
Testability Analysis Approach For Reactive Systems 

Nguyen Thanh Binh1 and Chantal Robach2 
 

 1 DATIC Laboratory 
Danang University of Technology 

Danang, Vietnam 
 
 

2 LCIS Laboratory 
Grenoble INP 

Grenoble, France 
 
 

 
 

Abstract 
Reactive systems are often designed as two parts: computation 
and control. The computation part is modeled by operator 
diagrams, while the control part is modeled by transition-based 
models. In this paper, we concentrate on analyzing the testability 
of the control part by using upon transition based models. We 
first transform transition-based models into Markov chains by 
augmenting probability information. Then, testability measures 
are proposed from Markov chains as an estimate of testing effort 
for reaching state coverage and path coverage. 
The approach is applied to a case study and the obtained 
measures are compared to the testing effort required by a test 
generation tool. The results show some interesting perspectives. 
Keywords: Testability Analysis, Reactive Systems, Transition-
Based Models, Markov Chains. 

1. Introduction 

Nowadays, reactive systems are used in many industrial 
domains: avionics, nuclear, etc… These kinds of systems 
are increasingly complex. These systems are often 
designed as two parts: computation part and control part. 
Some computation parts are physical laws or mathematical 
algorithms. In general, the computation part is modeled by 
operator diagrams or equations, while the control part is 
modeled by a kind of finite state machine (FSM) 
formalism. To develop these systems, many environments 
have been proposed as SCADE/SSM, 
SIMULINK/STATEFLOW. For example, the computation 
parts can be designed by using SIMULINK or SCADE, 
while the control parts can be represented by using SSM 
(Safe State Machine) or STATEFLOW. 
In a reactive system development process, verification and 
validation (V&V) activities play a very important role, 
because these systems always require a high level of 
quality and confidence. However, V&V activities are often 
very difficult and costly, which increases final 
development cost. V&V are based on: either static analysis, 

like formal proof, symbolic execution… or dynamic testing, 
where the objective is to find errors in the system. In 
addition, in order to reduce validation cost and increase 
system confidence, testability analysis may be taken into 
account. In fact, testability measures, if possible 
previsional, may exhibit a difficulty in testing the system. 
Therefore, the designer can consider testability as a factor 
to modify the design in order to improve the ease of testing, 
i.e. to reduce testing cost. 
Testability is of high interest by many researchers in 
different perspectives. Freedman [1] introduced the 
domain testability for software components by defining 
observability and controllability notions: observability is 
the ease of determining if specified inputs affect the 
outputs; controllability is the ease of producing a specified 
output from a specified input. His approach is only applied 
to functional specifications of components by analyzing 
input and output domains. He also proposed the testability 
improvement of components by modifying the inputs and 
outputs. 
In [2], the author proposed the PIE (Propagation- 
Infection-Execution) technique. This technique is based on 
mutation analysis to predict a location’s ability to cause 
program failure if the location were to contain a fault. The 
PIE technique measures the probabilities that 1) a location 
is executed; 2) a change to the source program causes a 
change in the resulting internal computational state; 3) a 
forced change in an internal computational state 
propagates and causes a change in the program’s output. 
This technique is only applied to source code. 
Voas and Miller [3] presented another approach analyzing 
component testability by evaluating the information loss of 
the component. The information loss is expressed via the 
domain/range ratio (DRR) of a component specification. 
The DRR of a component is given by the ratio of the 
cardinality of the input to the cardinality of the output. 
In the communication software area, Petrenko et al. [4] 
investigated testability of communication software which is 
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modeled by a composition of finite state machines, then 
Karoui et al. [5] proposed a testability metric for 
communication software modeled by relations. 
For object-oriented software, many approaches have been 
presented. Chidamber and Kemerer [6] presented a set of 
six metrics for object oriented designs: weighted methods 
per class, depth of inheritance tree, number of children, 
coupling between object class, response for a class, lack of 
cohesion in methods. These metrics can be seen as 
testability measures. Payne et al. [7] proposed the use of 
software contract for each class in order to improve the 
software testability. The software contract consists of three 
essential elements: 1) an invariant expression that defines 
consistency for the classs state-space; 2) a precondition for 
each method that defines the conditions under which the 
method can be invoked; 3) a postcondition for each 
method that defines what the method does. 
Ghosh [8] presented an approach combing the program 
mutation based on keywords and creation of mutants based 
on conflict graphs created by performing static analysis of 
the code. However, this approach can only be applied to 
concurrent object oriented programs in Java. Baudry 
and al. [9] are interested in class interactions. They build 
the class dependency graph by basing it on the class 
diagram. This graph is used to evaluate the complexity of 
class interactions, which is seen as testability measures. 
Kansomkeat and al. [10] proposed a method to measure 
testability of a class-component based on data flow 
analysis and considering def and use locations. This 
method analyzes execution and propagation probabilities 
from the bytecode in binary class files. The execution 
probability is the percentage of faulty locations executed. 
The propagation probability is the percentage of faulty 
locations for which an input caused incorrect output. 
Jungmayr [11] stated that dependencies between 
components in software have a large effect on testability, 
so he defined the metrics for software dependencies as well 
as the concept of test-critical dependencies to identify them 
and subsequently removing them using dedicated 
refactoring. 
Harman and al. [12] proposed to transform program to 
make it easier to generate test data for it, it means the 
improvement of programs testability. This approach is only 
applied to the source code level. 
In [13], [14], the authors proposed the testability analysis 
for data-flow software. This approach was implemented in 
the SATAN tool, which can be applied to analyze 
testability for software designs as well as for source code. 
We state that these testability approaches were proposed 
for applying to certain specific application domains. Each 
work is based on different sources of the software, like 
source code, design or specification. However, non of 
them allows testability of reactive systems to be analyzed 
by basing them on transition models. Hence, in this work 

