 
Pattern solution. 

• CloseTheArc: This parameter indicates the 
threshold to exceed in order to close the arc in 
Pattern solution. 

 
Three values 1, 2 and 3 were considered initially for these 
parameters. However, the value of 1 for OpenTheArc and  
 
CloseTheArc and consequently all combinations (1, 1), (1, 
2), (1, 3) as well as (2, 1) and (3, 1), were rapidly dropped 
since the quality of the solutions started to decrease. 

 
• ResidMeasure: This parameter depends on the 

number of iterations and indicates how often the 
arc should be opened to be considered highly 
used. Three values 40%, 60% and 80% of the 
number of current iteration have been tested. 
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Node strategy was used for these tests. Each parameter 
combination was ranked for each problem instance 
according to the gap relative to the best known solution 
(that of the branch-and-bound procedure of CPLEX 7.5, 
when available, or that obtained by Ghamlouche, Crainic 
and Gendreau [26], otherwise). A score of 10... 1 is 
assigned to each of the first ten places, respectively. The 
performance of each parameter setting is then aggregated: 
gaps are averaged while scores are summed up. Table 2 
displays these aggregated results for each parameter 
combination. 
 
The first column holds the parameter setting; the second 
column presents the global average gaps while the last 
column displays the total score. 
 
The results in Table 2 display one set of parameters that 
offers the most robust combination, OpenTheArc = 2, 
CloseTheArc = 3 and ResidMeasure = 60%. It offers the 
lowest average gap and the highest scores. This setting will 
be maintained in the remaining of this computational study. 
 

Table 2: Parameter SettingPerformances 
Parameter 

settings Gap Score 

2, 2, 40% 2.35% 59 
2, 2, 60% 2.67% 40 
2, 2, 80% 2.80% 41 
2, 3, 40% 2.36% 33 
2, 3, 60% 1.62% 72 
2, 3, 80% 1.85% 67 
3, 2, 40% 2.16% 69 
3, 2, 60% 2.44% 35 
3, 2, 80% 2.03% 51 
3, 3, 40% 2.42% 63 
3, 3, 60% 2.37% 24 
3, 3, 80% 2.80% 34 

5.2 Performance Analysis 

To evaluate the behavior and the performance of the 
learning algorithm proposed in this paper, we compare its 
output to the results of the cycle-based tabu search and to 
those of the path relinking algorithm ([25],[26]). To further 
characterize the quality of the solutions, we also include 
the optimal solutions obtained using the branch-and-bound 
algorithm of cplex 7.5 [12]. The same two data sets of 
networks used by Ghamlouche, Crainic, and Gendreau [25] 
were also used to test our learning algorithm. Problems in 
both sets are general transshipment networks with no 
parallel arcs. Each commodity corresponds to a single 
origin-destination pair. On each arc, routing costs are the 
same for all commodities. Problem instances have been 
generated to offer for each network size a variety of fixed 

cost to routing cost ratios and capacity to demand ratios. 
Detailed description of problem instances is given in 
Crainic, Frangioni, and Gendron [23]; see also Gendron 
and Crainic ([4], [5]). The problem generators as well as 
the problem instances can be obtained from the authors. 
 
Problems in the first set of network, denoted C, are defined 
respectively by the number of nodes, the number of arcs, 
the number of commodities as well as two letters 
summarizing the fixed cost and capacity information: a 
relatively high or low fixed cost relative to the routing cost 
is signaled by the letter F or V, respectively, while letters 
T and L indicate respectively if the problem is tightly or 
somewhat loosely capacitated compared to the total 
demand. 
 
