
Testability Analysis Approach For Reactive Systems

Nguyen Thanh Binh1 and Chantal Robach2

 1 DATIC Laboratory
Danang University of Technology

Danang, Vietnam

2 LCIS Laboratory
Grenoble INP

Grenoble, France

Abstract
Reactive systems are often designed as two parts: computation
and control. The computation part is modeled by operator
diagrams, while the control part is modeled by transition-based
models. In this paper, we concentrate on analyzing the testability
of the control part by using upon transition based models. We
first transform transition-based models into Markov chains by
augmenting probability information. Then, testability measures
are proposed from Markov chains as an estimate of testing effort
for reaching state coverage and path coverage.
The approach is applied to a case study and the obtained
measures are compared to the testing effort required by a test
generation tool. The results show some interesting perspectives.
Keywords: Testability Analysis, Reactive Systems, Transition-
Based Models, Markov Chains.

1. Introduction

Nowadays, reactive systems are used in many industrial
domains: avionics, nuclear, etc… These kinds of systems
are increasingly complex. These systems are often
designed as two parts: computation part and control part.
Some computation parts are physical laws or mathematical
algorithms. In general, the computation part is modeled by
operator diagrams or equations, while the control part is
modeled by a kind of finite state machine (FSM)
formalism. To develop these systems, many environments
have been proposed as SCADE/SSM,
SIMULINK/STATEFLOW. For example, the computation
parts can be designed by using SIMULINK or SCADE,
while the control parts can be represented by using SSM
(Safe State Machine) or STATEFLOW.
In a reactive system development process, verification and
validation (V&V) activities play a very important role,
because these systems always require a high level of
quality and confidence. However, V&V activities are often
very difficult and costly, which increases final
development cost. V&V are based on: either static analysis,

like formal proof, symbolic execution… or dynamic testing,
where the objective is to find errors in the system. In
addition, in order to reduce validation cost and increase
system confidence, testability analysis may be taken into
account. In fact, testability measures, if possible
previsional, may exhibit a difficulty in testing the system.
Therefore, the designer can consider testability as a factor
to modify the design in order to improve the ease of testing,
i.e. to reduce testing cost.
Testability is of high interest by many researchers in
different perspectives. Freedman [1] introduced the
domain testability for software components by defining
observability and controllability notions: observability is
the ease of determining if specified inputs affect the
outputs; controllability is the ease of producing a specified
output from a specified input. His approach is only applied
to functional specifications of components by analyzing
input and output domains. He also proposed the testability
improvement of components by modifying the inputs and
outputs.
In [2], the author proposed the PIE (Propagation-
Infection-Execution) technique. This technique is based on
mutation analysis to predict a location’s ability to cause
program failure if the location were to contain a fault. The
PIE technique measures the probabilities that 1) a location
is executed; 2) a change to the source program causes a
change in the resulting internal computational state; 3) a
forced change in an internal computational state
propagates and causes a change in the program’s output.
This technique is only applied to source code.
Voas and Miller [3] presented another approach analyzing
component testability by evaluating the information loss of
the component. The information loss is expressed via the
domain/range ratio (DRR) of a component specification.
The DRR of a component is given by the ratio of the
cardinality of the input to the cardinality of the output.
In the communication software area, Petrenko et al. [4]
investigated testability of communication software which is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 13