we focus on analyzing transition-based testability. Our 
testability approach may be a useful guide for testers using 
transition-based testing. 
The paper is organized as follows. In Section 2, we present 
reactive systems. Some transition-based models are 
introduced in Section 3. Transition-based coverage criteria 
are discussed in Section 4. We present a testability analysis 
approach based on Markov chains in Section 5. A case 
study is analyzed in Section 6. We finish by the 
conclusions and future work. 

2. Reactive Systems 

The term reactive system is used to designate systems that 
permanently interact with their environment and to 
distinguish them from transformational systems. Reactive 
systems have to react continuously to their environment at 
a frequency determined by that environment [15]. 
Moreover, we distinguish between interactive and reactive 
systems: the interaction speed of interactive systems (e.g., 
operating systems, web server) depends on the systems, 
while the interaction speed of reactive systems depends on 
the environment. Typical examples of reactive systems are 
process control in industry, embedded systems in trains, 
aircrafts… 
The main characteristics of these safety critical systems are 
the followings. 

− They are deterministic: the execution of a reactive 
system can be viewed as an infinite sequence of 
input/output vectors, where, at each step, the 
output values are completely determined by the 
past and present inputs, i.e. some temporal logics. 
The same inputs and the same internal state 
produce the same outputs. 

− They are submitted to the bounded memory 
constraint: the output depends on the input and 
internal state of the system. System states are 
generally stocked in memory. 

2.1 Synchronous reactive systems 

The synchronous paradigm is very well recognized for 
designing critical reactive systems. The synchronous 
approach supposes that reaction time of the system is null. 
Synchrony divides time into discrete instants. 
The inputs and outputs of the system are described by their 
flows of values along time. If x is a flow, we will note xn as 
its value at the nth instant of the system. A system 
consumes input flows and computes output flows, possibly 
using local flows which are not visible from the 
environment. Local and output flows are defined by 
equations. An equation x = y + z defines the flow x from 
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the flows y and z in such a way that, at each instant n, xn = 
yn + zn. 
Let T1 and T2 be the types of inputs and outputs of the 
system, and S be the set of internal states of the system. 
The system can be represented by two following functions: 
The output function f: S × T1 → T2. 
The transition function g: S × T1 → S. 
There exists an initial state s0 : S, such as: 

ok = f(sk−1, ik) 
sk = g(sk−1, ik) 

where where ik, ok, sk are respectively the input, the output 
and the internal state of the system at instant k and sk−1 is 
the internal state of the system at instant k−1. 

