

Developing an Intelligent User Interaction
Development Engine

Ashit Kumar DUTTA

 Department of Computer Science and Information System., Shaqra University, KSA

Abstract

This paper presents an intelligent user interaction
development (IUID) engine that helps to enhance the structure
of the relational database by using artificial intelligence. The
IUID consists of two phases, the first phase enhances the user
database by comparing it with a well structured pre-defined
database, and the second phase gives the user the ability to use
the artificial intelligence by writing java code and organize it
in a tree structure. The main objectives of the IUID engine are
to allow user to use the expert knowledge to upgrade his/her
database, and increasing the speed of the development process
by appending a new artificial intelligence layer at the user
application that is represented by a package to run in the
application

1. Introduction

Databases are gaining prime importance in a huge
variety of application areas employing private and public
information systems. Databases are built with the objective of
facilitating the activities of data storage, processing, and
retrieval associated with data management in information
systems. An intelligent database is a full-text database that
employs artificial intelligence (AI), interacting with users to
ensure that returned items (hits) contain the most relevant
information possible. This is in contrast to a traditional
database, which is searchable only by keywords and verbatim
phrases connected by Boolean operations such as AND, OR,
and NOT. Intelligent database technology is in its infancy, and
is evolving as AI becomes more advanced. An Intelligent
Database System is endowed with a data management system
able to manage large quantities of persistent data to which
various forms of reasoning can be applied to infer additional
data and information. This includes knowledge
representation techniques, inference techniques, and
intelligent user interfaces - interfaces which extend beyond
the traditional query language approach by making use of
Artificial Intelligence. This technique plays an important role
in enhancing databases systems.In this paper we have

designed an engine with artificial intelligence
algorithm which can upgrade the user database.

2. Related Work

User interface design has been a topic of
considerable research, including on its aesthetics. In the past
standards have been developed, as far back as the eighties for
defining the usability of software products. One of the
structural basis has become the IFIP user interface reference
model. The model proposes four dimensions to structure the
user interface:

• The input/output dimension (the look)
• The dialogue dimension (the feel)
• The technical or functional dimension (the access to

tools and services)
• The organizational dimension (the communication

and co-operation support)

This model has greatly influenced the development
of the international standard ISO 9241 describing the interface
design requirements for usability. The desire to understand
application-specific UI issues early in software development,
even as an application was being developed, led to research on
GUI rapid prototyping tools that might offer convincing
simulations of how an actual application might behave in
production use.[3] Some of this research has shown that a wide
variety of programming tasks for GUI-based software can, in
fact, be specified through means other than writing program
code.

Research in recent years is strongly motivated by the
increasing variety of devices that can, by virtue of Moore's
Law, host very complex interfaces.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 322

http://whatis.techtarget.com/definition/0,289893,sid9_gci1124551,00.html
http://whatis.techtarget.com/definition/0,289893,sid9_gci211597,00.html
http://whatis.techtarget.com/definition/0,289893,sid9_gci211695,00.html
http://en.wikipedia.org/wiki/Aesthetics
http://en.wikipedia.org/wiki/ISO_9241
http://en.wikipedia.org/wiki/User_interface_design#cite_note-HUMANOID-2
http://en.wikipedia.org/wiki/Moore%27s_Law
http://en.wikipedia.org/wiki/Moore%27s_Law

There is also research on generating user interfaces
automatically, to match a user's level of ability for different
kinds of interaction.

3. The Intelligent User Interaction Development Engine

The IUID consists of two stages the database stage
and artificial intelligence algorithms (AI) stage, each stage
consists of 3 phases as shown in figure 1.

Figure 1: The architecture of the IUID engine

The database stage consists of Loader, Reader and

Adder. It starts by loading the user database into java scope as
objects. The Reader concerns about reading the user database
and understand every table and its columns. The table and all
column names must be known by the reader. At this phase the
user asked to modify any unknown table or column names. In
the adder phase, the user database will be compared with a
well structured relational database recommended some
suggestions about the user database related of adding or
deleting some features from it. If the user doesn't have a
database then our engine will help him/her to build a new a
well structured relational database.