modeled by a composition of finite state machines, then
Karoui et al. [5] proposed a testability metric for
communication software modeled by relations.
For object-oriented software, many approaches have been
presented. Chidamber and Kemerer [6] presented a set of
six metrics for object oriented designs: weighted methods
per class, depth of inheritance tree, number of children,
coupling between object class, response for a class, lack of
cohesion in methods. These metrics can be seen as
testability measures. Payne et al. [7] proposed the use of
software contract for each class in order to improve the
software testability. The software contract consists of three
essential elements: 1) an invariant expression that defines
consistency for the classs state-space; 2) a precondition for
each method that defines the conditions under which the
method can be invoked; 3) a postcondition for each
method that defines what the method does.
Ghosh [8] presented an approach combing the program
mutation based on keywords and creation of mutants based
on conflict graphs created by performing static analysis of
the code. However, this approach can only be applied to
concurrent object oriented programs in Java. Baudry
and al. [9] are interested in class interactions. They build
the class dependency graph by basing it on the class
diagram. This graph is used to evaluate the complexity of
class interactions, which is seen as testability measures.
Kansomkeat and al. [10] proposed a method to measure
testability of a class-component based on data flow
analysis and considering def and use locations. This
method analyzes execution and propagation probabilities
from the bytecode in binary class files. The execution
probability is the percentage of faulty locations executed.
The propagation probability is the percentage of faulty
locations for which an input caused incorrect output.
Jungmayr [11] stated that dependencies between
components in software have a large effect on testability,
so he defined the metrics for software dependencies as well
as the concept of test-critical dependencies to identify them
and subsequently removing them using dedicated
refactoring.
Harman and al. [12] proposed to transform program to
make it easier to generate test data for it, it means the
improvement of programs testability. This approach is only
applied to the source code level.
In [13], [14], the authors proposed the testability analysis
for data-flow software. This approach was implemented in
the SATAN tool, which can be applied to analyze
testability for software designs as well as for source code.
We state that these testability approaches were proposed
for applying to certain specific application domains. Each
work is based on different sources of the software, like
source code, design or specification. However, non of
them allows testability of reactive systems to be analyzed
by basing them on transition models. Hence, in this work

we focus on analyzing transition-based testability. Our
testability approach may be a useful guide for testers using
transition-based testing.
The paper is organized as follows. In Section 2, we present
reactive systems. Some transition-based models are
introduced in Section 3. Transition-based coverage criteria
are discussed in Section 4. We present a testability analysis
approach based on Markov chains in Section 5. A case
study is analyzed in Section 6. We finish by the
conclusions and future work.

2. Reactive Systems

The term reactive system is used to designate systems that
permanently interact with their environment and to
distinguish them from transformational systems. Reactive
systems have to react continuously to their environment at
a frequency determined by that environment [15].
Moreover, we distinguish between interactive and reactive
systems: the interaction speed of interactive systems (e.g.,
operating systems, web server) depends on the systems,
while the interaction speed of reactive systems depends on
the environment. Typical examples of reactive systems are
process control in industry, embedded systems in trains,
aircrafts…
The main characteristics of these safety critical systems are
the followings.

− They are deterministic: the execution of a reactive
system can be viewed as an infinite sequence of
input/output vectors, where, at each step, the
output values are completely determined by the
past and present inputs, i.e. some temporal logics.
The same inputs and the same internal state
produce the same outputs.

− They are submitted to the bounded memory
constraint: the output depends on the input and
internal state of the system. System states are
generally stocked in memory.

2.1 Synchronous reactive systems

The synchronous paradigm is very well recognized for
designing critical reactive systems. The synchronous
approach supposes that reaction time of the system is null.
Synchrony divides time into discrete instants.
The inputs and outputs of the system are described by their
flows of values along time. If x is a flow, we will note xn as
its value at the nth instant of the system. A system
consumes input flows and computes output flows, possibly
using local flows which are not visible from the
environment. Local and output flows are defined by
equations. An equation x = y + z defines the flow x from

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 14

the flows y and z in such a way that, at each instant n, xn =
yn + zn.
Let T1 and T2 be the types of inputs and outputs of the
system, and S be the set of internal states of the system.
The system can be represented by two following functions:
The output function f: S × T1 → T2.
The transition function g: S × T1 → S.
There exists an initial state s0 : S, such as:

ok = f(sk−1, ik)
sk = g(sk−1, ik)

where where ik, ok, sk are respectively the input, the output
and the internal state of the system at instant k and sk−1 is
the internal state of the system at instant k−1.