2.2 Data-flow and control-flow approaches 

Reactive systems are generally described as two parts: 
computation and control. 
The computation part is usually described with a system of 
equations, i.e. a data-flow approach and therefore can  be 
modeled as operator diagrams, in which each operator can 
be a basic operator or a composition of operators. In 
operator diagrams, operators are connected by 
communication channels, data is processed by traversing 
the diagrams. Note that a diagram may be represented 
hierarchically: a sub-system may be seen as an operator. 
The control part means changing the behavior according 
to external events originating either from sensors and user 
inputs or from internal program events. System behavior is 
mainly regular, but can switch instantaneously from one 
behavior to another. In this case, the system is usually 
composed of a high level control oriented sub-system 
which executes different data processing for each state of 
the system. This control part is generally represented by 
transition-based models. 
System behaviors are called running modes. Each mode is 
a big control law, (i.e. a computation part), generally 
described as data-flow equations. Switching between these 
modes is described by transition-based models (i.e. control 
part). Mode-automata [16] has been proposed to describe 
at the same time data-flow and control-flow parts of the 
system: data-flow equations are attached to each state 
(mode) of an automaton. Mode-automata can be combined 
in order to design hierarchical models. 

3. Transition-Based Models 

Many transition-based models are used for modeling 
reactive systems, like finite state machine (FSM), extended 
finite state machine (EFSM) and statecharts. In this work, 
we are particularly interested in EFSM. An EFSM [17] is 
defined as a tuple as follows: 

M = (S, I, O, s0, E, T, V) 

where 
− S is a set of states, 
− I is a set of inputs, 
− O is a set of outputs, 
− s0  is the initial state, 
− E is a set of events, 
− T is a set of transitions, 
− V is a store represented by a set of variables. 

All above sets are finite. All the inputs, the outputs and the 
variables are typed. 
A transition of a EFSM is a tuple (s, l, s’), where s, s’ ∈ S 
are the source state and target state, respectively. The 
label l is defined as e[g] = a where e ∈ E, g is a guard, i.e. 
a condition (assuming a standard conditional language) 
that guards the transition from being taken when e is true, 
and a is a sequence of actions (assuming a standard 
expression language including assignments). All parts of a 
label are optional. 
In an EFSM, the conditions of the transition include 
boolean expressions. Expressions are built from inputs, 
variables and constant values, with the usual arithmetic and 
relational operators. The actions of the transitions may 
include assignment to variables. 

4. Transition-Based Coverage Criteria 

Test generation is usually ruled by an adequacy criterion, 
providing a measure to justify the effectiveness of test 
sequences in terms of revealing of errors. Many coverage 
criteria [18], [19], [20], [21] have been developed for 
transition based modeling notations. In this section, we 
introduce the most common transition-based coverage 
criteria: 

− State coverage: we need to ensure that every state 
in the model can be reached and visited at least 
once by some test sequences. 

− Transition coverage: we need to ensure that every 
transition in the model can be traversed at least 
once by some test sequences. 

− k-transition coverage: this criterion guarantees all 
possible transition sequences of length k, k ∈ N, 
will be tested. 

− Full predicate coverage: this criterion requires 
that each clause in each predicate on each 
transition is tested independently. 

− Path coverage: every path must be traversed at 
least once. 

The state coverage and transition coverage [18], [19], [21] 
are the most basic and common criteria. These criteria 
inspire code-based testing criteria: state coverage is similar 
to statement coverage, and transition coverage is similar to 
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branch coverage. Transition coverage is evidently stronger 
than state coverage. 
The k-transition coverage was proposed in [20]. If k is 
equal to 1, this criterion becomes transition coverage. If k 
is equal to 2, it is the transition-pair coverage defined 
in [18], [19], [21]. A set of test sequences covers all 
transition sequences of a fixed length k does not 
necessarily cover a set of all sequences of 
length i ∈ {1,…, k−1}. 
In [18], the authors proposed the full predicate coverage, 
which is similar to the code-based testing criterion of 
modified condition/decision coverage. Full predicate 
coverage is based on the philosophy that each clause 
should be tested independently, that is, while not being 
influenced by the other clauses. In other words, each clause 
in each predicate on every transition must independently 
affect the value of the predicate. 
The path coverage [19] corresponds to exhaustive testing 
of the control structure of the model. In practice, this is 
usually not practical because such models typically contain 
an infinite number of paths due to loops. This criterion is 
similar to complete sequence coverage proposed in [18]. A 
complete sequence is defined as a sequence of state 
transitions that forms a complete practical use of the 
system. The number of complete sequences may be infinite. 

