

A Critical Simulation of CPU Scheduling Algorithm using
Exponential Distribution

 Maria Abur1, Aminu Mohammed2, Sani Danjuma3 and Saleh Abdullahi4

 1Iya Abubakar Computer Centre, Ahmadu Bello University, Zaria,

2Department of Mathematics, Ahmadu Bello University, Zaria,

3Sa’datu Rimi College of education, Kumbosto Kano state Nigeria

 4Department of Mathematics, Ahmadu Bello University, Zaria,

Abstract
A multiprogramming operating system allows more than
one process to be loaded into the executable memory at a
time and for the loaded process to share the CPU using
time-multiplexing. Part of the reason for using
multiprogramming is that the operating system itself is
implemented as one or more processes, so there must be a
way for the operating system and application processes to
share the CPU. The assignment of physical processors to
processes allows processors to accomplish work. The
problem of determining when processors should be
assigned and to which processes is called CPU scheduling.
How do we select a CPU Scheduling algorithm for a
particular system? Since we have different scheduling
algorithm with its own parameter selection can be difficult.
To select an algorithm we must first define the relative
importance of CPU Scheduling criteria. Next we use an
evaluation method. This paper presents an algorithm and a
life simulation of the CPU Scheduling algorithms using
exponential distribution to generate the random numbers
for the burst times, arrival times and processes with Ms
Visual Basic 2010 for the Scheduling algorithms and
comparing their average waiting time to know which has
the least average waiting time.

Keyword: CPU Scheduling, Exponential distribution,
Multiprogramming, Processors, Simulation

1. 0 Introduction

A multiprogramming operating system allows more than
one process to be loaded into the executable memory at a
time and for the loaded process to share the CPU using

time-multiplexing. Part of the reason for using
multiprogramming is that the operating system itself is
implemented as one or more processes, so there must be a
way for the operating system and application processes to
share the CPU. Another main reason is the need for
processes to perform I/O operations in the normal course
of computation. Since I/O operations ordinarily require
orders of magnitude more time to complete than do CPU
instructions, multiprogramming systems allocate the CPU
to another process whenever a process invokes an I/O
operation.
The assignment of physical processors to processes allow
processors to accomplish work. The problem of
determining when processors should be assigned and to
which processes is called processor scheduling or CPU
scheduling. When more than one process is runable, the
operating system must decide which one first. The part of
the operating system concerned with this decision is called
the scheduler, and algorithm it uses is called the scheduling
algorithm.

2.0 CPU scheduling

 The scheduling problem:
 Have K jobs ready to run
 Have N _ 1 CPUs
 Which jobs to assign to which CPU(s)

 When do we make decision? Scheduling
decisions may take place when a process:

 Switches from running to waiting state

 Switches from running to ready state
 Switches from waiting to ready

 Exits.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 201

Fig. 1: A diagram illustrating process state.

2.1 Goals for CPU Scheduling

To make sure that scheduling strategy is good enough with
the following criteria:

 Utilization/Efficiency: keeps the CPU busy 100%
of the time with useful work.

 Throughput: maximizes the number of jobs
processed per hour.

 Turnaround time: from the time of submission to
the time of completion and minimize the time
batch users must wait for output.

 Waiting time: Sum of times spent in ready queue.

 Response Time: time from submission till the first
response is produced and minimize response time
for interactive users.

 Fairness: make sure each process gets a fair share
of the CPU.

2.2.0 Pre-emptive Vs Non pre-emptive Scheduling

The Scheduling algorithms can be divided into two
categories with respect to how they deal with clock
interrupts:

2.2.1 Non pre-emptive Scheduling

A scheduling discipline is non pre-emptive if, once a
process has been given the CPU, the CPU cannot be taken
away from that process. The following are some
characteristics of non pre-emptive scheduling:

 Short jobs are made to wait by longer jobs but the
overall treatment of all processes is fair.

 Response times are more predictable because
incoming high priority jobs cannot displace
waiting jobs.