Computational results for the first set of networks are 
reported in Tables 3, 4 and 5. In these tables, the OPT 
column corresponds to the solution of the branch-and-
bound algorithm solved using CPLEX 7.5 [12] on the same 
workstations. A limit of 10 hours was imposed. An X 
indicates that the procedure has failed to produce a feasible 
solution within this time limit, while a t indicates that the 
procedure stopped due to a time limit condition. The 
columns labeled TC and PR hold respectively the best 
solution, over 3 runs, of the cycle-based tabu search and 
the path relinking approach while AV.TC and AV.PR 
columns display respectively the average solution found by 
these two meta-heuristics. The column LS-NODE and LS-
ARC gives the solutions obtained by our approach when 
using node strategy and arc strategy respectively. When 
our learning algorithm produces optimal solutions or 
solutions better than the best solutions found by path 
relinking, bold characters are employed. The figures in 
parentheses represent total computation time in CPU 
seconds. For Comparison purposes, gap is computed for 
solutions of our learning algorithm with respect to the 
average solution found by path relinking and displayed in 
percentage under the CPU time in columns LS-NODE and 
LS-ARC respectively. 
 
Table 3 shows the results of our learning algorithm on 
smaller test cases (number of commodities up to 100) 
while Tables 4 and 5 show the results from runs of larger 
structured test cases (i.e. with 200 and 400 commodities). 
From the numerical results, a number of observations can 
be made. First, the use of adaptive memories is effective 
for realizing good quality solution for our difficult problem. 
The results of Table 4 show that our proposed algorithm 
improves the best solutions found by path relinking for 6 
out 8 problems. Results are also encouraging for large real-
world problems, such those with 400 commodities (see 
tables 4 and 5). For this class of difficult instances, 
CPLEX is unable to find the optimal solution, (not even a
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Table 3: Computational Results, C problems 

PROBLEM OPT TC PR AV.TC AV.PR LS-NODE LS-ARC 

25,100,10,V,L 14712 
(0.36) 

14712 
(19.08) 

14712 
(12.97) 

14769.33 
(19.38) 

14712 
(13.01) 

14712 
(12.36) 0% 14712 

(12.26) 0% 

25,100,10,F,L 14941 
(53.64) 

14941 
(22.55) 

14941 
(15.2) 

14941 
(22.80) 

15081.33 
(16.3) 

14941 
(12.9) -0.93% 14941 

(13.6) -0.93% 

25,100,10,F,T 49899 
(40.58) 

50529 
(31.39) 

49899 
(22.1) 

50619.67 
(32.10) 

50154 
(24.5) 

50324 
(18.75) 0.34% 51328 

(21.3) 2.34% 

25,100,30,V,T 365272 
(16.62) 

365385 
(121.30) 

365322 
(91.9) 

365385 
(123.98) 

365323.66 
(93.2) 

365322 
(83.11) -0.02% 365322 

(81.81) -0.02% 

25,100,30,F,T 85530 
(534.18) 

87325 
(123.88) 

86428 
(97.78) 

88095.33 
(125.69) 

86492.33 
(99.67) 

86334 
(89.31) -0.18% 86815.3 

(84.29) 0.37% 

100,400,10,V,L 28423 
(84.81) 

28786 
(208.58) 

28485 
(83.97) 

28836.67 
(225.12) 

28529 
(89.9) 

28553 
(83.11) 0.08% 28553 

(83.31) 0.08% 

100,400,10,F,L 24436 
(t) 

24022 
(178.52) 

24022 
(109.66) 

24022 
(191.07) 

24022 
(112.45) 

24104 
(77.45) 0.34% 24104 

(77.5) 0.34% 

100,400,10,F,T 66364 
(t) 

67184 
(425.68) 

65278 
(193.4) 

68215.00 
(432.01) 

65153 
(201.34) 

66171 
(340.63) 0.96% 66410 

(218.58) 1.33% 

100,400,30,V,T 385544 
(t) 

385508 
(1161.06) 

384926 
(424.08) 

385512.7 
(1169.70) 

385181.7 
(450.76) 

384951 
(563.7) -0.06% 384828 

(631.31) -0.09% 

100,400,30,F,L 50496 
(t) 

51831 
(730.10) 

51325 
(328.08) 

52176.33 
(648.47) 