5. Testability Analysis Approach 

In this section, we present a testability measurement 
approach based on Markov chains, which are built from 
EFSM by adding transition probabilities. 

5.1 Markov chains 

Transition-based models can be augmented with 
probabilistic information, so that functions commonly used 
can be analyzed and tested more thoroughly than other 
ones. As a basic assumption for usage-based testing, if 
some functions are used more often, the likelihood that a 
fault is going to be triggered through such usage is also 
higher. Therefore, we need to focus on highly used parts in 
the transition-based models. 
EFSM is augmented with probabilistic information 
regarding frequently used parts in the form of Markov 
chains. The additional information for the EFSM is the 
probabilities associated with different state transitions that 
satisfy the following property: 

− From the current state xn = i at stage n, the 
probability of state transition to state xn+1 = j for 
the next stage n+1 is denoted as pij, which is 
independent of the history, that is: 

P{xn+1 = j | xn = i, xn-1 = sn-1, …, x0 = s0} 
= P{xn+1 = j | xn = i} = pij 

The complete history is summarized in the current 
state. The next state is independent of all the past 
states given the current state. This is called the 
Markov property. 

− Probabilities pij satisfy the following equations: 
1,10 =<≤ ∑

j
ij ij

pandp  

− If the above conditions hold for every state in an 
EFSM, the EFSM forms a Markov chain. 

 
In Markov chains, transitions are probabilistic instead of 
deterministic. Messages or conditions in the corresponding 
EFSM are augmented with the associated probability. 
A Markov chain can be completely described by a 
transition matrix, P = [pij]. In this matrix, state labels are 
represented as indices and transition probabilities as 
entries. Note that the matrix is square and each of its row 
sums to one. 
Markov chains have been used to generate tests, determine 
when to stop testing, and reason about the outcome of 
testing in statistical testing [22], [23], [24], [25]. 

5.2 Control-flow testability measures 

EFSMs can be augmented with transition probabilities in 
forms of Markov chains. In our study, most of the cases, 
EFSMs are often specified by designers. To build Markov 
chains, we need to assign transition probabilities to EFSM 
by basing them on usage model [26]. Usage model 
characterizes operational use of the software system. 
Operational use is the intended use of the software in the 
intended environment. Usage model should be defined in 
functional specification, usage specification and test 
specification. 
Whittaker and Poore [22] describe three approaches for 
constructing usage model: 

− if no information is available concerning expected 
use of the software, uniform probabilities can be 
assigned across the exit arcs for each state, called 
uninformed approach; 

− transition probabilities can be assigned based on 
hypothesized use of the software, called intended 
approach; 

− transition probabilities can be assigned based on 
actual use measurement, called informed 
approach. 

These three approaches can cover many situations. The 
informed approach with actual user sequences is the best. 
However, this approach is only applied when the software 
is available. Next best is the intended approach where user 
sequences are evaluated by hypothesizing runs of the 
software by a careful and reasonable user. As a last resort, 
the uninformed approach is used. 
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In reactive systems analysis, as mentioned previously, we 
are particularly interested in some variants of EFSM, like 
SSM in SCADE or STATEFLOW in SIMULINK. In such 
formalisms, each transition is triggered by a guard 
represented by a boolean expression. The boolean 
expression is a predicate on a set of inputs and variables. 
In this work, we use a statistical evaluation to compute 
usage distribution. When no information is available 
concerning expected use of the software, statistical 
evaluation is used instead of using uniform probabilities. 
Statistical evaluation allows computation of the probability 
that a guard is satisfied, i.e. when the corresponding 
boolean expression takes the true value. This approach 
gives more precise information on activation of transition. 
Once the Markov chain is built from EFSM and transition 
probabilities, we can compute its equilibrium, i.e. when the 
Markov chain becomes stationary. In such a state, the 
stationary probability πi for being in state i remains the 
same before and after state transitions over time. 
Let Π = [π1, π2,…, πn] be the vector of stationary 
probabilities for the n states. This vector can be found for 
a given transition matrix P as the unique stochastic vector 
solution to the eigenvector equation [24]: 