The output of the first stage is a well-structured
identified database uses as input to the second stage. The three
stages appear in figure 2.

Figure 2: The structure of Loader, Reader, and Adder

The AI stage consisted of three phases: Behavior
Establisher, Execution Establisher, and the AI builder. The
behavior establisher starts working on the user database after
enchantment by the previous phase. The user can create
nodes called behaviors; these behaviors are java codes that
are connected to entities from the user database, all the
behaviors calculation will reflect on the user DB. The
behavior establisher presented in Figure 3.

Figure3 Creating the behaviors in Behavior

Establishment phase.

The execution Establisher phase main purpose is to group the
behaviors made by user in a tree structure that the user will
have the ability to define some rules to navigate throw it.
Many types of trees are available like: list, Recursion tree and
conditional tree. The execution establisher presented in figure
4.

Figure 4 Building the execution tree by using group of
behaviors in Execution Establishment.

At the AI stage the user can design tree algorithms to use in
his/her application. In order to establish the tree algorithm, the
user has to build it step by step starting with:

i. Creating an execution which represent the tree of
the algorithm

ii. The tree of the execution contains nodes that hold
the user written-by-wizard code.

iii. These node
iv. s defined in the execution called AI-behaviors.
v. Each AI-behavior (node) should have a parameters

list and a return variables list.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 323

vi. Each of these lists have a group of variables that
represent a cell in the user database, these variables
are called AI-cells.

There are three types of executions (tree); conditional node
tree, recursion tree and execution list.
The conditional node tree should have conditional nodes that
are used to control the run path of the tree.

Each conditional node should have a group of enter points(1)
,one for each child behavior, that are represented by a Boolean
method that the user should code, this enable the user to use
his logic(variables and methods in his own application) to
make the conditional node decision. The AI builder stage
presented in figure 5.

Figure 5 Generating .class files in AI Building Phase.

The AI builder phase is the last phase that works on the
executions and transforms them into java classes; each class
represents a tree of execution.
Finally the output classes will be grouped into a package and
will be given to the user, so he can use these classes in his
project.

4. Implementation
Our system was developed in Oracle 10g enterprise edition
release , MySql Server , and NetBeans were implemented on
an Intel® Pentium® M dual core with speed 1.8 GH processor
and DDR@ I GBRAM, running on the Microsoft Windows
XP Professional Service Pack 2.
Our system work space arranged to design and developed a
high quality structural database by using the AI structure
algorithm. Figure 1 presents the workspace that includes
menus, variety of tools and palettes for viewing, editing and
adding new elements to your project.

Figure 6: Main screen A. Project work Area B. Progress
palette C. Menu bar D. Tools bar E. Project contents F.
Search palette G. Tools palette H. Help agent

When the user starts a new project or open an old one, the user
selects the database category type and import his\her database
that should be installed in a database service provider (like
oracle…). After the user has started his\her project the project
shall have a directory folder saved in the pre-defined work
space of AI-Builder.

The project starts with loading the user database very
efficiently from Oracle, MySql or SqlServer into java scope
(project scope) using the Loader Class, some tests has been
made in a modern pc to insure the speed reliability of Loader
and one of the results was :
167 table each with (on average) 10 columns and at least 50
rows have been loaded successfully in 3.8 seconds.
The Loader class has the ability to load a database from
deferent database service providers include: Oracle, MySql
and SqlServer
Which are the most commonly used around the world and that
insures the flexibility of the resulted database. The Loader is a
dynamically implemented means that it can load the tables
whatever its structure design was or its number of tables or
columns, and this is a needed feature in AI-Builder to be able
to handle any user data base. However the class was built in a
specific design so it can store the tables in a way that separate
the structure (1) and data from each other insuring Loader ease
of use and performance stability. (See figure 7)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 324

Figure 7: these figures shows some information the user has to
fill to complete the connection to the database like database
type, database provider, user name, and password.

