

Learning Mechanisms and Local Search Heuristics for the Fixed
Charge Capacitated Multicommodity Network Design

Ilfat Ghamlouche1, Teodor Gabriel Crainic2, Michel Gendreau3 and Ihab Sbeity4

 1 Faculté des Sciences Économiques et de Gestion, Université Libanaise
Beirut, Hadath C.P: 6573-14 , Lebanon

2 Département de management et technologie
Université du Québec à Montréal

and
CIRRELT, Université de Montréal

Montréal, Québec, Canada

3 CIRRELT, Université de Montréal
Montréal, Québec, Canada

4 Faculté des Sciences, Université Libanaise
Beirut, Hadath C.P: 6573-14 , Lebanon

Abstract
In this paper, we propose a method based on learning
mechanisms to address the fixed charge capacitated
multicommodity network design problem. Learning mechanisms
are applied on each solution to extract meaningful fragments to
build a pattern solution. Cycle-based neighborhoods are used
both to generate solutions and to move along a path leading to
the pattern solution by a tabu-like local search procedure. Within
this concept, the method integrates important mechanisms such
as intensification and diversification. Experimental results show
that the proposed algorithm is effective for large structured
instances with several commodities.
Keywords: Adaptive memories, Tabu search, fixed charge
capacitated multicommodity network design, Meta-heuristics,
Cycle-based neighborhoods.

1. Introduction

The fixed-charge capacitated multicommodity network
design problem (CMND) has various applications in the
field of transportation, telecommunication and production
planning (Balakrishnan, Magnanti, and Mirchandani [9],
Magnanti and Wong [1], Minoux [2]). In these
applications, multiple commodities (goods, data, people,
etc.) must be routed between different points of origin and
destination over a network of limited capacities. Moreover,
other than the routing cost proportional to the number of
units of each commodity transported over a network link, a

fixed cost must be paid the first time the link is used,
representing its construction (opening) for improvement
costs. The objective of CMND is to identify the optimal
design that is, to select the links to include in the final
version of the network in order to minimize the total
system cost, computed as the sum of the fixed and routing
costs, while satisfying the demand for transportation.

The fixed-charge capacitated multicommodity network
design problem is one of the most difficult NP-hard
combinatorial optimization problems. Existing exact
algorithms are not yet capable to handle problems of
realistic sizes (Crainic, Frangioni, and Gendron[23],
Gendron, Crainic, and Frangioni[11], Holmberg and
Yuan[19], Sellmann, Kliewer et Koberstein [27]).
Therefore, there is substantial interest in developing
heuristic procedures for this problem (Crainic, Gendreau,
and Farvolden [15], Crainic, Gendron and Hernu [10]).
Currently, the best available heuristic procedures are the
cycle-based tabu search and the path relinking algorithms
developed by Ghamlouche, Crainic, and Gendreau
([25],[26]). In the first paper, the authors propose a new
class of neighborhood structures for the CMND and
evaluate these neighborhoods using a very simple tabu-
based local search procedure. The approach appears robust
in terms of solution quality and computing efficiency.
However, it does not go beyond a rather local exploration
of the search space.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 21

Adaptive memories appear as important building blocks
for designing a complete tabu search (Glover and Laguna
[8], Glover [6], Glover, Taillard and de Werra [3].
Adaptive memories may be explicit or attributive. Explicit
memory records complete solutions, typically consisting
of elite solutions visited during the search while
attributive memory records information about solution
attributes that change in moving from one solution to
another. Ghamlouche, Crainic and Gendreau [26]
developed a path relinking method based on cycle-based
tabu search that offers the best current performance
among approximate solution methods for the CMND. The
method makes use of explicit memory to record elite
solutions. Then the process explores paths between elite
solutions in order to generate improved new ones.

The motivation of this paper is to investigate effects of
adding learning mechanisms to the cycle based tabu search
introduced in [25]. We aim in particular, to develop more
general guidelines for the neighborhood exploration by
focusing on attributive memories. Our main contribution is
the adaptation to the fixed-charge capacitated
multicommodity network design problem, of concepts
widely used in Tabu search, such as intensification and
diversification mechanisms.

The outline of the paper is as follows. Section 2 describes
the problem then Section 3 provides the necessary
background and fundamentals. Section 4 details the
implementation of our learning mechanisms.
Section 5 is dedicated to experimental results. We
conclude in Section 6.

2. Problem Formulation and Notation

The goal of a CMND formulation is to find the optimal
configuration - the links to include in the final design - of a
network of limited capacity to satisfy the demand of
transportation of different commodities sharing the
network. The objective is to minimize the total system cost,
computed as the sum of the link fixed and routing costs.

Given a set of commodities P , the CMND can be defined
on a network),(ANG = where N is the set of nodes and

A is the set of directed arcs. A cost p
ijC is associated to

each unit flow of commodity p on arc),(ji , and a fixed
cost ijf has to be paid in order to use arc),(ji at all.
Without loss of generality, we assume that each
commodity p has a single origin)(po , a single

destination)(ps , and a flow requirement of pw units

between its origin and destination nodes. The arc-based
formulation of the CMND can then be written as

)5(),(}1,0{
)4(,),(0

)3(),(

)2(,

)1(),(min

)()(

),(),(

Ajiy
PpAjix

Ajiyux

PpNidxx

toSubject

xcyfyxz

ij

p
ij

ijij
Pp

p
ij

p
i

iNj iNj

p
ji

p
ij

Aji Pp Aji

p
ij

p
ijijij

∈∀∈
∈∀∈∀≥

∈∀≤

∈∀∈∀=−

+=

∑
∑ ∑

∑ ∑ ∑

∈

∈ ∈

∈ ∈ ∈

+ −

Where ijy , Aji ∈),(, represent the design variables that
equal 1 if arc),(ji is selected in the final design (and 0

otherwise), p
ijx stand for the flow distribution decision

variables indicating the amount of flow of commodity
Pp∈ on arc),(ji , and

otherwise
psi
poi

if
if

w
w

d

jiarconappliedCapacityu
inodeof

neighborsinwardoutwardofSet
iNiN

p

p

p
i

ij

)(
)(

0

),(:

/
:)(/)(

=
=









−=

−+

The objective function (1) accounts for the total system
cost, the fixed cost of arcs included in a given design plus
the cost of routing the product demand, and aims to select
the minimum cost design. Constraints (2) represent the
network flow conservation relations, while constraints (3)
state that for each arc, the total flow of all commodities
cannot exceed its capacity if the arc is opened (ijy =1) and

must be 0 if the arc is closed (ijy = 0). Relations (5) and
(4) are the usual non-negativity and integrality constraints
for decision variables. Recall that, for a given design
vector y , the arc based formulation of the CMND becomes
a capacitated multicommodity minimum cost flow problem
(CMCF)