Π = ΠP 
The eigenvector Π is sometimes called the Perron 
eigenvector. This equation is equivalent to the system of 
equations: 

π1 = π1p11 + π2p21 + … + πn pn1 
π2 = π1p12 + π2p22 + … + πn pn2 
... 
πn = π1p1n + π2p2n + … + πn pnn 
1 = π1 + π2 + … + πn 

where pij is the transition probability from state i to state j. 
The stationary probability πi indicates the expected 
appearance rate of state i after the Markov chain reaches 
the equilibrium. Since each state is associated with some 
part of the actual software, this information allows testers 
to determine which parts of the software will get most 
attention during testing. 
We call state executability probability πi. The state 
executability may allow to predict how easy to generate 
test cases to activate a specific state i of the software. The 
basic coverage criterion of FSM is state coverage. For 
states with low executability, test cases which cover such 
states are not easy to generate. Therefore, if executability 
of a state i is very low, computation part associated with 
state i can be considered as difficult to test, i.e. low 
testability. Otherwise, the computation part associated with 
state i has high testability in terms of execution. 
Moreover, transition-based testing in general consists of 
generating test cases activating a set of sequences of state 
transition. The difficulty of generating a test case depends 
on the difficulty of activation of each transition in the 

sequence. The difficulty of transition activation is simply 
the transition probability. Therefore, the difficulty of 
generating a test case may be measured by the product of 
probabilities of all transitions activated by that test case. 
We call sequence executability this product of 
probabilities. The sequence executability may be 
considered as the testability measure of a sequence. 
Hence, we propose the use of two testability measures 
based on Markov chains: 

− State executability: predicts how easy it is to 
execute a state in stationary functioning of the 
system. 

− Sequence executability: predicts how easy it is to 
activate a transition sequence. 

Specially, when a Markov chain has an absorbing state 
(i.e. it is impossible to leave that state), the system stays 
most time in that state. 
On the one hand, these measures may help testers to take 
into account how difficult or easy it is to generate test 
cases, which cover some specific states or sequences. On 
the other hand, designers can improve their transition-
based models to facilitate generation of test cases. 

6. Application 

In this section, we apply our approach to analyze the 
testability of the B01_AUTOMATON 1 SSM (Figure 1), 
this SSM is designed in the SCADE environment. Then we 
use the GATeL tool [27] to generate test cases for the 
B01_AUTOMATON. Finally, we compare our testability 
measures to the testing cost for generating test cases for the 
B01_AUTOMATON by the GATeL tool. 

 

Fig. 1  The B01_AUTOMATON. 

6.1 Testability measures of the B01_AUTOMATON 

In this automaton, STANDBY is the initial state and 
CAM_INHIB is the final state. Each transition Ti, 
i ∈ 1, 2, …, 10 is activated by a boolean expression, which 
is called as activation condition for transition. For a 
simplified representation, we don’t present all activation 
                                                           
1 Provided by ASTRIUM for the SIESTA project. 
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conditions for transition, but only the obtained transition 
probabilities by performing a statistical evaluation of 
activation conditions. The transition probabilities of the 
B01_AUTOMATON are presented in Table 1. 

Table 1: Transition probabilities 
Transition T1 T2 T3 T4 T5 
Probability 0.063 0.094 0.078 0.5 0.094 
Transition T6 T7 T8 T9 T10 
Probability 0.563 0.078 0.25 0.25 0.1 

 
We now transform the automaton into Markov chain by 
adding transition probabilities. Then we compute 
testability measures of B01_AUTOMATON: state 
executability and sequence executability. State  
executabilities obtained via the eigenvector of Markov 
chain in Table 2. 

Table 2: State  executabilities 
State Executability 

STANDBY 0.136381 
READY_FOR_CAM 0.024797 
CAM_IN_WAITING 0.003875 

CAM_IN_PROGRESS 0.005811 
CAM_INHIB 0.829136 

 
Test sequences of transition are generally determined by 
the testers or the designers with the use of domain 
knowledge and experience. For B01_AUTOMATON, we 
can determine all sequences without loop and one 
sequence with loop once Seq6 in Table 3. 