 In non pre-emptive scheduling, a scheduler
executes jobs in the following two situations.

• When a process switches from running state
to the waiting state.

• When a process terminates.

2.2.3 Pre-emptive Scheduling: A scheduling discipline
is pre-emptive if, once a process has been given the CPU
can taken away. The strategy of allowing processes that are
logically runable to be temporarily suspended is called pre-
emptive Scheduling and it is contrast to the "run to
completion" method.

2.3 Basic CPU Scheduling Algorithm: CPU
scheduling deals with the problem of deciding which of the
processes in the ready queue is to be allocated the CPU.
The Basic CPU Scheduling algorithms are First-Come,
First-Served, Shortest Job First, Round Robin and Priority
Based Scheduling.

2.3.1 FCFS - First-Come, First-Served: It is non-
pre-emptive, Ready queue is a FIFO queue, Jobs arriving
are placed at the end of queue, Dispatcher selects first job
in queue and this job runs to completion of CPU burst. The
advantages of FCFS is that it is simple and has low
overhead. And has disadvantages of inappropriate for
interactive systems and large fluctuations in average
turnaround time are possible.

2.3.2 SJF - Shortest Job First: It is non-pre-emptive,
Ready queue treated as a priority queue based on smallest
CPU time requirement, arriving jobs inserted at proper
position in queue, dispatcher selects shortest job (1st in
queue) and runs to completion. Its advantage is that it is
provably optimal from turnaround/waiting point of view.
The disadvantages of SJF are that in general, it cannot be
implemented, also starvation is possible, Can do it
approximately: use exponential averaging to predict length
of next CPU burst.

2.3.3 RR - Round Robin: It is the pre-emptive version
of FCFS, treat ready queue as circular, arriving jobs are
placed at the end, dispatcher selects first job in queue and
runs until completion of CPU burst, or until time quantum
expires if quantum expires, job is again placed at end. The
advantages of Round Robin are that it is simple, low
overhead, works for interactive systems and has the
following disadvantages if quantum is too small, there will
be too much time wasted in context switching and if too
large (i.e., longer than mean CPU burst), it approaches
FCFS.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 202

Fig. 2: Job execution in Round Robin

2.3.4 Priority Based Scheduling: Run highest-priority
processes first, use round-robin among processes of equal
priority. Re-insert process in run queue behind all
processes of greater or equal priority. Allows CPU to be
given preferentially to important processes. Scheduler
adjusts dispatcher priorities to achieve the desired overall
priorities for the processes, e.g. one process gets 90% of
the CPU. The disadvantage of the Priority Based
Scheduling is that it may cause low-priority processes to
starve.

2.4 Algorithm Evaluation

How do we select a CPU Scheduling algorithm for a
particular system? Since we have different scheduling
algorithm with its own parameter selection can be difficult.
To select an algorithm we must first define the relative
importance of CPU Scheduling criteria (which have been
discussed above). Next we use an evaluation method. The
various evaluation methods for evaluating CPU Scheduling
algorithms are discussed below:

2.4.1 Deterministic Modelling: one major class of
evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system
workload to produce a formula or number that evaluates
the performance of the algorithm for that workload. One
type of analytic evaluation is deterministic modelling. This
method takes a particular predetermined workload and
defines the performance of each algorithm for that
workload.

2.4.2 Queueing Models: On many systems, the
processes that are run vary from day to day, so there is no
static set of processes (or times) to use for deterministic
modelling. What can be determined; however, is the
distribution of CPU and I/O bursts. These distributions can
be measured and then approximated or simply estimated.
The result is a mathematical formula describing the
probability of a particular CPU burst. Commonly, this
distribution is exponential is described by its mean.
Similarly, we can describe the distribution of times when
processes arrive in the system (the arrival-time
distribution). From these two distributions, it is possible to
compute the average throughput, utilization, waiting time,
and so on for most algorithms. The computer system is
described as a network of servers. Each server has a queue

of waiting processes. The CPU is a server with its ready
queue, as is the I/O system with its device queues.
Knowing arrival rates and service rates, we can compute
utilization, average queue length, average wait, and so on.
This area is called queueing-network analysis.