2.2 Data-flow and control-flow approaches

Reactive systems are generally described as two parts:
computation and control.
The computation part is usually described with a system of
equations, i.e. a data-flow approach and therefore can be
modeled as operator diagrams, in which each operator can
be a basic operator or a composition of operators. In
operator diagrams, operators are connected by
communication channels, data is processed by traversing
the diagrams. Note that a diagram may be represented
hierarchically: a sub-system may be seen as an operator.
The control part means changing the behavior according
to external events originating either from sensors and user
inputs or from internal program events. System behavior is
mainly regular, but can switch instantaneously from one
behavior to another. In this case, the system is usually
composed of a high level control oriented sub-system
which executes different data processing for each state of
the system. This control part is generally represented by
transition-based models.
System behaviors are called running modes. Each mode is
a big control law, (i.e. a computation part), generally
described as data-flow equations. Switching between these
modes is described by transition-based models (i.e. control
part). Mode-automata [16] has been proposed to describe
at the same time data-flow and control-flow parts of the
system: data-flow equations are attached to each state
(mode) of an automaton. Mode-automata can be combined
in order to design hierarchical models.

3. Transition-Based Models

Many transition-based models are used for modeling
reactive systems, like finite state machine (FSM), extended
finite state machine (EFSM) and statecharts. In this work,
we are particularly interested in EFSM. An EFSM [17] is
defined as a tuple as follows:

M = (S, I, O, s0, E, T, V)

where
− S is a set of states,
− I is a set of inputs,
− O is a set of outputs,
− s0 is the initial state,
− E is a set of events,
− T is a set of transitions,
− V is a store represented by a set of variables.

All above sets are finite. All the inputs, the outputs and the
variables are typed.
A transition of a EFSM is a tuple (s, l, s’), where s, s’ ∈ S
are the source state and target state, respectively. The
label l is defined as e[g] = a where e ∈ E, g is a guard, i.e.
a condition (assuming a standard conditional language)
that guards the transition from being taken when e is true,
and a is a sequence of actions (assuming a standard
expression language including assignments). All parts of a
label are optional.
In an EFSM, the conditions of the transition include
boolean expressions. Expressions are built from inputs,
variables and constant values, with the usual arithmetic and
relational operators. The actions of the transitions may
include assignment to variables.

4. Transition-Based Coverage Criteria

Test generation is usually ruled by an adequacy criterion,
providing a measure to justify the effectiveness of test
sequences in terms of revealing of errors. Many coverage
criteria [18], [19], [20], [21] have been developed for
transition based modeling notations. In this section, we
introduce the most common transition-based coverage
criteria:

− State coverage: we need to ensure that every state
in the model can be reached and visited at least
once by some test sequences.

− Transition coverage: we need to ensure that every
transition in the model can be traversed at least
once by some test sequences.

− k-transition coverage: this criterion guarantees all
possible transition sequences of length k, k ∈ N,
will be tested.

− Full predicate coverage: this criterion requires
that each clause in each predicate on each
transition is tested independently.

− Path coverage: every path must be traversed at
least once.

The state coverage and transition coverage [18], [19], [21]
are the most basic and common criteria. These criteria
inspire code-based testing criteria: state coverage is similar
to statement coverage, and transition coverage is similar to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 15

branch coverage. Transition coverage is evidently stronger
than state coverage.
The k-transition coverage was proposed in [20]. If k is
equal to 1, this criterion becomes transition coverage. If k
is equal to 2, it is the transition-pair coverage defined
in [18], [19], [21]. A set of test sequences covers all
transition sequences of a fixed length k does not
necessarily cover a set of all sequences of
length i ∈ {1,…, k−1}.
In [18], the authors proposed the full predicate coverage,
which is similar to the code-based testing criterion of
modified condition/decision coverage. Full predicate
coverage is based on the philosophy that each clause
should be tested independently, that is, while not being
influenced by the other clauses. In other words, each clause
in each predicate on every transition must independently
affect the value of the predicate.
The path coverage [19] corresponds to exhaustive testing
of the control structure of the model. In practice, this is
usually not practical because such models typically contain
an infinite number of paths due to loops. This criterion is
similar to complete sequence coverage proposed in [18]. A
complete sequence is defined as a sequence of state
transitions that forms a complete practical use of the
system. The number of complete sequences may be infinite.

5. Testability Analysis Approach

In this section, we present a testability measurement
approach based on Markov chains, which are built from
EFSM by adding transition probabilities.