51875.67 
(301.4) 

53066 
(322.31) 2.29% 52173 

(293.71) 0.57% 

100,400,30,F,T 141278 
(t) 

147193 
(1208.95) 

141359 
(529.02) 

147478 
(1235.27) 

143403.7 
(579.32) 

143552 
(619.96) 0.10% 142411 

(462.89) -0.67% 

30,520,100,F,T 98357 
(t) 

105130 
(2863.76) 

106130 
(1336.9) 

107885.3 
(2418.28) 

107575 
(1405.5) 

106912 
(1134.01) -0.62% 107266 

(1257.51) -0.28% 

30,700,100,F,T 55709 
(t) 

57628 
(3219.31) 

56575.5 
(1534.6) 

58111.33 
(3316.46) 

56808.83 
(1765.3) 

57741 
(1840.27) 1.64% 58032.7 

(2266.3) 2.15% 

 
Table 4: Computational Results, C problems 

PROBLEM OPT TC PR AV.TC AV.PR LS-NODE LS-ARC 
20,230,200,V,L 94386 

(t) 
100001 

(2577.34) 
100404 

(2317.35) 
101481.3 
(2606.79) 

101469.3 
(2034.54) 

102492 
(3235.53) 1.01% 102492 

(3323.53) 1.01% 

20,230,200,F,L 141737.4 
(t) 

148066 
(3143.76) 

147988 
(2893.49) 

148975 
(3158.22) 

151352 
(2760.73) 

150617 
(2955.02) -0.49% 151961 

(3229.97) 0.40% 

20,230,200,V,T 97914 
(t) 

106868 
(2595.35) 

104689 
(2304.25) 

107589.3 
(2361.57) 

105598.7 
(2304.63) 

103700 
(2921.11) -1.80% 103700 

(2934.62) -1.80% 

20,230,200,F,T 137271 
(t) 

147212 
(3601.90) 

147554 
(3656.96) 

147868 
(3868.50) 

148044.3 
(3505.46) 

144895 
(4220.34) -2.13% 149284 

(4732.58) 0.84% 

30,520,400,V,L 112997.5 
(t) 

122673 
(55771.2) 

119416 
(29650.7) 

123277.3 
(55720.30) 

119624 
(33716.23) 

115918 
(82551.2) -3.10% 115918 

(95761.4) -3.10% 

30,520,400,F,L X 
(t) 

164140 
(429296) 

163112 
(33641.2) 

165458 
(40922.57) 

163377 
(35671.23) 

161205 
(54686.2) -1.32% 159084 

(62757.9) -2.63% 

30,520,400,V,T X 
(t) 

122655 
(46565.2) 

120170 
(31461.9) 

123210 
(50666.83) 

120764.3 
(25705.4) 

118835 
(44631.4) -1.60% 118705 

(60088.6) -1.70% 

30,520,400,F,T X 
(t) 

169508 
(49886.9) 

163675 
(51400.1) 

170301.3 
(49476.67) 

164921.3 
(44862.3) 

161102 
(114120.4) -2.32% 161102 

(107664) -2.32% 
 

Table 5: Computational Results, C problems 
PROBLEM OPT TC PR AV.TC AV.PR LS-NODE LS-ARC 

20,300,200,V,L 74972.4 
(t) 

81367.7 
(4247.14) 

78184 
(3487.2) 

82187.23 
(3974.91) 

79095.33 
(3560.5) 

79791.5 
(4899.92) 0.88% 81307 

(4473.87) 2.80% 

20,300,200,F,L 117306 
(t) 

122262 
(3267.94) 

123484 
(3765.34) 

123247.7 
(4524.49) 

124924.7 
(3912.5) 

128258 
(4664.53) 2.67% 125421 

(4046.51) 0.40% 

20,300,200,V,T 74991 
(t) 

80344 
(4235.15) 

78866.8 
(3691.24) 

82187.23 
(4396.22) 

79212.27 
(3860.3) 