2.4.3 Simulations: This is the imitation of the operation
of a real-world process or system over time. Whether done
by hand or on a computer, simulation involves the
generation of an artificial history of a system and the
observation of that artificial history to draw inferences
concerning the operating characteristics of the real system
(Bank et al 2005). To get a more accurate evaluation of
scheduling algorithms, we can use simulations
(Silberschatz et al 2002).

2.4.4 Implementation: This approach puts the actual
algorithm in the real system for evaluation under real
operating conditions. The major difficult y with this
approach is the high cost. The expense is incurred not only
in coding the algorithm and modifying the operating
system to support it (along with its required data
structures) but also in the reaction of the users to a
constantly changing operating system. Another difficultly
is the environment in which the algorithm is used will
change. The environment will change not only in the usual
way, as new programs are written and the types of
problems change, but also as a result of the performance of
the scheduler. If short processed are given priority, then
users may break larger processes are given priority, then
users may break larger processes into sets of smaller
processes. If interactive processes are given priority over
non interactive processes, then users may switch to
interactive use.

2.5 Exploiting the Simulation Approach:

In this paper to get a more accurate evaluation of
scheduling algorithms, we decided to use simulations.
Running simulations involves programming a model of the
computer system. Software data structures represent the
major components of the system. The simulator has a
variable representing a clock; as this variable value is
increased, the simulator modifies the system state to reflect
the activities of the devices, the processes and the
scheduler. As the simulation executes, statistics that
indicate algorithm performance are gathered and printed.

The data to drive the simulation can be generated in
several ways. The most common method uses a random-
number generator, which is programmed to generate
processes; CPU burst times, arrivals, departures and so on,
according to probability distributions. The distributions
can be defined mathematically (uniform, exponential,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 203

poisson) or empirically (Silberschatz et al 2002). If a
distribution is to be defined empirically, measurements of
the actual system under study are taken. The results define

the distribution of events in the real system; this
distribution can then be used to drive the simulation.

Fig. 3: Evaluation of CPU Schedulers by Simulation method.

3.0 Using Exponential Distribution to
Simulate the CPU Scheduling Algorithms

In this paper we decided to use the Simulation approach of
algorithm evaluation to simulate CPU scheduling
algorithms, since this approach gives more accurate
evaluation of scheduling algorithms compared to the others
discussed above. The data to drive the simulation is
generated using a random-number generator which is
programmed to generate processes, CPU burst times and
arrival times, according to the exponential probability
distributions.

The objective of this paper is to use exponential
distribution function to generate the arrival, and assumed
burst time. Compute waiting time and average waiting of
each algorithm (FCFS, SJN, and RR with quantum of 2).
Compare the results of each of the algorithms.

The job execution times are assumed to be drawn from a
common distribution using exponential realistic for
execution times. An exponentially-distributed random
variable with parameter > 0 was used. The algorithm that
generated the random number is shown below as it was
been executed in Microsoft Visual Basic 2010.

1. Public Function rndom() As Integer

2. Dim Lambda As Integer = 1

3. Dim seed As Single = 0

4. Dim X As Integer = 0

5. Randomize()

6. seed = Rnd()

7. X = seed * Lambda

8. rndom = Int(1 - Exp(-Lambda * X) * 10)

9. Debug.Print(Exp(-Lambda * X))

10. Debug.Print(Exp(1))

11. End Function

 3.1 Implementation of the CPU Scheduling using
Ms Visual Basic 2011.

In order to evaluate the CPU Scheduling Algorithms –
FCFS, SJF and Round Robin, we used Ms Visual Basic
2010 to create the User interface and the codes. Once the
number of processes is entered the burst, arrival times
waiting times and average waiting times are generated by

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 204

the random number generator for each of the following
CPU Scheduling Algorithms (FCFS, SJF and Round
Robin) respectively. By comparing the average waiting

times of the Scheduling Algorithms we can tell from this
that the Round Robin Scheduling Algorithms has least
average waiting time; this is illustrated in figure 4 below:

Fig 4: A diagram showing the Implementation of the CPU Scheduling using Ms Visual Basic 2010.