The Reader starts with reading all the loaded tables, this done
so AI-Builder can recognize what does the user mean (its
type) by any selected cell in the user database.
When reading a table the reader starts with identifying its
name by a text recognition engine (2) that investigate if the
table is known to Reader or not known, so AI-Builder can ask
the user to identify it. I must point here to the flexibility of the
Reader design, the Reader can be bound easily with any text
recognition algorithm with minimum code changes that need
only one hour effort.

Figure 8: types-pool mapping algorithm

After all the table's names are identified, the Reader starts to
read the columns inside the table using text recognition engine
in the same way as the tables’ names identification. Every
table name or column name are identified by the types-pool
mapping algorithm(3), and its works in this way: if the name
(table’s or column’s) given from the user is not recognized by
text recognition the name is added to a pool of names that are
all bound to a specific general type (an answer to the
following question: what does the user mean by this table and
this column so data in cell are meaningful) that is used later by
AI-Builder.(See figure 5.3)

An important feature of Reader is the ability to learn from the
user, in other words it never ask the user to identify something
twice as Reader store it in the first user identification. (See
Figure 5.4)

Figure 9: Table recognizer
A. list of unknown tables B. preview of the unknown table
C. Table type D. Description palette

Before the reading operation the Reader checks the tables and
asks the AIHandler (1) to load the needed information from the
recognition database, and then start the reading operation, that
uses the text recognition engine.
While the reading operation, names that are not understood by
Reader are enquired in an updates buffer and treated as new
knowledge that needed to be add to the AI database, these
updates are stored in the updater class.

The adder engine main job is to enhance the user tables after
they are read by the reader engine, all the tables at this point
are well understood and ready to enter the adder phase.
It starts by comparing the structure of the user tables with a
structure of a general tables in the general database (1) stored in
our program, the design of the general database passed throw
several steps to insure its effectiveness; this is has been
accomplished by an intensive study to database principles and
collecting information from deferent resources.

C

B A

D

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 325

Figure 10: Comparing the user tables with the general
database tables.

The comparison is done in two phases; the first one includes
comparison the user tables with the general database tables,
that means the columns is not included in this phase. (See
Figure 5.5)
The next phase of comparison is comparison the columns of
each table with another set of columns from the general
database, the result from the both phases will be a group of
updates that will be given to the user. (See figure 5.6)

Figure 11: comparing the columns in each table

After the adder has done the comparison, Adder will suggest
group of updates that are listed in a buffer and these updates
represents the result of the Adder comparing the general
database with the user database. Any new addition on the user
database will be grouped in a list and will be given to the user
to determine if he/she wants to use any of them or not,
The addition to the user database includes adding new tables,
new columns and creating new relations between tables;
deletion is not an option to the adder so the user will be sure
that no lost of tables will happen to his\her database.
The user can add a new general database as a new category
that is added to the adder as easy as one click; the user can
import his\her database structure into the program and make it
as a general database so AI-Builder can use it later to enhance
any future work, also he/she can import the database that a
viable in any of the most commonly used database service
provider in the world; MySql, oracle and SQL Server.
The idea of adding new general database will give the adder a
huge advantage by making it able to learn. Every new general
database means a new field of experience added to its huge

previous experiences, this feature gives a really good
advantage at development time, the developers can use, work-
on and benefit, so the experience of a single expert is
effectively reused.
The ability of learning that is represented in the reader and the
adder engines makes AI-Builder a huge resource of valuable
and precious information collected throw every use of the
program, the more you use the program the cleverer it will be.
After the database has been well defined and enhanced, the
user can start to build his\her AI algorithms that he will use
later in his\her application, the final output of this stage is a
package of classes that represents AI executions (the AI
algorithms) so the user can simply execute any of them
anywhere in his\her application by a method call.
The major advantage of this binding is that the user can build
complex AI algorithms and implement its code and use it in a
short time, and the reader may ask what is the benefit ?, what
is the main advantage? And the answer is simply that your
developers will do things faster easier and the AI expert
doesn’t have to worry about doing the structure design that
will hold his\her AI code.
Behavior Establishment:
The user can build an AI algorithm by first constructing some
behaviors so they can be used in the algorithm, a behavior is a
list of statements (code lines) that are treated as a method in a
programming language, the user write code in a behavior to a
specific thing that he want, remember that a behavior is only a
part of the code because it represent a node in a tree and one
path in that tree will be the code that will execute.
 each behavior have two lists of variables that are accessible
inside the behavior , first the parameter variables list which
represents the parameters used in the behavior and second the
return variables list that represent the variables that will be
affected after the behavior has completes.
The variables that are defined in the two lists each represents a
cell in the user scanned database (this is done in the Reader
phase) so the user can write the behavior code to use the
values of the parameters and to return new values to the return
variables (as update these database cells at user application
run time).