PpyAjix

yAjiyux

andtoSubject

xcyxz

p
ij

ijij
Pp

p
ij

Pp yAji

p
ij

p
ij

∈∀∈∀≥

∈∀≤

=

∑

∑ ∑

∈

∈ ∈

),(),(0

)(),(

)2(

)6())((min
)(),(

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 22

where)(yA stands for the set of arcs corresponding to the
design y . A solution to the CMND may then be viewed as
an assignment y of 0 or 1 to each design variable, plus
the optimal flow of the corresponding multicommodity
minimum cost flow problem)(* yx . Similarly, the

objective function value associated to a solution))(,(* yxy
is the sum of the fixed cost of the open arcs in y and the

objective function value of the CMCF associated to)(* yx

)7())(())(,(
)(),(

** yxzyfyxyz
yAji

ijij∑
∈

+=

3. Background and Fundamentals

The necessary background of the cycle-based tabu search
is outlined here. For more details, see Ghamlouche,
Crainic and Gendreau [25]. The class of neighborhood
structures proposed by Ghamlouche, Crainic and Gendreau
[25] for the CMND explores the space of the arc design
variables by redirecting flow around cycles and closing
and opening design arcs accordingly. The neighborhood
defines moves that explicitly take into account the impact
on the total design cost of potential modifications to the
flow distribution of several commodities simultaneously.

The fundamental idea is that one may move from one
solution to another by 1) identifying two points in the
network together with two paths connecting these points,
thus closing a cycle; 2) deviating the total flow from one
path to another such that at least one currently open arc
becomes empty; 3) closing all previously open arcs in the
cycle that are empty following the flow deviation and,
symmetrically, opening all previously closed arcs that now
have flow. Such neighborhoods are huge, however, and their
explicit and exhaustive exploration is not practical in most
situations. Moreover, the complete evaluation of any design
modification involves the resolution of a capacitated
multicommodity network flow problem, which rapidly
becomes extremely computation intensive. Thus, in order to
select the best move out of a given solution, the method
implements an efficient procedure that 1) avoids the
complete evaluation of every examined move and 2)
generates a limited number of cycles that include the “good”
moves. Note that not all cycles are of equal interest. The
method seeks moves that modify the status of several arcs
and that lead to a significant modification of the flow
distribution. Therefore, moves that close at least one arc and
open new paths for a group of commodities appear attractive.
To close an arc, one must be able to deviate all its flow. The
residual capacity of any cycle that includes that arc must

then be at least equal to the total flow on the arc.
Consequently, the cycles of interest are those that display a
residual capacity equal to one of the values in the set of the
total (strictly positive) volumes on the open arcs.
Cycles are thus to be identified on residual networks and
the one leading to the network modification that yields the
largest improvement (smallest deterioration, eventually) in
the design objective function corresponds to the best move.
To reduce the computational burden, cycles are identified
and evaluated for a set of candidate links C. The “lowest”
cost cycle for each candidate link is identified by an
optimization heuristic based on a modification of the
shortest path label-correcting algorithm that avoids getting
trapped in negative directed cycles. The method thus
progressively builds a set of good candidate neighbors
(cycles) among which the best move is then selected.
To evaluate these concepts, Ghamlouche, Crainic, and
Gendreau [25] developed a simple tabu search-based local
search procedure that integrates two versions of the cycle-
based neighborhood: One that considers the flow of all
commodities when determining cycles, and a second one
that refines the search by implementing moves resulting
from the deviation of the flow of only one commodity at a
time.
Following an initialization phase, the tabu search
procedure explores the design variables solution space
using a simple local search framework: at each iteration,
the best non-tabu move is determined and implemented
regardless whether it improves the overall solution or not.
A short-term tabu memory is used to record characteristics
of visited solutions to avoid cycling. When a particularly
good solution is encountered, the search is intensified
using a particular implementation of cycle-based
neighborhoods that consider the flow distribution of one
commodity only. A solution is considered particularly
good when it improves the best overall solution or is close
to it by at least a pre-defined percentage. The method
terminates whenever a predefined stopping criterion
(number of iterations, CPU time, etc.) is met.
Computational results on a large set of instances, with
various characteristics, show that the cycle-based tabu
search produces superior solutions.
Ghamlouche, Crainic and Gendreau [26] explore the
adaptation of path relinking to the (CMND). Path relinking
(Glover [7]; see also Glover and Laguna [8] and Glover,
Laguna, and Marti [16]), is a meta-heuristic that operates
on a set of elite solutions, called the reference set, and
generates paths between solutions in this set to create
improved new ones. Starting from an “initial” solution, the
primary goal of the search is to find a path to reach another,
“guiding” solution, by performing moves that
progressively introduce into the current solution attributes
contained in the guiding solution. Thus, the method does
not progress by choosing a “best” move from the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 23

neighborhood set, but by selecting the “best” move from
the restricted set of moves that incorporate some or all of
the attributes of the guiding solution. This exploration
allows the search to perform moves that may be considered
unattractive according to the objective function value but
which appear essential in reaching solutions with given
characteristics.

To implement path relinking, Ghamlouche, Crainic and
Gendreau [26] used the cycle-based neighborhoods both to
move along a path between elite solutions and to generate
the elite candidate set by a tabu-like local search procedure.
The authors proposed and compared several strategies to
build the reference set and to select initial and guiding
solutions from this set. The best strategies for the fixed
charge capacitated multicommodity network design
problem is to build the reference set with improving local
minima, that is local minimum solutions that offer a better
evaluation of the objective function than those already in
the reference set, and to build paths between the most
distant solutions in this set, that is with solutions having the
maximum Hamming distance.

Extensive computational experiments indicate that the path
relinking procedure offers excellent results. It
systematically outperforms the cycle-based tabu search
method in both solution quality and computational effort
and offers the best current metaheuristic for this difficult
class of problems.

4. Learning Mechanisms

During the cycle-based tabu search, each solution found
depends only on the previous one. To take into
consideration the history of the search, we decided to
modify the cycle-based tabu search by adding learning
mechanisms performed at each iteration and use this
knowledge to build further solutions. To this end, we use
adaptive memories that give us an overview on each arc of
the network. For each arc, two adaptive memories
ArcToOpen and ArcToClose are used for intensification
purposes and one adaptive memory, ArcResidency, is used
for diversification. Intensification adaptive memories
record how many times it was useful to have the arc
opened and how many times it was not. In particular,
ArcToOpen),(ji indicates the number of times arc),(ji is
useful to be opened while ArcToClose),(ji indicates the
number of times arc),(ji is useful to be closed. The third
memory, ArcResidency),(ji , stores the number of times
arc),(ji has been used in a solution. ArcResidency is later
used to diversify the search by penalizing highly used arcs
and favor not much used arcs (see section 4.6).