4.0 Conclusion
After running and comparing the waiting times, and
average waiting time of each scheduling algorithm (FCFS,
SJF and RR) using exponential distribution, we noticed
that RR resulted in a minimal average waiting time, though
we encountered some difficulties in generating index
numbers for SJF.
Finally, simulations can be expensive, often requiring a lot
of hours. Simulation approach provides more accurate
results in evaluating the Scheduling Algorithms.

5.0 References
A Silberschatz, B. P. Galvin & G. Gagne, (2002).
Operating system concepts, seventh Edition.

H. Casanova, “Simgrid: a Toolkit for the Simulation of
Application Scheduling” , 3rd IEEE/ACM International

H. Y. Low, “Survey of Languages and Runtime Libraries
for Parallel Discrete-Event Simulation” , IEEE

J. Banks, J. S. Carson J.S., Nelson B. L., Nicol D.M.,
(2005). Discrete-Event System Simulation Fourth Edition.

Kelliher T. P. CI 318 1998

L. F. Góes, C. A. Martins: Proposal and Development of a
Reconfigurable Parallel Job Scheduling

R. Buyya, and M. Murshed, “GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing” , The
Journal of Concurrency and Computation: Practice and
Experience, Volume 14, Issue 13-15, Pages: 1175-1220,
Wiley Press, USA, November - December 2002.
Symposium on Cluster Computing and the Grid, Los
Angeles, 2001

R. S. Murray, J.J. Schiller, R. A Srinivasan, (2009)
Probability and Statistics, third edition.

Microsoft Visual Basic 2010 edition.

First Author Abur, Maria Mngohol is a Software programmer
working with Iya Abubakar Computer Centre, Ahmadu Bello
University, Nigeria. She obtained a BSc. Degree in Computer
Science at the University of Abuja, Nigeria. Currently, she is
undergoing a master’s degree program in Computer Science at
ABU, Nigeria, She has written many papers among them is the
paper titled ”Adaptation of Semantic Web to Rural Healthcare
delivery”. She contributed on the paper “Process and Database
Modelling of a University Bursary System-A Perspective of Cash
Office, Volume 8, Issue 4, July 2011”. For more information about

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 205

http://www.ijcsi.org/articles/Process-and-Database-Modelling-of-a-University-Bursary-System-A-Perspective-of-Cash-Office.php
http://www.ijcsi.org/articles/Process-and-Database-Modelling-of-a-University-Bursary-System-A-Perspective-of-Cash-Office.php
http://www.ijcsi.org/articles/Process-and-Database-Modelling-of-a-University-Bursary-System-A-Perspective-of-Cash-Office.php

Abur Mngohol Maria and papers she has written check this site
http://www.abu.edu.ng/iacc/abur also she is a member of a
professional body, the Nigerian Computer Society.

Second Author Mohammed Aminu Umar is the Regional IT
Coordinator, Mainstreet Bank Limited. Kaduna Regional office Plot
1472, Mogadishu layout, Ahmadu Bello Way, Kaduna. He
obtained a BSc. Degree in Computer Science at the University of
Abuja, Nigeria and currently, he is undergoing a master’s degree
program in Computer Science at ABU, Nigeria.

Third Author Sani Dajuma is working with Sa’datu Rimi College
of education, Kumbosto Kano state Nigeria. He did his first degree
in computer science and currently, he is undergoing a master’s
degree program in Computer Science at ABU, Nigeria.

Fourth Author Saleh Abdullahi is the Ag. MD/Chief Executive
Officer, of Mtel; he did his first, second and doctorate degrees in
computer science. He is a visiting Senior lecturer at the Ahmadu
Bello University, Nigeria.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 206