81453 
(5158.17) 2.83% 81453 

(4771.54) 2.83% 

20,300,200,F,T 108252 
(t) 

113947 
(4657.54) 

113584 
(3546.58) 

115342 
(4906.50) 

114632.3 
(4001.23) 

114269 
(4691.77) -0.32% 114259 

(4532.14) -0.15% 

30,700,400,V,L X 
(t) 

107727 
(36332) 

105116 
(22314.6) 

108459.3 
(36282.63) 

105403.3 
(19733.4) 

102906 
(45637) -2.36  % 102530 

(54264.3) -2.73% 

30,700,400,F,L X 
(t) 

150256 
(73030.8) 

145026 
(52360.2) 

150909 
(63170.20) 

147887.3 
(58761.8) 

148862 
(128777) 0.66% 146921 

(125860) -0.65% 

30,700,400,V,T  
(t) 

101749 
(49324.2) 

101212 
(26592.3) 

103112.3 
(49239.5) 

102119.3 
(28664.3) 

98911 
(99322.9) -3.14% 98911 

(102727) -3.14% 

30,700,400,F,T X 
(t) 

144852 
(74796.3) 

141013 
(45179.1) 

146705 
(79053.40) 

141446.7 
(49824.83) 

139055 
(95330.1) -1.69% 141096 

(123233) -0.25% 
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feasible solution for 7 out 8 problems) with available 
computational time. Our learning algorithm improves the 
best known solutions for 6 out 8 problems and the 
improvement relative to the average solution of path 
relinking ranges from 1.60% to 3.14%. 
 
The second observation concerns the computing effort. 
Even if we account for the fact that we stop our learning 
algorithm on the same criterion as the path relinking 
procedure, 400 iterations, it appears that the learning 
algorithm requires longer computing times, especially 
when the number of commodities is high. This could be 
explained by the fact that good solutions are found earlier 
in the search (of the order of 40% of the total iteration 
limit), which yields more difficult multicommodity 
capacitated network flow problems to be solved by 
CPLEX at each iteration and consequently more time. 
The interesting performance and behavior of the proposed 
learning algorithm is confirmed by the results obtained on 
the second set of problems instances, denoted R. There are 
116 problems divided in 18 groups. Each group contains 
the same number of nodes, arcs, and commodities but with 
different combined level of fixed cost and capacity ratios. 
Three levels of fixed cost and capacity ratios are 
considered: F01 = 0.01, F05 = 0.05 and F10 = 0.10 
indicating continuously higher levels of fixed costs 
compared to routing costs, and C1 = 1, C2 = 2, and C8 = 8 
that signal that the total capacity available becomes 
increasingly tighter relatively to the total demand. The 
fixed cost ratio is computed 
as ∑∑∑ ∈∈∈ Aji

p
ijPp

p
Aji ij cwfP

),(),(
/ , and the capacity ratio 

is computed as ∑∑ ∈∈ Aji ijPp
p uwA

),(
/ . Only aggregated 

statistics are used in the following to support the discussion. 
Table 6 displays the optimality gap distribution, according 
to problem dimension, for both learning strategy and path 
relinking algorithms. As we can see, our learning algorithm 
achieves better results than the average solution of path 
relinking when the number of commodities increases 
versus the number of arcs. The results also indicate that 
our learning algorithm is certainly not interesting for small-
sized problem instances with few commodities. 
 
On the other hand, it helps to achieve better solutions, 
especially in the case of more difficult problems, with a 
large number of commodities. 
 
According to the results, we observe that our learning 
algorithm is well fitted to a large number of instances and 
its performance increases with increasing the difficulty of 
problems. 

6. Conclusion 

The objective of our study has been to exploit and advance 
the knowledge associated with the implementation of 
learning mechanism with the use of adaptive memories 
structure for the fixed charge capacitated multicommodity 
network design problems. In particular, we have 
undertaken to examine the critical issue of what form of 
intensification and diversification proves more effective 
for this class of difficult problem. Our resulting algorithm 
is effective, and its benefits are particularly significant for 
large structured instances. 
 