For each solution, to decide whether it is good or not to
open each arc, we investigate two strategies: both study the
contribution of the arc to the solution cost. However in the
first one, identified as arc strategy, we evaluate each arc
independently while in the second, identified as node
strategy, we evaluate each arc within a subset of arcs
having the same origin node.

4.1 Arc Strategy

Two measures are used to evaluate the status of arcs of
each solution of the modified cycle-based tabu search: the
flow and the fixed cost. Ideally, we would like to use arcs
with low fixed cost; in addition, we would like those arcs
to have a very high flow. Such arcs are the most attractive
and thus one would like to open these arcs in the next
solutions. Arcs with high fixed cost and low flow are poor
candidates to be included in the next solutions and one
would like to close all these arcs when building further
solutions. Arcs with high fixed cost and high flow cannot
be rejected (closed) unless we take a closer look to the
fixed cost over capacity ratio. In fact, those arcs can be
distributed in two subsets: those having high fixed cost
over total flow ratio and those having low fixed cost over
total flow ratio.
Arcs in the first set (high fixed cost, high flow and high
fixed cost over total flow ratio) lead to a costly objective
value and should be closed in the next solutions. On the
other hand, arcs in the second set (high fixed cost, high
flow and low fixed cost over total flow ratio) are less
expensive than those in the first set but we still do not like
to open them in the next solutions because of the high
fixed cost. The same argument applies on arcs having low
fixed cost and low flow. Section 4.3 gives an evaluation
mechanism to determine, for each arc, whether the flow
and the fixed cost are high or low. Adaptive memories are
updated for each arc of the solution by incrementing
ArcToOpen or ArcToClose depending on how we would
like to have the status of the arc in the next solutions.
Table 1 summarizes the arc strategy.
In order to identify at each solution),(yx arcs with the
highest or lowest fixed cost over total flow ratio, let H be
the set of all arcs having high fixed cost and high flow and
L be the set of all arcs having low fixed cost and positive
low flow. An arc),(ji belonging to H is considered to
have a high fixed cost over its total flow ratio if this ratio
exceeds the threshold 1t (i.e. 1/ txyf

Pp
p

ijijij >∑ ∈
) where:

∑ ∑
∈

∈
=

Hji
Pp

p
ijijij Hxyft

),(
1 /)/(

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 24

In the same way, an arc),(ji belonging to L is considered
to have a low fixed cost over its total flow ratio if this ratio
is less than 2t (i.e. 2/ txyf

Pp
p

ijijij <∑ ∈
) where:

∑ ∑
∈

∈
=

Hji
Pp

p
ijijij Lxyft

),(
2 /)/(

Table 1: Arc Strategy

ARCS HIGH FLOW LOW FLOW

HIGH FIXED
COST

Increment
ArcToClose

for arcs having the
highest fixed cost

over total flow ratio

Increment
ArcToClose

for all used arcs

LOW FIXED
COST

Increment
ArcToOpen

for all used arcs

Increment
ArcToOpen

for arcs having the
lowest fixed cost

over total flow ratio

4.2 Node Strategy

In another attempt to use flow and fixed cost to build
adaptive memories, information on arcs are grouped and
transferred to their originated nodes as follow:

∑ ∑

∑

∈ ∈∈

∈∈

+

+

=

=

Pp ijAji
p

ij

i

ijAji ijij

i

x

inodefrom
arcsoutgoingonflowtotalTheX

yf

flowpositivehavinginodefrom
arcsoutgoingontfixedtotalTheF

/),(

/),(

)(

)(

cos

Where),(yx denote the current solution and j is the node
successor of i . Section 4.3 gives an evaluation mechanism
to determine, for each node, whether the flow and the fixed
cost are high or low.
Transferring information from arcs to nodes is based on
the fact that flow is traveling on arcs; flow is then grouped
on nodes and then redistributed on arcs. Consequently, at
each node, the cost of this redistribution is the total cost on
outgoing arcs. In node strategy, adaptive memories are
updated according to the influence of this redistribution on
the objective value as follows:

_ If node i has a high fixed cost and a low flow,
the distribution of the flow is very costly and we
want to avoid this redistribution in the next
solutions. In fact, we want to push the flow back to
use different distribution channels. This can be
realized by closing all used arcs originating from

node i and thus ArcToClose will be incremented
for those arcs.

_ If node i has a low fixed cost and a high flow,
the distribution cost of the flow is very low, thus we
want to favor this distribution in next solutions. This
can be realized by keeping all used arcs originating
from node i opened. Consequently, ArcToOpen
will be incremented for those arcs.

_ If node i has a high fixed cost and a high flow,
the distribution cost is more or less acceptable. In
this case, we might need to tighten the flow by
closing some arcs. In fact we are interested in
preventing part of the flow (i.e. causing high
redistribution cost) to be redistributed on outgoing
arcs in the next solutions. To identify the part of the
flow to be pushed back, let iH be the set of used
arcs originating from node i . An arc),(ji belonging
to iH should be closed (ArcToClose incremented)
if its fixed cost over total flow ratio exceeds the
threshold cit , computed as the average fixed cost
over total flow of all used arcs originating at node i .
Explicitly, ArcToClose),(ji is incremented if:

i

Hji Pp
p

ijijij
ci

Pp
p

ij

ijij

H

xyf
t

x

yf
i

∑ ∑
∑

∈ ∈

∈

=>),(
)/(

_ If node i has a low fixed cost and a low flow, the
distribution cost is also more or less acceptable. In
fact, only the part of the flow leading to the lowest
redistribution cost is attractive and we would like to
keep this part redistributed on outgoing arcs in the
next solutions. To identify the part of the flow to be
pushed forward, let Li be the set of used arcs
originated at node i . An arc),(ji belonging to iL
should be kept opened (ArcToOpen incremented) if
its fixed cost over total flow ratio is lower than a
threshold oit , computed as the average fixed cost
over total flow of all used arcs originated at node i .
Explicitly, ArcToOpen),(ji is incremented if:

i

Lji Pp
p

ijijij
oi

Pp
p

ij

ijij

L

xyf
t

x
yf

i
∑ ∑

∑
∈ ∈

∈

=<),(
)/(

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 25

4.3 Arc Strategy

Two thresholds are used to explicitly identify low/high
fixed cost and low/high flow on arcs (or nodes) at each
solution of the modified cycle-based tabu search. These
thresholds depend on the current best solution found and
thus are tighter when progresses the search. Those
thresholds are calculated as follows:
Let x and f denote respectively the percentage of used
capacity and the average used fixed cost of the current best
solution)~,~(yx :