Figure 12: Behavior content

 A. Return list B. Parameter List C. User code

The variables scope is the whole user database; this is means
that the user can define a variable on any cell in the database.
This is insures that AI-Builder can be used for any application

B

C

A

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 326

that depends on the database as major part of design. A
variable definition in most development IDEs is represented
by declaring the variable name and type and maybe an initial
value, in AI-Builder you can define the variable in the same
way by giving a name and selecting the table and column of
the cell that represent the variable and the cell value will be
the variable initial value.
If you look closely u can see that the table type and the
column type are bound to gather (1) so they represent the
variable type, by other words the cell type as an answer of the
following question : what does the user mean by this cell?.
This feature enables AI-Builder to have ready-for-use
behaviors that are generally used on deferent projects that
have the same category (2),and this insures the reusability of
behaviors (built-in or user-defined)in deferent project that are
enhanced using AI-Builder.
The binding of behaviors in an AI algorithm (called Execution
in AI-Builder) depends on the algorithm type , behaviors are
sometimes bounded directly as nodes in a tree(3) or bounded
to a conditional node (3) that are used to enable the user to
control the run path of the tree algorithm.

Execution Establishment
When the user have an AI idea that he think will make his\her
application better ,as for example he won’t his\her application
to make some shortcuts to have some the arrangement in the
his\her client interface, create a new execution and start to
design the AI algorithm so it can do what he want.
When the user have an AI idea that he think will make his\her
application better, as for example he won’t his\her application
to make some shortcuts to have some the arrangement in the
his\her client interface, create a new execution and start to
design the AI algorithm so it can do what he want, after the
user has finished building his\her algorithm he can use it by
using its execution file.
for every algorithm there is a .java file that holds the
behaviors code and have the execute method that is used to
execute the algorithm , that file is call an execution file and is
used when the user has finished his\her algorithm design and
has established and compiled his\her code.
The types of algorithms that can be built in AI-Builder are
structured as a tree of behaviors, by other words AI-Builder
gives the ability to write code sections and distribute them on
the tree nodes from the root node down to all leaves and all of
these nodes will be treated as behaviors (as mentioned before
a behavior is a node the contain code to be executed) so he can
control what code to be executed, what to pass over. The
control decisions can be made at run time as I will explain
shortly.
The types of algorithms that can be built in AI-Builder are
structured as a tree of behaviors, by other words AI-Builder
gives the ability to write code sections and distribute them on
the tree nodes from the root node down to all leaves and all of
these nodes will be treated as behaviors (as mentioned before
a behavior is a node the contain code to be executed) so he can
control what code to be executed, what to pass over. The
control decisions can be made at run time as I will explain

shortly.
There are three types of these tree algorithms:

1. Conditional tree algorithm.
2. Recursion tree algorithm.
3. Single path list algorithm.

Conditional tree algorithm:

Figure13: Conditional tree algorithm.