Table 3: Test sequences 
Sequence Transition 

Seq1 T1, T3, T4 
Seq2 T6 
Seq2 T1, T5 
Seq4 T1, T7, T8 
Seq5 T1, T7, T9, T4 
Seq6 T1, T2, T6 

 
Sequence executability measures obtained by the product 
of all the probabilities of transitions of the sequence are 
presented in Table 4. 

Table 4: Sequence executabilities 
Sequence Transition 

Seq1 0.002441 
Seq2 0.562500 
Seq2 0.005859 
Seq4 0.001221 
Seq5 0.000610 
Seq6 0.003296 

6.2 Experimentation with the GATeL tool 

GATeL [27] is a tool supporting test case generation from 
Lustre descriptions. GATeL allows us to define test 
objectives and then test cases are generated in order to 
satisfy these test objectives. A test objective can be a 
safety property or declarative characterization of some 
interesting states of the system under test. Test case 
generation is handled by solving a constraints system 
involving program data flows at an arbitrary stage. 
However, some input data flow values are not involved at 
each computation stage, they can remain undefined when 
the constraints system is solved. Thus, an instantiation 
process on the remaining input variables is performed in 
order to obtain a better structural coverage. This process 
requires testers to split interactively the input domain of 
test cases. Therefore, in this experiment, we measure test 
case generation cost by basing it on the time for generation 
and number of splittings done by testers. 
We first generate the Lustre code from the 
B01_AUTOMATON then we define the test objectives 
satisfying two basic criteria: state coverage and path 
coverage. For state coverage, we obtained some cost 
measures in Table 5, where number of test cases is 
abbreviated as NTC, total time 2  of test generation as 
TTTG, generation time per test case as TPTC and number 
of splittings as NS. 

Table 5: Testing cost for state coverage 
State NTC TTTG TPTC NS 

STANDBY 4 19 4.8 3 
READY_FOR_CAM 9 69 7.7 8 
CAM_IN_WAITING 3 9 3 2 

CAM_IN_PROGRESS 5 50 10 4 
CAM_INHIB 8 60 7.5 7 

 
Comparing the testing cost for state coverage with the state 
executabilities, we find that the generation time per test 
case corresponds to the state executabilities. For example, 
state CAM_INHIB is the most executable and the 
generation time per test case for testing this state is the 
shortest; state CAM_IN_PROGESS is the least executable 
and the generation time per test case for testing this state is 
the longest. However, we find that the number of splittings 
is proportional to the number of test cases, but not to the 
testability measures for this case study. 
Concerning path coverage, we only define the test  
objectives for test sequences defined in Table 3. We 
obtained the results in Table 6. 
We can state that the generation time per test case 
corresponds to the sequence executabilities, for example, 
sequence Seq2 is the most executable, so the generation 
time per test case for this sequence is the shortest; 
                                                           
2 Generation time is measured in millisecond. 
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sequence Seq5 is the least executable, hence the generation 
time per test case for this sequence is the longest. However, 
we find that the number of splittings is not related to the 
number of test cases and the sequence executabilities. 

Table 6: Testing cost for path coverage 
Sequence NTC TTTG TPTC NS 

Seq1 5 40 8 5 
Seq2 3 10 3.3 5 
Seq2 2 20 10 4 
Seq4 3 40 13.3 5 
Seq5 4 60 15 10 
Seq6 3 29 9.7 4 

 
This experiment shows that transition-based testability 
measures correspond to generation time of test cases by the 
GATeL tool, but do not correspond to splitting cost. 

7. Conclusions 

Models based testability analysis brings to testers and 
designers important predictive measures on software 
quality. In this work, we focus on analyzing testability of 
reactive systems by basing them on transition-based 
models. We have presented testability measures based 
upon Markov chains, which are augmented transition-
based models with probabilistic information. We have 
applied the measurement on the B01 AUTOMATON and 
we have also compared the obtained testability measures to 
the testing effort required by the GATeL tool for test 
generation. The results show a strong link between 
testability measures and test generation. 
This work until now is the first step in testability analysis 
based on transition models. In the future, we intend to 
more deeply develop this research and apply it to more 
complex industrial applications. 
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