∑
∑
∑
∑ ∑

∈

∈

∈

∈ ∈

=

=

Aji ij

Aji ijij

Aji ijij

Pp Aji
p

ij

y

yf
f

yu

x
x

),(

),(

),(

),(

~

~

~

~

In arc strategy, an arc),(ji of the current solution),(yx
has a high fixed cost if its used fixed cost exceeds
f (fyf ijij >) otherwise the arc has a low fixed cost

(fyf ijij ≤). In the same way, arc),(ji has a high flow if
its total flow over total capacity ratio exceeds x
(xux ijPp

p
ij >∑ ∈

/) otherwise the arc has a low flow.

Following the same analogy with node strategy, a node i
of the current solution),(yx has a high fixed cost if the
average fixed cost on outgoing arcs from node
i exceeds f . Explicitly:

f
y

F

ijAji ij

i >
∑ +∈∈ /),(

In the same way, node i has a high flow if the percentage
of used capacity on outgoing arcs from node i exceeds x .
Explicitly:

x
yu

X

ijAji ijij

i >
∑ +∈∈ /),(

4.4 Pattern solution

To move from a current solution to a neighboring one in
our approach, we select a set of candidate arcs from the
network and we perform cycle-based tabu search to get the
best move. Remember that at least one of the candidate
arcs will have its status changed after the move. In the
original form of the cycle-based tabu search, the candidate
arcs were selected randomly from the set of closed arcs. In
our approach, we will use the learning mechanisms to
decide which arcs should be included in the candidate set.

Each closed arc is a candidate arc if ArcToOpen exceeds
ArcToClose by a predefined value. This means that during
the search, it was more useful to have the arc opened than
to have it closed. However, since the arc is closed in the
current solution, we want to direct the search to open the
arc without forcing it to be opened. Similarly, each opened
arc is a candidate arc if ArcToClose exceeds ArcToOpen
by a predefined value.

Pattern solution is the result of our learning during the
search. In pattern solution, an arc is opened if its
associated ArcToOpen exceeds ArcToClose by a
predefined value OpenTheArc and an arc is closed if its
associated ArcToClose exceeds ArcToOpen by a
predefined value CloseTheArc. Originally, all arcs in
pattern solution have an undecided status. In this way, arcs
with different status between current and pattern solution
constitute the set of candidate arcs when performing a
cycle-based tabu search.

4.5 Intensification

Building the set of candidate arcs as in section 4.4
constitute intensification in the already explored
neighborhood since we seek, via the pattern solution, to
open arcs found good during the search and to close arcs
found to be costly. The intensification consists on using the
cycle-based tabu search to find the best move starting from
the current solution and building and maintaining the
pattern solution as in section 4.4. The intensification phase
ends after a given number of iterations, MaxInt, without
improvement of the objective function value.
Note that, even if adaptive memories are updated after
each iteration of the search, the pattern solution is only
updated when no improvement to the current solution is
noticed. This is to avoid disturbing the search when
improvement is taking place.

4.6 Diversification

Intensification by itself is insufficient to yield the best
outcome to our difficult problem. Diversification must be
invoked to allow the most effective search over the
solution space. To do this, we exploit additional memory
means (i.e. residency based memories) to penalize
frequently occurred arcs in visited solutions and
consequently reach a new search trajectory over the
solution space. As in the intensification phase, we use the
pattern solution to build the set of candidate arcs and the
cycle-based tabu search to move from one solution to
another. However, the pattern solution is modified to
introduce the residency based memory as follow: An arc

),(ji is set to be opened in pattern solution if its current
status is not decided and its ArcResidency is less than a

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 26

predefined threshold ResidMeasure. An arc),(ji is set to
be closed in pattern solution if its current status is not
decided and its ArcResidency exceeds a ResidMeasure. All
other arcs of the pattern solution will receive a not decided
status. The diversification is launched after the
intensification phase and performed for MaxDiv iterations
without improvement of the best solution.

4.7 Path relinking

In our approach, path relinking is implemented to explore
trajectories connecting best solutions found during the
intensification and the diversification phases.
In particular, when moving toward pattern solution in the
intensification phase, we keep track of the best r solutions
to build a first reference set, then, when the method
switches to a diversification phase a second reference set is
built with another r best solutions. The method then starts
to explore trajectories connecting those solutions: at each
iteration, two solutions, one from each reference set, that
satisfy the maximum Hamming distance are chosen, the
worst one is set to be the starting solution and is removed
from its reference set. If during the path relinking
exploration, we reach a solution that improves the best
overall solution, this solution is added to the reference set
of the starting solution. If one of the reference sets is
empty, path relinking keeps exploring trajectories between
solutions in the remaining reference set. Path relinking
ends when both reference sets are empty.

4.8 Warming up

The method needs time to learn therefore a warming up
phase is performed. It consists on identifying arcs to open
or to close and applying cycle-based tabu search on these
arcs to get the best move. At each iteration of the warming
up phase, adaptive memories are updated and used to build
pattern solution. However, at this stage, pattern solution is
not yet mature to guide the search in the solution space and
will be used only at the end of the warming up phase.

Two warming up phases are performed: the first one
consists in closing arcs with high fixed cost over total flow
ratio while the second consists in opening arcs with low
fixed cost over capacity ratio. The percentage of arcs to be
closed or opened is set to 50% of the total number of
opened or closed arcs. This value was selected as the best
during the experimental results reported in Ghamlouche,

Crainic and Gendreau [25]. The warming up stops after a
given number of iterations, MaxWarmingUp, without
improvement in the objective function value.

4.9 The search strategy

After some initialization, the method performs a warming
up phase to create pattern solution. When no improvement
is observed, the search proceeds to an intensification phase
until a number of iterations without improving the best
overall solution is reached.

The method switches then to a diversification phase as
indicated in Section 4.6. Path relinking is applied to
explore paths connecting best solutions found during the
intensification and the diversification phases. The overall
process is repeated by starting with the best overall
solution. Figure 1 summarized the structure of the search
while figure 2 details the learning phase.