5.1 Markov chains

Transition-based models can be augmented with
probabilistic information, so that functions commonly used
can be analyzed and tested more thoroughly than other
ones. As a basic assumption for usage-based testing, if
some functions are used more often, the likelihood that a
fault is going to be triggered through such usage is also
higher. Therefore, we need to focus on highly used parts in
the transition-based models.
EFSM is augmented with probabilistic information
regarding frequently used parts in the form of Markov
chains. The additional information for the EFSM is the
probabilities associated with different state transitions that
satisfy the following property:

− From the current state xn = i at stage n, the
probability of state transition to state xn+1 = j for
the next stage n+1 is denoted as pij, which is
independent of the history, that is:

P{xn+1 = j | xn = i, xn-1 = sn-1, …, x0 = s0}
= P{xn+1 = j | xn = i} = pij

The complete history is summarized in the current
state. The next state is independent of all the past
states given the current state. This is called the
Markov property.

− Probabilities pij satisfy the following equations:
1,10 =<≤ ∑

j
ij ij

pandp

− If the above conditions hold for every state in an
EFSM, the EFSM forms a Markov chain.

In Markov chains, transitions are probabilistic instead of
deterministic. Messages or conditions in the corresponding
EFSM are augmented with the associated probability.
A Markov chain can be completely described by a
transition matrix, P = [pij]. In this matrix, state labels are
represented as indices and transition probabilities as
entries. Note that the matrix is square and each of its row
sums to one.
Markov chains have been used to generate tests, determine
when to stop testing, and reason about the outcome of
testing in statistical testing [22], [23], [24], [25].

5.2 Control-flow testability measures

EFSMs can be augmented with transition probabilities in
forms of Markov chains. In our study, most of the cases,
EFSMs are often specified by designers. To build Markov
chains, we need to assign transition probabilities to EFSM
by basing them on usage model [26]. Usage model
characterizes operational use of the software system.
Operational use is the intended use of the software in the
intended environment. Usage model should be defined in
functional specification, usage specification and test
specification.
Whittaker and Poore [22] describe three approaches for
constructing usage model:

− if no information is available concerning expected
use of the software, uniform probabilities can be
assigned across the exit arcs for each state, called
uninformed approach;

− transition probabilities can be assigned based on
hypothesized use of the software, called intended
approach;

− transition probabilities can be assigned based on
actual use measurement, called informed
approach.

These three approaches can cover many situations. The
informed approach with actual user sequences is the best.
However, this approach is only applied when the software
is available. Next best is the intended approach where user
sequences are evaluated by hypothesizing runs of the
software by a careful and reasonable user. As a last resort,
the uninformed approach is used.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 16

In reactive systems analysis, as mentioned previously, we
are particularly interested in some variants of EFSM, like
SSM in SCADE or STATEFLOW in SIMULINK. In such
formalisms, each transition is triggered by a guard
represented by a boolean expression. The boolean
expression is a predicate on a set of inputs and variables.
In this work, we use a statistical evaluation to compute
usage distribution. When no information is available
concerning expected use of the software, statistical
evaluation is used instead of using uniform probabilities.
Statistical evaluation allows computation of the probability
that a guard is satisfied, i.e. when the corresponding
boolean expression takes the true value. This approach
gives more precise information on activation of transition.
Once the Markov chain is built from EFSM and transition
probabilities, we can compute its equilibrium, i.e. when the
Markov chain becomes stationary. In such a state, the
stationary probability πi for being in state i remains the
same before and after state transitions over time.
Let Π = [π1, π2,…, πn] be the vector of stationary
probabilities for the n states. This vector can be found for
a given transition matrix P as the unique stochastic vector
solution to the eigenvector equation [24]:

Π = ΠP
The eigenvector Π is sometimes called the Perron
eigenvector. This equation is equivalent to the system of
equations:

π1 = π1p11 + π2p21 + … + πn pn1
π2 = π1p12 + π2p22 + … + πn pn2
...
πn = π1p1n + π2p2n + … + πn pnn
1 = π1 + π2 + … + πn

where pij is the transition probability from state i to state j.
The stationary probability πi indicates the expected
appearance rate of state i after the Markov chain reaches
the equilibrium. Since each state is associated with some
part of the actual software, this information allows testers
to determine which parts of the software will get most
attention during testing.
We call state executability probability πi. The state
executability may allow to predict how easy to generate
test cases to activate a specific state i of the software. The
basic coverage criterion of FSM is state coverage. For
states with low executability, test cases which cover such
states are not easy to generate. Therefore, if executability
of a state i is very low, computation part associated with
state i can be considered as difficult to test, i.e. low
testability. Otherwise, the computation part associated with
state i has high testability in terms of execution.
Moreover, transition-based testing in general consists of
generating test cases activating a set of sequences of state
transition. The difficulty of generating a test case depends
on the difficulty of activation of each transition in the

sequence. The difficulty of transition activation is simply
the transition probability. Therefore, the difficulty of
generating a test case may be measured by the product of
probabilities of all transitions activated by that test case.
We call sequence executability this product of
probabilities. The sequence executability may be
considered as the testability measure of a sequence.
Hence, we propose the use of two testability measures
based on Markov chains:

− State executability: predicts how easy it is to
execute a state in stationary functioning of the
system.

− Sequence executability: predicts how easy it is to
activate a transition sequence.

Specially, when a Markov chain has an absorbing state
(i.e. it is impossible to leave that state), the system stays
most time in that state.
On the one hand, these measures may help testers to take
into account how difficult or easy it is to generate test
cases, which cover some specific states or sequences. On
the other hand, designers can improve their transition-
based models to facilitate generation of test cases.

6. Application

In this section, we apply our approach to analyze the
testability of the B01_AUTOMATON 1 SSM (Figure 1),
this SSM is designed in the SCADE environment. Then we
use the GATeL tool [27] to generate test cases for the
B01_AUTOMATON. Finally, we compare our testability
measures to the testing cost for generating test cases for the
B01_AUTOMATON by the GATeL tool.

Fig. 1 The B01_AUTOMATON.

6.1 Testability measures of the B01_AUTOMATON

In this automaton, STANDBY is the initial state and
CAM_INHIB is the final state. Each transition Ti,
i ∈ 1, 2, …, 10 is activated by a boolean expression, which
is called as activation condition for transition. For a
simplified representation, we don’t present all activation

1 Provided by ASTRIUM for the SIESTA project.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 17

conditions for transition, but only the obtained transition
probabilities by performing a statistical evaluation of
activation conditions. The transition probabilities of the
B01_AUTOMATON are presented in Table 1.

Table 1: Transition probabilities
Transition T1 T2 T3 T4 T5
Probability 0.063 0.094 0.078 0.5 0.094
Transition T6 T7 T8 T9 T10
Probability 0.563 0.078 0.25 0.25 0.1

We now transform the automaton into Markov chain by
adding transition probabilities. Then we compute
testability measures of B01_AUTOMATON: state
executability and sequence executability. State
executabilities obtained via the eigenvector of Markov
chain in Table 2.

Table 2: State executabilities
State Executability

STANDBY 0.136381
READY_FOR_CAM 0.024797
CAM_IN_WAITING 0.003875

CAM_IN_PROGRESS 0.005811
CAM_INHIB 0.829136

Test sequences of transition are generally determined by
the testers or the designers with the use of domain
knowledge and experience. For B01_AUTOMATON, we
can determine all sequences without loop and one
sequence with loop once Seq6 in Table 3.

Table 3: Test sequences
Sequence Transition

Seq1 T1, T3, T4
Seq2 T6
Seq2 T1, T5
Seq4 T1, T7, T8
Seq5 T1, T7, T9, T4
Seq6 T1, T2, T6

Sequence executability measures obtained by the product
of all the probabilities of transitions of the sequence are
presented in Table 4.

Table 4: Sequence executabilities
Sequence Transition

Seq1 0.002441
Seq2 0.562500
Seq2 0.005859
Seq4 0.001221
Seq5 0.000610
Seq6 0.003296

6.2 Experimentation with the GATeL tool

GATeL [27] is a tool supporting test case generation from
Lustre descriptions. GATeL allows us to define test
objectives and then test cases are generated in order to
satisfy these test objectives. A test objective can be a
safety property or declarative characterization of some
interesting states of the system under test. Test case
generation is handled by solving a constraints system
involving program data flows at an arbitrary stage.
However, some input data flow values are not involved at
each computation stage, they can remain undefined when
the constraints system is solved. Thus, an instantiation
process on the remaining input variables is performed in
order to obtain a better structural coverage. This process
requires testers to split interactively the input domain of
test cases. Therefore, in this experiment, we measure test
case generation cost by basing it on the time for generation
and number of splittings done by testers.
We first generate the Lustre code from the
B01_AUTOMATON then we define the test objectives
satisfying two basic criteria: state coverage and path
coverage. For state coverage, we obtained some cost
measures in Table 5, where number of test cases is
abbreviated as NTC, total time 2 of test generation as
TTTG, generation time per test case as TPTC and number
of splittings as NS.