Table 6: Gap Distribution According to Problem 
Dimensions 

|N |, |A| |P | 
10 

PR 
0% 

AV.PR 
0% 

LS-NODE 
0% 

LS-ARC 
0% 

10,25 25 0.23% 0.60% 0.43% 0.39% 
 50 0.61% 0.72% 0.49%  0.44% 

  
10 

 
0.08% 

 
0.12% 

 
0.25% 

 
0.04% 

10,50 25 0.36% 0.55% 0.46% 0.48% 
 50 1.14% 1.93% 1.05% 1.15% 

  
10 

 
0.04% 

 
0.46% 

 
0.89% 

 
1.02% 

10,75 25 0.41% 0.92% 0.72% 0.87% 
 50 1.52% 2.30% 2.37% 2.40% 

  
40 

 
1.37% 

 
1.70% 

 
3.02% 

 
2.29% 

20,100 100 2.05% 2.82% 2.22% 2.45% 
 200 4.55% 4.86% 2.81% 3.26% 

  
40 

 
3.59% 

 
4.84% 

 
6.29% 

 
5.32% 

20,200 100 4.93% 5.90% 7.79% 7.50% 
 200 5.41% 6.42% 5.00% 5.07% 

  
40 

 
2.08% 

 
3.91% 

 
6.89% 

 
7.28% 

20,300 100 4.68% 5.79% 7.96% 7.50% 
 200 6.84% 8.97% 4.28% 5.12% 

 
References 
[1] Magnanti, T.L. andWong, R.T. Network Design and 

Transportation Planning: Models and Algorithms 
Transportation Science, Vol. 18(1), 1986, pp. 1-55. 

[2] Minoux, M. (1986). Network Synthesis and Optimum 
Network Design Problems: Models, Solution Methods and 
Applications Networks, Vol.19, 1986, pp.313-360. 

[3] Glover, F., Taillard, E.D., and de Werra, D. A user's guide to 
tabu search. Annals of Operations Research, Vol. 41, 1993, 
pp.:3-28. 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 31



 

 

[4] Gendron, B. and Crainic, T.G. Relaxations for 
Multicommodity Capacitated Network Design Problems. 
Publication CRT-965, 1994, Centre de recherche sur les 
transports, Université de Montréal, Montréal, QC, Canada. 

[5]  Gendron, B. and Crainic, T.G. Bounding Procedures for 
Multicommodity Capacitated Network Design Problems. 
Publication CRT-96-06, 1996, Centre de recherche sur les 
transports, Université de Montréal, Montréal, QC, Canada. 

[6] Glover, F. Tabu Search and Adaptive Memory Programming-
Advances, Applications and Challenges. In Barr, R., 
Helgason, R., and Kennington, J., editors, Interfaces in 
Computer Science and Operations Research, 1996, pp. 1-75. 
Kluwer Academic Publishers, Norwell, MA. 

[7] Glover, F. A Template for Scatter search and Path Relinking. 
in Lecture Notes in Computer Science, 1363, J.K. Hao, E. 
Lutton, E. Ronald, M. Schoenauer, D. snyers (eds). 1997, pp. 
13-54. 

[8] Glover, F. and Laguna, M. 1997. Tabu Search. Kluwer, 
Norwell, MA. 

[9] Balakrishnan, A., Magnanti, T.L., and Mirchandani, P. 
Network Design. In Dell'Amico, M., Maffioli, F., and 
Martello, S., editors, Annotated Bibliographies in 
Combinatorial Optimization, 1997, pp. 311-334. John Wiley 
& Sons, New York, NY. 