5. Experimentation and Computational
Results

Experiments have been performed to evaluate the behavior
and the performance of the learning algorithm proposed in
this paper. To ensure meaningful comparisons, we employ
the same two sets of problem instances as used in
Ghamlouche, Crainic, and Gendreau ([25],[26]). The
heuristic in this paper was implemented in C++. The exact
evaluation of the capacitated multicommodity network
flow problems is done using the same environment as in
Ghamlouche, Crainic and Gendreau [26]. Computing times
are reported in seconds.

5.1 Parameter settings

We first performed a calibration phase. An initial set of
results (not shown here in order not to overcharge the
paper) allowed us to fix the value of MaxWarmingUp,
MaxInt and MaxDiv to 10, 40 and 40 respectively. Ten
problems have been selected for calibration purposes. The
ten problems cover networks sizes from 100 to 700 design
arcs and from 10 to 400 commodities. They also display
relatively high fixed cost compared to routing cost and are
tightly capacitated. We tested the following combinations
of parameters:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 27

Initialization
Generate an initial feasible solution to initiate BestSolution and
CurrentSolution.

Let)~,~(yx ,),(yx and),(tt yx denote the BestSolution,
CurrentSolution and PatternSolution respectively. Set
WarmingUpStatus = closed

Main search loop
Repeat the following until a stopping condition is met
• Initialize memories
• Repeat until MaxWarmingUp is reached

_ if (WarmingUpStatus = opened)
_ Sort closed arcs of the current solution according

to ijij uf /

_ Let }//),{(lowisufandclosedyji ijijij ==Γ

_ else if (WarmingUpStatus = closed)
_ Sort used arcs of the current solution according to

∑ ∈Pp
p

ijij xf /

_ Let }/),{(highis
x

f
andopenedyji

Pp
p

ij

ij
ij

∑ ∈

==Γ

_ Perform one iteration of cycle-based neighborhood by
considering arcs in Γ to get a new current solution),(yx

_ Perform a Learning phase
_ If CurrentSolution < BestSolution update BestSolution

• Intensification Loop
Repeat until MaxInt is reached
_ Perform one tabu search iteration by introducing arcs

present in Pattern solution to get a new solution),(yx
_ Perform a Learning phase
_ Save best solutions in the first reference set

• Perform a Diversification phase by changing Pattern solution
Repeat until MaxDiv is reached
_ Perform one tabu search iteration by introducing arcs

present in Pattern solution to get a new solution),(yx
_ Perform a Learning phase
_ Save best solutions in the second reference set

• Perform a Path Relinking phase between best solutions
found during both Intensification and diversification
phases
_ Set CurrentSolution to BestSolution
_ WarmingUpStatus = opened

_ for each arc),(ji of CurrentSolution),(yx with ijy = 1

increment ArcResid),(ji
_ Calculate x and f as in section 4
_ If arc strategy

Low fixed cost, high flow

_ If fyf ijij < and xux ijPp
p

ij >∑ ∈
/ then increment

ArcToOpen),(ji
High fixed cost, low flow

_ If fyf ijij > and xux ijPp
p

ij <∑ ∈
/ then increment

ArcToClose),(ji
High fixed cost, high flow

_ Calculate the threshold 1t
_ Increment ArcToClose for each arc having

1/ txyf
Pp

p
ijijij >∑ ∈

 Low fixed cost, low flow

_ Calculate the threshold 2t
_ Increment ArcToOpen for each arc having

2/ txyf
Pp

p
ijijij <∑ ∈

_ if node strategy
_ for each node i of CurrentSolution),(yx

_ Calculate fixedcost(i) and flow(i) as in section 4.2
Low fixed cost, high flow

_ If fixedcost(i) < f and flow(i) > x then for each arc

),(ji of CurrentSolution),(yx with 1=ijy and +∈ ij .

Increment ArcToOpen),(ji
High fixed cost, low flow

_ If fixedcost(i) > f and flow(i) < x then for each arc

),(ji of CurrentSolution),(yx with 1=ijy and +∈ ij .

Increment ArcToClose),(ji
High fixed cost, high flow

_ If fixedcost(i)> f and flow(i)> x then calculate the
threshold cit Increment ArcToClose for each arc

outgoing having ciPp
p

ijijij txyf >∑ ∈
/ Low fixed

cost, low flow
_ If fixedcost(i)< f and flow(i)< x then calculate the

threshold oit Increment ArcToOpen for each arc outgoing

having oiPp
p

ijijij txyf <∑ ∈
/

_ if (Warming up) or (CurrentSolution ≥ PreviousSolution)
_ for each arc ∈),(ji PatternSolution do
_ if ArcToOpen),(ji - ArcToClose),(ji ≥ OpenTheArc

then t
ijy = Opened

_ - if ArcToClose),(ji - ArcToopen),(ji ≥ CloseTheArc

then t
ijy = Closed

• OpenTheArc: This parameter indicates the

threshold to exceed in order to open the arc in
Pattern solution.

• CloseTheArc: This parameter indicates the
threshold to exceed in order to close the arc in
Pattern solution.

Three values 1, 2 and 3 were considered initially for these
parameters. However, the value of 1 for OpenTheArc and

CloseTheArc and consequently all combinations (1, 1), (1,
2), (1, 3) as well as (2, 1) and (3, 1), were rapidly dropped
since the quality of the solutions started to decrease.

• ResidMeasure: This parameter depends on the

number of iterations and indicates how often the
arc should be opened to be considered highly
used. Three values 40%, 60% and 80% of the
number of current iteration have been tested.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 28

Node strategy was used for these tests. Each parameter
combination was ranked for each problem instance
according to the gap relative to the best known solution
(that of the branch-and-bound procedure of CPLEX 7.5,
when available, or that obtained by Ghamlouche, Crainic
and Gendreau [26], otherwise). A score of 10... 1 is
assigned to each of the first ten places, respectively. The
performance of each parameter setting is then aggregated:
gaps are averaged while scores are summed up. Table 2
displays these aggregated results for each parameter
combination.

The first column holds the parameter setting; the second
column presents the global average gaps while the last
column displays the total score.

The results in Table 2 display one set of parameters that
offers the most robust combination, OpenTheArc = 2,
CloseTheArc = 3 and ResidMeasure = 60%. It offers the
lowest average gap and the highest scores. This setting will
be maintained in the remaining of this computational study.