Table 5: Testing cost for state coverage
State NTC TTTG TPTC NS

STANDBY 4 19 4.8 3
READY_FOR_CAM 9 69 7.7 8
CAM_IN_WAITING 3 9 3 2

CAM_IN_PROGRESS 5 50 10 4
CAM_INHIB 8 60 7.5 7

Comparing the testing cost for state coverage with the state
executabilities, we find that the generation time per test
case corresponds to the state executabilities. For example,
state CAM_INHIB is the most executable and the
generation time per test case for testing this state is the
shortest; state CAM_IN_PROGESS is the least executable
and the generation time per test case for testing this state is
the longest. However, we find that the number of splittings
is proportional to the number of test cases, but not to the
testability measures for this case study.
Concerning path coverage, we only define the test
objectives for test sequences defined in Table 3. We
obtained the results in Table 6.
We can state that the generation time per test case
corresponds to the sequence executabilities, for example,
sequence Seq2 is the most executable, so the generation
time per test case for this sequence is the shortest;

2 Generation time is measured in millisecond.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 18

sequence Seq5 is the least executable, hence the generation
time per test case for this sequence is the longest. However,
we find that the number of splittings is not related to the
number of test cases and the sequence executabilities.

Table 6: Testing cost for path coverage
Sequence NTC TTTG TPTC NS

Seq1 5 40 8 5
Seq2 3 10 3.3 5
Seq2 2 20 10 4
Seq4 3 40 13.3 5
Seq5 4 60 15 10
Seq6 3 29 9.7 4

This experiment shows that transition-based testability
measures correspond to generation time of test cases by the
GATeL tool, but do not correspond to splitting cost.

7. Conclusions

Models based testability analysis brings to testers and
designers important predictive measures on software
quality. In this work, we focus on analyzing testability of
reactive systems by basing them on transition-based
models. We have presented testability measures based
upon Markov chains, which are augmented transition-
based models with probabilistic information. We have
applied the measurement on the B01 AUTOMATON and
we have also compared the obtained testability measures to
the testing effort required by the GATeL tool for test
generation. The results show a strong link between
testability measures and test generation.
This work until now is the first step in testability analysis
based on transition models. In the future, we intend to
more deeply develop this research and apply it to more
complex industrial applications.

References
[1] R. S. Freedman, “Testability of Software Components,” IEEE

Transactions on Software Engineering, vol. 17, no. 6, 1991,
pp. 553–564.

[2] J. M. Voas, “Pie: A dynamic failure-based technique,” IEEE
Transactions on Software Engineering, vol. 18, 1992, pp.
717–727.

[3] J. M. Voas and K. W. Miller, “Software testability: The new
verification,” IEEE Software, vol. 12, no. 3, 1995, pp. 17–28.

[4] A. Petrenko, R. Dssouli, and H. K¨onig, “On evaluation of
testability of protocol structures,” in Proceedings of the IFIP
TC6/WG6.1 Sixth International Workshop on Protocol Test
systems VI, Amsterdam, The Netherlands, The Netherlands,
1994, pp. 111–124.

[5] K. Karoui, R. Dssouli, and O. Cherkaoui, “Specification
transformations and design for testability,” in Proceedings of
IEEE Global Telecommunications Conference, London,
England, 1996.

[6] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Trans. Softw. Eng., vol. 20, no.
6, 1994, pp. 476–493.

[7] J. E. Payne, R. T. Alex, and C. D. Hutchinson, “Design-for-
testability for object-oriented software,” Object Magazine,
vol. 7, no. 5.