 This type of tree consists of behaviors and conditional
nodes, the behaviors are used to write code in it and the
conditional nodes are for control so at run time a single path in
the tree is executed.
 A conditional node main purpose is to determine the path
for the execution, to determine the next node that will be
executed. To make that possible a conditional node consists of
enter points one of every behavior that is child to the
conditional node, each enter point is bounded to a method that
return a Boolean and it’s the user job to code that method
,these methods are given to the user in a class (that comes
with the execution class) that have empty methods that return
true by default and every one of these methods must be coded
in order to make the control possible(1), notice that AI-Builder
sets the decisions coding in the user’s application scope so the
user control can be easily linked with his\her application logic.
The enter points are checked from left to right at runtime and
the first one that comes with a true result will be consider the
valid enter point and its behavior will be the next one to be
executed so after that its goon to another conditional node in a
lower level of the tree, and its repeated until the last behavior
have no conditional node linked to it as a child.
The reader can think of this as that each enters point has a
priority, the first one has the highest priority and the last one
has the lowest priority. There is a little trick that the user
might consider, the user can add an enter point and make its
method always return false so it is never entered so that the
method can have some code to be executed before the
decision process of the conditional node begins, this is can be
extremely useful especially if the decision of the conditional
node depends on some calculations the is needed to be done
first.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 327

Recursion Tree Algorithm:

Figure14:Recursion Tree Algorithm

This type of tree consists only of behaviors, the behaviors are
used to write code in it and the all of the tree nodes
(behaviors) will be call as the tree is a recursion tree.
Generally in recursive tree the root node will call the left child
and the right child, in AL-Builder the recursion tree nodes are
behaviors and the behaviors call each other recursively. Notice
that in this type of tree all behaviors are executed, so the user
job is to code his\her defined behaviors and the more
important to control the order of execution of these behaviors.
Recursion tree algorithms are generally building a single
problem solution; the algorithm handles one main idea and
they can be used when ever needed.
 There is a little trick that might be very useful, the user can
use his\her recursion algorithm (call it’s execute method in its
execution java file) inside another algorithm, maybe
conditional node algorithm, the user can create an empty
behavior and call the execute method of that algorithm inside
the empty behavior. By this the user can create general
algorithms and use it whenever he wants to, this insures that
high reusability of the user work and is done by a single line
of code.

Behaviors’ List Algorithm:

Figure15: Behaviors’ List Algorithm

This is the simplest type of algorithm that the user can build;
it’s simply a list of behaviors that will execute in a linear
order.
Generally the behaviors list algorithm is used when the user
want a simple group of actions to be done when he call the
execute method in his\her application, there is no conditions
no recursive calls (handled by execution java file not by user;
the user just call it).

Main Output:
The main output is a package of classes that represent the
executions and there support classes, the user can use these
executions by simply import the output package and call the
execute method of a specific execution any where needed in
his\her application.
The user can use any conditions in his\her application logic or
any build in listeners in java libraries, this insure the usably
and high compatibility of AI-Builder.

5. Conclusion
The intelligent user interaction development (IUID) engine
makes the development of the artificial intelligence code and
the addition to the product is possible and risk free. It provides
the ability to use an artificial intelligence to improve the
structure of the relational database. It consists of two phases,
database phase that includes: loader, reader and adder and
artificial intelligence algorithms phase that includes behavior
establishment, execution establishment and the artificial
intelligence builder.
The output of the first phase is a well-structured identified
database uses as input to the second phase. The output of the
artificial intelligence algorithms phase is a tree structure that
represented as java classes grouped together in a java package.
It gives the user the power to develop some clever actions to
use in his/her applications without any need to worry about
the code structure or object oriented constrains in an easy way.