Table 2: Parameter SettingPerformances
Parameter

settings Gap Score

2, 2, 40% 2.35% 59
2, 2, 60% 2.67% 40
2, 2, 80% 2.80% 41
2, 3, 40% 2.36% 33
2, 3, 60% 1.62% 72
2, 3, 80% 1.85% 67
3, 2, 40% 2.16% 69
3, 2, 60% 2.44% 35
3, 2, 80% 2.03% 51
3, 3, 40% 2.42% 63
3, 3, 60% 2.37% 24
3, 3, 80% 2.80% 34

5.2 Performance Analysis

To evaluate the behavior and the performance of the
learning algorithm proposed in this paper, we compare its
output to the results of the cycle-based tabu search and to
those of the path relinking algorithm ([25],[26]). To further
characterize the quality of the solutions, we also include
the optimal solutions obtained using the branch-and-bound
algorithm of cplex 7.5 [12]. The same two data sets of
networks used by Ghamlouche, Crainic, and Gendreau [25]
were also used to test our learning algorithm. Problems in
both sets are general transshipment networks with no
parallel arcs. Each commodity corresponds to a single
origin-destination pair. On each arc, routing costs are the
same for all commodities. Problem instances have been
generated to offer for each network size a variety of fixed

cost to routing cost ratios and capacity to demand ratios.
Detailed description of problem instances is given in
Crainic, Frangioni, and Gendron [23]; see also Gendron
and Crainic ([4], [5]). The problem generators as well as
the problem instances can be obtained from the authors.

Problems in the first set of network, denoted C, are defined
respectively by the number of nodes, the number of arcs,
the number of commodities as well as two letters
summarizing the fixed cost and capacity information: a
relatively high or low fixed cost relative to the routing cost
is signaled by the letter F or V, respectively, while letters
T and L indicate respectively if the problem is tightly or
somewhat loosely capacitated compared to the total
demand.

Computational results for the first set of networks are
reported in Tables 3, 4 and 5. In these tables, the OPT
column corresponds to the solution of the branch-and-
bound algorithm solved using CPLEX 7.5 [12] on the same
workstations. A limit of 10 hours was imposed. An X
indicates that the procedure has failed to produce a feasible
solution within this time limit, while a t indicates that the
procedure stopped due to a time limit condition. The
columns labeled TC and PR hold respectively the best
solution, over 3 runs, of the cycle-based tabu search and
the path relinking approach while AV.TC and AV.PR
columns display respectively the average solution found by
these two meta-heuristics. The column LS-NODE and LS-
ARC gives the solutions obtained by our approach when
using node strategy and arc strategy respectively. When
our learning algorithm produces optimal solutions or
solutions better than the best solutions found by path
relinking, bold characters are employed. The figures in
parentheses represent total computation time in CPU
seconds. For Comparison purposes, gap is computed for
solutions of our learning algorithm with respect to the
average solution found by path relinking and displayed in
percentage under the CPU time in columns LS-NODE and
LS-ARC respectively.

Table 3 shows the results of our learning algorithm on
smaller test cases (number of commodities up to 100)
while Tables 4 and 5 show the results from runs of larger
structured test cases (i.e. with 200 and 400 commodities).
From the numerical results, a number of observations can
be made. First, the use of adaptive memories is effective
for realizing good quality solution for our difficult problem.
The results of Table 4 show that our proposed algorithm
improves the best solutions found by path relinking for 6
out 8 problems. Results are also encouraging for large real-
world problems, such those with 400 commodities (see
tables 4 and 5). For this class of difficult instances,
CPLEX is unable to find the optimal solution, (not even a

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 29

Table 3: Computational Results, C problems

PROBLEM OPT TC PR AV.TC AV.PR LS-NODE LS-ARC

25,100,10,V,L 14712
(0.36)

14712
(19.08)

14712
(12.97)

14769.33
(19.38)

14712
(13.01)

14712
(12.36) 0% 14712

(12.26) 0%

25,100,10,F,L 14941
(53.64)

14941
(22.55)

14941
(15.2)

14941
(22.80)

15081.33
(16.3)

14941
(12.9) -0.93% 14941

(13.6) -0.93%

25,100,10,F,T 49899
(40.58)

50529
(31.39)

49899
(22.1)

50619.67
(32.10)

50154
(24.5)

50324
(18.75) 0.34% 51328

(21.3) 2.34%

25,100,30,V,T 365272
(16.62)

365385
(121.30)

365322
(91.9)

365385
(123.98)

365323.66
(93.2)

365322
(83.11) -0.02% 365322

(81.81) -0.02%

25,100,30,F,T 85530
(534.18)

87325
(123.88)

86428
(97.78)

88095.33
(125.69)

86492.33
(99.67)

86334
(89.31) -0.18% 86815.3

(84.29) 0.37%

100,400,10,V,L 28423
(84.81)

28786
(208.58)

28485
(83.97)

28836.67
(225.12)

28529
(89.9)

28553
(83.11) 0.08% 28553

(83.31) 0.08%

100,400,10,F,L 24436
(t)

24022
(178.52)

24022
(109.66)

24022
(191.07)

24022
(112.45)

24104
(77.45) 0.34% 24104

(77.5) 0.34%

100,400,10,F,T 66364
(t)

67184
(425.68)

65278
(193.4)

68215.00
(432.01)

65153
(201.34)

66171
(340.63) 0.96% 66410

(218.58) 1.33%

100,400,30,V,T 385544
(t)

385508
(1161.06)

384926
(424.08)

385512.7
(1169.70)

385181.7
(450.76)

384951
(563.7) -0.06% 384828

(631.31) -0.09%

100,400,30,F,L 50496
(t)

51831
(730.10)

51325
(328.08)

52176.33
(648.47)

51875.67
(301.4)

53066
(322.31) 2.29% 52173

(293.71) 0.57%

100,400,30,F,T 141278
(t)

147193
(1208.95)

141359
(529.02)

147478
(1235.27)

143403.7
(579.32)

143552
(619.96) 0.10% 142411

(462.89) -0.67%

30,520,100,F,T 98357
(t)

105130
(2863.76)

106130
(1336.9)

107885.3
(2418.28)

107575
(1405.5)

106912
(1134.01) -0.62% 107266

(1257.51) -0.28%

30,700,100,F,T 55709
(t)

57628
(3219.31)

56575.5
(1534.6)

58111.33
(3316.46)

56808.83
(1765.3)

57741
(1840.27) 1.64% 58032.7

(2266.3) 2.15%

Table 4: Computational Results, C problems

PROBLEM OPT TC PR AV.TC AV.PR LS-NODE LS-ARC
20,230,200,V,L 94386

(t)
100001

(2577.34)
100404

(2317.35)
101481.3
(2606.79)

101469.3
(2034.54)

102492
(3235.53) 1.01% 102492

(3323.53) 1.01%

20,230,200,F,L 141737.4
(t)