[8] S. Ghosh, “Towards measurement of testability of concurrent
objectoriented programs using fault insertion: A preliminary
investigation,” in SCAM ’02: Proceedings of the Second
IEEE International Workshop on Source Code Analysis and
Manipulation, Washington, DC, USA, 2002.

[9] B. Baudry, Y. L. Traon, and G. Suny, “Measuring and
improving design patterns testability,” in 9th IEEE
International Software Metrics Symposium, 2003.

[10] S. Kansomkeat, J. Offutt, and W. Rivepiboon, “Class-
component testability analysis,” in Proceedings of the 5th
WSEAS International Conference on Software Engineering,
Parallel and Distributed Systems, 2006.

[11] S. Jungmayr, “Testability measurement and software
dependencies,” in Proc. of the 12th International Workshop
on Software Measurement, 2002.

[12] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A.
Baresel, and M. Roper, “Testability transformation,” IEEE
Transactions on Software Engineering, vol. 30, 2004, pp. 3–
16.

[13] Y. Le Traon and C. Robach, “Testability Measurements for
Data Flow Design,” in Proceedings of the Fourth
International Software Metrics Symposium, Albuquerque,
New Mexico, 1997, pp. 91–98.

[14] T. B. Nguyen, M. Delaunay, and C. Robach, “Testability
analysis of data-flow software,” Electron. Notes Theor.
Comput. Sci., vol. 116, 2005, pp. 213–225.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous dataflow programing language LUSTRE,”
Proceedings of the IEEE, vol. 79, no. 9, 1991, pp. 1305–
1320.

[16] F. Maraninchi and Y. R´emond, “Mode-automata: a new
domain-specific construct for the development of safe critical
systems,” Science of Computer Programming, vol. 46, no. 3,
2003, pp. 219–254.

[17] K. Androutsopoulos, D. Clark, M. Harman, L. Zheng, and L.
Tratt, “Control dependence for extended finite state
machines,” in Proceedings of the 12th International
Conference on Fundamental Approaches to Software
Engineering, 2009.

[18] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann,
“Generating test data from state-based specifications,”
Journal of Software Testing, Verification and Reliability, vol.
13, 2003.

[19] M. Utting and B. Legeard, Practical Model-Based Testing:
A Tools Approach, Morgan-Kaufmann, 2007.

[20] F. Belli and A. Hollmann, “Test generation and
minimization with basic statecharts,” in Proceedings of the
2008 ACM symposium on Applied computing, 2008.

[21] C. Junke, “Critres de tests pour les automates de modes et
application au langage scade 6,” in 10es Journes
Francophones Internationales sur les Approches Formelles
dans l’Assistance au Dveloppement de Logiciels, 2010.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 19

[22] J. A. Whittaker and J. H. Poore, “Markov analysis of
software specifications,” ACM Trans. Softw. Eng. Methodol.,
vol. 2, no. 1, 1993.

Nguyen Thanh Binh graduated from Danang University of
Technology in 1997, he got a PhD degree in Computer Science
from Grenoble Institute of Technology (Grenoble INP) in 2004. He
is currently lecturer in the Information Technology Department,
Danang University of Technology, Vietnam. He is dean of IT
faculty at Danang University of Technology since 2010. His
research interests include software testability, software testing and
software quality.

Chantal Robach graduated from the ENSIMAG Computer
Science Engineering School — Grenoble in 1973, she got a PhD
degree in 1976 and the “Docteur-es-Sciences” degree from the
Grenoble Institute of Technology (Grenoble INP), in 1979. She
was a junior then senior Researcher at the French National
Research Center from 1974 to 1997, and was vice-director of the
Computer Science Laboratory (150 persons) from 1992 to 1995.
In 1997 she is appointed full Professor at Grenoble INP, head of
the LCIS Laboratory from 2002 to 2007 and head of ESISAR
« Engineering School on Advanced Systems and Networks » from
then.
She directed a research team since 1988, was reviewer for
international journals and conferences dedicated to design and
test domains (ITC, ETC, ETW, …), published in more than 33
international journals and about 140 international conferences.
She has led several expertises for national and international
grants attribution, or for french industries. She managed more
than 25 industrial grants or contracts, directed about 20 PhD
thesis, was involved in 3 international conferences located in
France…

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 20