[10]Crainic, T.G, Gendron, B, and Hernu, G. A slope 
Scaling/Lagrangean Perturbation Heuristic with Long-Term 
Memory for Multicommodity Capacitated Fixed-Charge 
Network Design. Publication, Centre de recherche sur les 
transports, Université de Montréal, Montréal, QC, Canada 

[11]Gendron, B., Crainic, T.G., and Frangioni, A. 
Multicommodity Capacitated Network Design. In Sanso, B. 
and Soriano, P., editors. Telecommunications Network 
Planning, 1998, pp. 1-19. Kluwer, Norwell, MA. 

[12]ILOG CPLEX 7.5. ILOG, Mountain View, 2002, CA. 
U.S.A. 

[13]Laguna, M., and Marti, R. GRASP and Path Relinking for 2-
Layer Straight Line Crossing Minimization. INFORMS 
Journal on Com-puting, 1999, Vol. 11(1), pp. 44-52. 

[14]Laguna, M., Marti, R., and Campos, V. Intensification and 
Diversification with Elite Tabu Search Solutions for the 
Linear Ordering Problem. Computers and Operations 
Research, 1999, vol.  22, pp. 1217-1230. 

[15]Crainic, T.G., Gendreau, M., and Farvolden, J.M. (2000). A 
Simplex-Based Tabu Search Method for Capacitated 
Network Design. IN-FORMS Journal on Computing. 
forthcoming. 

[16]Glover, F., Laguna, M., and Marti, R. Fundamentals of 
scatter search and path relinking. Control and Cybernetics, 
2000, vol. 39(3), pp.653-684. 

[17]Crainic, T.G., Frangioni, A., and Gendron, B.  Bundle-Based 
Relaxation Methods for Multicommodity Capacitated 
Network Design. Discrete Applied Mathematics. 
forthcoming. 

[18]Glover, F., Laguna, M., and Marti, R. Fundamentals of 
Scatter Search and Path Relinking. Control and Cybernetics, 
2000, vol. 39(3), pp.653-684 

[19]Holmberg, K., and Yuan, D. A Lagrangean Heuristic Based 
Branch-and-Bound Approach for the Capacitated Network 
Design Problem. Operations Research, 2000, vol. 48(3), pp. 
461-481. 

[20]Ribeiro, C.C., Uchoa, E., and Werneck, R. A Hybrid GRASP 
with Perturbations for the Steiner Problem in Graphs.  

[21]Ghamlouche, I., Crainic, T.G., and Gendreau, M. Cycle-
Based Neighbourhoods for Fixed-Charge Capacitated 
Multicommodity Network Design. Publication CRT-2001-
01, Centre de recherche sur les transports, Université de 
Montréal, Montréal, QC, Canada. 

[22]Laguna, M., and Armentano, V.A (2001). Lessons from 
Applying and Experimenting with Scatter Search.  

[23]Crainic, T.G. and Frangioni, A. and Gendron, B. Bundle-
Based Relaxation Methods for Multicommodity Capacitated 
Network Design. Discrete Applied Mathematics, 2001, vol. 
112, pp. 73-99. 

[24]Ghamlouche, I. and Crainic, T.G. and Gendreau, M. Cycle-
based Neighbourhoods for Fixed-Charge Capacitated 
Multicommodity Network Design. Publication: Centre de 
recherché sur les transports, Université de Montréal CRT-
2001-01 

[25]Ghamlouche, I. and Crainic, T.G. and Gendreau, M. Cycle-
based Neighbourhoods for Fixed-Charge Capacitated 
Multicommodity Network Design. Operations Research 
2002. 

[26]Ghamlouche, I. and Crainic, T.G. and Gendreau, M. Path 
Relinking, Cycle-based Neighbourhoods and Capacitated 
Multicommodity Network Design. Annals of Operations 
Research 2002. 

[27]Sellmann, M., Kliewer, G., and Koberstein, A. Capacitated 
Network Design, Cardinality Cuts and Coupled Variable 
Fixing Algorithms based on Lagrangian Relaxations. 
Publication tr-ri-02-234, 2002, University of Paderborn, 
Department of Mathematics and Computer Science. 

.
 
 
 
 
 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 32