148066
(3143.76)

147988
(2893.49)

148975
(3158.22)

151352
(2760.73)

150617
(2955.02) -0.49% 151961

(3229.97) 0.40%

20,230,200,V,T 97914
(t)

106868
(2595.35)

104689
(2304.25)

107589.3
(2361.57)

105598.7
(2304.63)

103700
(2921.11) -1.80% 103700

(2934.62) -1.80%

20,230,200,F,T 137271
(t)

147212
(3601.90)

147554
(3656.96)

147868
(3868.50)

148044.3
(3505.46)

144895
(4220.34) -2.13% 149284

(4732.58) 0.84%

30,520,400,V,L 112997.5
(t)

122673
(55771.2)

119416
(29650.7)

123277.3
(55720.30)

119624
(33716.23)

115918
(82551.2) -3.10% 115918

(95761.4) -3.10%

30,520,400,F,L X
(t)

164140
(429296)

163112
(33641.2)

165458
(40922.57)

163377
(35671.23)

161205
(54686.2) -1.32% 159084

(62757.9) -2.63%

30,520,400,V,T X
(t)

122655
(46565.2)

120170
(31461.9)

123210
(50666.83)

120764.3
(25705.4)

118835
(44631.4) -1.60% 118705

(60088.6) -1.70%

30,520,400,F,T X
(t)

169508
(49886.9)

163675
(51400.1)

170301.3
(49476.67)

164921.3
(44862.3)

161102
(114120.4) -2.32% 161102

(107664) -2.32%

Table 5: Computational Results, C problems
PROBLEM OPT TC PR AV.TC AV.PR LS-NODE LS-ARC

20,300,200,V,L 74972.4
(t)

81367.7
(4247.14)

78184
(3487.2)

82187.23
(3974.91)

79095.33
(3560.5)

79791.5
(4899.92) 0.88% 81307

(4473.87) 2.80%

20,300,200,F,L 117306
(t)

122262
(3267.94)

123484
(3765.34)

123247.7
(4524.49)

124924.7
(3912.5)

128258
(4664.53) 2.67% 125421

(4046.51) 0.40%

20,300,200,V,T 74991
(t)

80344
(4235.15)

78866.8
(3691.24)

82187.23
(4396.22)

79212.27
(3860.3)

81453
(5158.17) 2.83% 81453

(4771.54) 2.83%

20,300,200,F,T 108252
(t)

113947
(4657.54)

113584
(3546.58)

115342
(4906.50)

114632.3
(4001.23)

114269
(4691.77) -0.32% 114259

(4532.14) -0.15%

30,700,400,V,L X
(t)

107727
(36332)

105116
(22314.6)

108459.3
(36282.63)

105403.3
(19733.4)

102906
(45637) -2.36 % 102530

(54264.3) -2.73%

30,700,400,F,L X
(t)

150256
(73030.8)

145026
(52360.2)

150909
(63170.20)

147887.3
(58761.8)

148862
(128777) 0.66% 146921

(125860) -0.65%

30,700,400,V,T
(t)

101749
(49324.2)

101212
(26592.3)

103112.3
(49239.5)

102119.3
(28664.3)

98911
(99322.9) -3.14% 98911

(102727) -3.14%

30,700,400,F,T X
(t)

144852
(74796.3)

141013
(45179.1)

146705
(79053.40)

141446.7
(49824.83)

139055
(95330.1) -1.69% 141096

(123233) -0.25%

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 30

feasible solution for 7 out 8 problems) with available
computational time. Our learning algorithm improves the
best known solutions for 6 out 8 problems and the
improvement relative to the average solution of path
relinking ranges from 1.60% to 3.14%.

The second observation concerns the computing effort.
Even if we account for the fact that we stop our learning
algorithm on the same criterion as the path relinking
procedure, 400 iterations, it appears that the learning
algorithm requires longer computing times, especially
when the number of commodities is high. This could be
explained by the fact that good solutions are found earlier
in the search (of the order of 40% of the total iteration
limit), which yields more difficult multicommodity
capacitated network flow problems to be solved by
CPLEX at each iteration and consequently more time.
The interesting performance and behavior of the proposed
learning algorithm is confirmed by the results obtained on
the second set of problems instances, denoted R. There are
116 problems divided in 18 groups. Each group contains
the same number of nodes, arcs, and commodities but with
different combined level of fixed cost and capacity ratios.
Three levels of fixed cost and capacity ratios are
considered: F01 = 0.01, F05 = 0.05 and F10 = 0.10
indicating continuously higher levels of fixed costs
compared to routing costs, and C1 = 1, C2 = 2, and C8 = 8
that signal that the total capacity available becomes
increasingly tighter relatively to the total demand. The
fixed cost ratio is computed
as ∑∑∑ ∈∈∈ Aji

p
ijPp

p
Aji ij cwfP

),(),(
/ , and the capacity ratio

is computed as ∑∑ ∈∈ Aji ijPp
p uwA

),(
/ . Only aggregated

statistics are used in the following to support the discussion.
Table 6 displays the optimality gap distribution, according
to problem dimension, for both learning strategy and path
relinking algorithms. As we can see, our learning algorithm
achieves better results than the average solution of path
relinking when the number of commodities increases
versus the number of arcs. The results also indicate that
our learning algorithm is certainly not interesting for small-
sized problem instances with few commodities.

On the other hand, it helps to achieve better solutions,
especially in the case of more difficult problems, with a
large number of commodities.

According to the results, we observe that our learning
algorithm is well fitted to a large number of instances and
its performance increases with increasing the difficulty of
problems.

6. Conclusion

The objective of our study has been to exploit and advance
the knowledge associated with the implementation of
learning mechanism with the use of adaptive memories
structure for the fixed charge capacitated multicommodity
network design problems. In particular, we have
undertaken to examine the critical issue of what form of
intensification and diversification proves more effective
for this class of difficult problem. Our resulting algorithm
is effective, and its benefits are particularly significant for
large structured instances.