References

[1]. Bertino, B. Catania, G.P. Zarri, “Intelligent database systems”, Reading,
Addsion Wesley Professional, 2001.
[2]. Kamran Parsaye, Mark Chignell, Setrag Khoshafian and Harry Wong,
“Intelligent databases-object-oriented,deductive hypermedia technologies”,
New York, JohnWiley& Sons, 1989.
[3]. Androutsopoulos, G.D. Ritchie, and P. Thanisch, Natural Language
Interfaces to Databases An Introduction, Journal of Natural Language
Engineering
1 Part 1 (1995), 29–81
[4]. Charniak E. 1993, “Statistical Language Learning”, MITPress.
[5]. Church K., Mercer R. 1993, “Introduction to the special issue on
computational linguistics using large corpora”,Computational Linguistics,19
(1), pp. 1-24.
[6]. Miikkulainen R. 1993, “Subsymbolic Natural Language Processing: An
Integrated Model of Scripts, Lexicon, and Memory”, MIT Press, Cambridge,
MA.
[7]. Marcus M., Santorini B., Marcinkiewicz M. 1993,”Building a large
annotated corpus of English: The Penn Treebank”, Computational Linguistics,
19 (2), pp. 313-330.
[8]. McCarthy J, Lehnert W ,1995, “Using decision trees for coreference
resolution”, Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence,
pp. 1050-1055.
[9]. Riloff E. 1993, “Automatically constructing a dictionary for
information extraction tasks”, Proceedings of the Eleventh
National Conference on Artificial Intelligence,pp. 811-816.
[10].Riloff E.1996, “Automatically generating extraction
patterns from untagged text”, Proc eedings of the
Thirteenth National Conference on Artificial Intelligence,
pp. 1044-1049.
[11].Majumder P., Mitra M., Chaudhari B.,2002, “N-gram: A

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 328

Language Independent Approach to IR and Natural
Language Processing”, Lecture Notes.
[12].Miikkulainen R., 1997,“Natural language processing with
subsymbolic neural networks”, Neural Network
Perspectives on Cognition and Adaptive Robotics.
[13].Reilly R., Sharkey N. (Eds.),1992 “Connectionist
Approaches to Natural Language Processing”, Lawrence
Erlbaum and Associates, Hilldale, NJ.
[14].Shashtri L.,1997, “A model of rapid memory formation in
the hippocampal system”, Proceeding of Meeting of
cognitive Science Society, Stanford.
[15].Abrahams P. W. et al. “The LISP 2 Programming
Language and System”, in proceedings of FJCC, No. 29,
USA, 1966, pp. 661– 676.
[16].J. McCarthy, “LISP Programmers Manual, Handwritten
Draft” MIT AI Lab., Vambridge, USA, 1959.
[17].T. Warren, “A Step toward Man-Computer Symbiosis”,
Ph.D. Thesis, Massachusetts Institut of Technologie,
Project on Mathematics and Computation (MAC),
Technical Report MAC-TR-32, Cambridge, MA, USA,
1966.
[18].Rohit J. Kate and Raymond J. Mooney, Using String-
Kernels for Learning Semantic Parsers, COLINGACL
(2006).
[19].Woods, W. (1973). An experimental parsing system for
transition network grammars. In Natural language
Processing, R. Rustin, Ed.,Algorithmic Press, New York.
[20].Woods, W., Kaplan, R. and Webber, B. (1972). The Lunar
Sciences Natural Language Information System. Bolt
Beranek and Newman Inc., Cambridge, Massachusetts
Final Report. B. B. N. Report No 2378.
[21].Hendrix, G. (1977). The LIFER manual A guide to building
practical natural language interfaces. SRI Artificial
Intelligence Center, Menlo Park, Calif. Tech. Note 138.
[22].Hendrix, G., Sacrdoti, E., Sagalowicz, D. and Slocum, J.
(1978). Developing a natural language interface to
complex data. ACM Transactions on Database Systems,
Volume 3, No. 2, USA, Pages 105 – 147
[23].D.L. Waltz., “An English Language Question Answering
System for a Large Relational Database
[24].Yunyao Li, Huahai Yang, and H.V. Jagadish,
Constructing a Generic Natural Language Interface
for an XML Database, EDBT (2006).
[25].Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates, Modern Natural
Language Interfaces to Databases:Composing
Statistical Parsing with Semantic Tractability,
COLING (2004).
[26].Yuk Wah Wong, Learning for Semantic Parsing Using
Statistical Machine TranslationTechniques, Technical
Report UT-AI-05-323, University of Texas at
Austin, Artificial Intelligence Lab, October 2005.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 329