Table 6: Gap Distribution According to Problem
Dimensions

|N |, |A| |P |
10

PR
0%

AV.PR
0%

LS-NODE
0%

LS-ARC
0%

10,25 25 0.23% 0.60% 0.43% 0.39%
 50 0.61% 0.72% 0.49% 0.44%

10

0.08%

0.12%

0.25%

0.04%

10,50 25 0.36% 0.55% 0.46% 0.48%
 50 1.14% 1.93% 1.05% 1.15%

10

0.04%

0.46%

0.89%

1.02%

10,75 25 0.41% 0.92% 0.72% 0.87%
 50 1.52% 2.30% 2.37% 2.40%

40

1.37%

1.70%

3.02%

2.29%

20,100 100 2.05% 2.82% 2.22% 2.45%
 200 4.55% 4.86% 2.81% 3.26%

40

3.59%

4.84%

6.29%

5.32%

20,200 100 4.93% 5.90% 7.79% 7.50%
 200 5.41% 6.42% 5.00% 5.07%

40

2.08%

3.91%

6.89%

7.28%

20,300 100 4.68% 5.79% 7.96% 7.50%
 200 6.84% 8.97% 4.28% 5.12%

References
[1] Magnanti, T.L. andWong, R.T. Network Design and

Transportation Planning: Models and Algorithms
Transportation Science, Vol. 18(1), 1986, pp. 1-55.

[2] Minoux, M. (1986). Network Synthesis and Optimum
Network Design Problems: Models, Solution Methods and
Applications Networks, Vol.19, 1986, pp.313-360.

[3] Glover, F., Taillard, E.D., and de Werra, D. A user's guide to
tabu search. Annals of Operations Research, Vol. 41, 1993,
pp.:3-28.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 31

[4] Gendron, B. and Crainic, T.G. Relaxations for
Multicommodity Capacitated Network Design Problems.
Publication CRT-965, 1994, Centre de recherche sur les
transports, Université de Montréal, Montréal, QC, Canada.

[5] Gendron, B. and Crainic, T.G. Bounding Procedures for
Multicommodity Capacitated Network Design Problems.
Publication CRT-96-06, 1996, Centre de recherche sur les
transports, Université de Montréal, Montréal, QC, Canada.

[6] Glover, F. Tabu Search and Adaptive Memory Programming-
Advances, Applications and Challenges. In Barr, R.,
Helgason, R., and Kennington, J., editors, Interfaces in
Computer Science and Operations Research, 1996, pp. 1-75.
Kluwer Academic Publishers, Norwell, MA.

[7] Glover, F. A Template for Scatter search and Path Relinking.
in Lecture Notes in Computer Science, 1363, J.K. Hao, E.
Lutton, E. Ronald, M. Schoenauer, D. snyers (eds). 1997, pp.
13-54.

[8] Glover, F. and Laguna, M. 1997. Tabu Search. Kluwer,
Norwell, MA.

[9] Balakrishnan, A., Magnanti, T.L., and Mirchandani, P.
Network Design. In Dell'Amico, M., Maffioli, F., and
Martello, S., editors, Annotated Bibliographies in
Combinatorial Optimization, 1997, pp. 311-334. John Wiley
& Sons, New York, NY.

[10]Crainic, T.G, Gendron, B, and Hernu, G. A slope
Scaling/Lagrangean Perturbation Heuristic with Long-Term
Memory for Multicommodity Capacitated Fixed-Charge
Network Design. Publication, Centre de recherche sur les
transports, Université de Montréal, Montréal, QC, Canada

[11]Gendron, B., Crainic, T.G., and Frangioni, A.
Multicommodity Capacitated Network Design. In Sanso, B.
and Soriano, P., editors. Telecommunications Network
Planning, 1998, pp. 1-19. Kluwer, Norwell, MA.

[12]ILOG CPLEX 7.5. ILOG, Mountain View, 2002, CA.
U.S.A.

[13]Laguna, M., and Marti, R. GRASP and Path Relinking for 2-
Layer Straight Line Crossing Minimization. INFORMS
Journal on Com-puting, 1999, Vol. 11(1), pp. 44-52.

[14]Laguna, M., Marti, R., and Campos, V. Intensification and
Diversification with Elite Tabu Search Solutions for the
Linear Ordering Problem. Computers and Operations
Research, 1999, vol. 22, pp. 1217-1230.

[15]Crainic, T.G., Gendreau, M., and Farvolden, J.M. (2000). A
Simplex-Based Tabu Search Method for Capacitated
Network Design. IN-FORMS Journal on Computing.
forthcoming.

[16]Glover, F., Laguna, M., and Marti, R. Fundamentals of
scatter search and path relinking. Control and Cybernetics,
2000, vol. 39(3), pp.653-684.

[17]Crainic, T.G., Frangioni, A., and Gendron, B. Bundle-Based
Relaxation Methods for Multicommodity Capacitated
Network Design. Discrete Applied Mathematics.
forthcoming.

[18]Glover, F., Laguna, M., and Marti, R. Fundamentals of
Scatter Search and Path Relinking. Control and Cybernetics,
2000, vol. 39(3), pp.653-684

[19]Holmberg, K., and Yuan, D. A Lagrangean Heuristic Based
Branch-and-Bound Approach for the Capacitated Network
Design Problem. Operations Research, 2000, vol. 48(3), pp.
461-481.

[20]Ribeiro, C.C., Uchoa, E., and Werneck, R. A Hybrid GRASP
with Perturbations for the Steiner Problem in Graphs.

[21]Ghamlouche, I., Crainic, T.G., and Gendreau, M. Cycle-
Based Neighbourhoods for Fixed-Charge Capacitated
Multicommodity Network Design. Publication CRT-2001-
01, Centre de recherche sur les transports, Université de
Montréal, Montréal, QC, Canada.

[22]Laguna, M., and Armentano, V.A (2001). Lessons from
Applying and Experimenting with Scatter Search.

[23]Crainic, T.G. and Frangioni, A. and Gendron, B. Bundle-
Based Relaxation Methods for Multicommodity Capacitated
Network Design. Discrete Applied Mathematics, 2001, vol.
112, pp. 73-99.

[24]Ghamlouche, I. and Crainic, T.G. and Gendreau, M. Cycle-
based Neighbourhoods for Fixed-Charge Capacitated
Multicommodity Network Design. Publication: Centre de
recherché sur les transports, Université de Montréal CRT-
2001-01

[25]Ghamlouche, I. and Crainic, T.G. and Gendreau, M. Cycle-
based Neighbourhoods for Fixed-Charge Capacitated
Multicommodity Network Design. Operations Research
2002.

[26]Ghamlouche, I. and Crainic, T.G. and Gendreau, M. Path
Relinking, Cycle-based Neighbourhoods and Capacitated
Multicommodity Network Design. Annals of Operations
Research 2002.

[27]Sellmann, M., Kliewer, G., and Koberstein, A. Capacitated
Network Design, Cardinality Cuts and Coupled Variable
Fixing Algorithms based on Lagrangian Relaxations.
Publication tr-ri-02-234, 2002, University of Paderborn,
Department of Mathematics and Computer Science.

.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 32

