
iAgile: A Tool for Database Generation Guided by Graphical User
Interface

Shaimaa Galal1 and Ehab Hassanein2

 1 Information systems department, Cairo university
Cairo, Egypt

2 Information systems department, Cairo university
Cairo, Egypt

Abstract
The agile development of the database and software systems is
highly productive activity; it reduces time consumed, cost and
effort invested in project development, but many agile projects
do not apply agile practices to database development and still
consider it in a serial manner as heavy-weight methodologies
exactly work, while agile methodologies were introduced to
overcome the problems experienced with the heavy-weight
methodologies. The Enhanced Early Development of Graphical
User Interface Practice Framework was introduced to enable
performing the database development process in an evolutionary
manner. In this article a proposed tool will be presented to help
generating the final software product through applying and
automating this framework to support agility in both directions of
coding and data modeling as well, using such a tool will provide
a high level of customer collaboration and help data
professionals to work in an agile manner to avoid the problem of
having overbuilt systems along with automatically generating
portions of the software code based on available modern software
architecture models.

Keywords: Agile database development; Agile data modeling;
Graphical user interface; Data access Layer generation.

1. Introduction to Agile Database
Development

Most data-oriented techniques are serial in nature,
requiring the creation of fairly detailed models before
implementation is “allowed” to begin. These models are
often base line and put under change management control
to minimize changes (at the end, this will be actually called
a change prevention process) [3]. Agile data modeling
allows data professionals to adopt evolutionary approaches
to all aspects of their work; examples of those techniques
are [3]:

1. Database refactoring: evolve an existing
database schema by implementing few changes at
every time to improve the quality of its design
without changing its semantics.

2. Evolutionary data modeling: Model the data
aspects of a system iteratively and incrementally,
just like all other aspects of a system, to ensure
that the database schema evolves in step with the
application code.

3. Database regression testing: Ensure that the
database schema actually works.

4. Configuration management of database
artifacts: Your data models, database tests, test
data, and so on are important project artifacts that
should be managed just like any other artifact.

5. Developer sandboxes: Developers need their
own working environments in which they can
modify the portion of the system that they are
building and get it working before they integrate
their work with that of their teammates.

The Enhanced Early Development of Graphical User
Interface practice Framework (EEUID framework for
short) applied the evolutionary data modeling technique
on the Early Development of Graphical User Interface
practice [8, 9] to provide data professionals with an agile
data modeling technique that will have the following
advantages:

1. Remove frustration that happens during the
development process, as developers ignore data
professionals’ advice, standards, guidelines, and
enterprise models, While developers often do not
even know about these people and things in the
first place, this problem illustrated in[3].

2. Accelerate the development process by
automatically generating code portions that
formulate essential parts of the system.

3. Increases the documentation level for the agile
methodologies, which is considered a competitive
advantage.

In this article, a tool is proposed to put the EEUID
Framework in action, which in turn will help to reach an

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 292

evolutionary final product that is based on different
available modern software architecture models.

2. Introduction to the Enhanced Early
Development of Graphical User Interface

Agile methodologies have arisen since the last decade to
fulfill the need of developing information systems more
quickly in a competitive business environment [7].

There is a framework recently introduced – “the
Enhanced Early Development of Graphical User Interface
practice framework” [6] – the framework main objective is
to generate a final software product through applying
agility in both directions of coding and data modeling as
well.
 The EEUID process works in an evolutionary manner
as shown in fig.1.

Figure 1: Enhanced EUID process

As shown in fig. 1, through each iteration start,
requirements acquired from the customer, then GUI will be
developed using the EEUID generator producing three
outputs (HTML GUI structure, XML behavior file, XML
class diagram description), hence class diagram is
generated using UML diagram generator. From this point,
the framework automatically generates the data access
layer, DB schema and detailed design documents needed
for this iteration, then developers can start the development
process and produce release for this iteration. For each
successive iteration a complete regression test should be
applied for the iteration release if it fails, refactoring
should be done, if it passes the test, iteration release is

presented to the customer for feedback and starting the
new iteration.
 The framework supports four types of available modern
software architecture models; the proposed tool in this
article, will apply only one model which is the GUI layer
and object relational access layer above relational DB
model [6].

3. Tool Overview

The iAgile studio is a proposed tool to implement the
EEUID framework components; it will help system
analysts to automatically generate the database schema, the
data access layer and the quality documentation needed for
future maintenance and testing purposes.

According to the iAgile Layout and content editor

displayed in fig. 2, the visual specification of the project
pages is constructed through three sets of controls:

1. The Early Development of Graphical User
Interface practice components (EUID
components for short), which are components of
several types that are used to build main parts of
the web page. In the next sub section, further
details about these components will be illustrated.

2. Typical web development controls: Examples
including Textboxes, Comboboxes and images.
These are used for further addition\modification
of the web page controls. Meanwhile, when a
user drags and drop any of these, it must be
attached to a particular page component, then
events can be added to different types of controls.
The tool offers a set of specified predefined
actions such as saving, searching, adding,
deleting data or moving to another page as an
initial set of most frequently used actions. For
further actions, the system analyst should write
the Test First examples that will be implemented
manually in that iteration development phase.

3. iAgile studio tools: help to build more
interactions on the page, such as simple math
calculator that is used to produce an output in a
field from performing simple math calculations
on other inputs of the same page, e.g. calculating
a person’s age from his\her date of birth.

According to fig. 1, at the beginning of each project
iteration, the system analyst should start to construct the
web pages GUI through the previously mentioned sets of
tools; upon completion of this step, the tool will be able to
generate the system accumulated class diagram up to this
project iteration making use of the generated XML
behavior file and XML class diagram description file.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 293

From this point, the system analyst can generate the
database schema, the data access layer and the detailed
design documents for this iteration according to the chosen
software architecture model; consequently a phase of
further development should start to complete the missing
functionalities using the Test First Examples generated
with the web pages GUI and finally proceed to next
iteration after considering the customer feedback.

3.1 The tool support for the early development
of graphical user interface practice
components

According to similarities between information systems
web applications, the EUID components were proposed
as essential constructs for each web page applying the
EUID practice, there are four types of these
components, which are [8, 9]:
1. Search component: It allows users to search for

certain data. This may come in different forms,
for example, a combobox or a set of editable
controls with a search button.

2. One record component: It is responsible for
adding, editing, or viewing a one record data. One
famous form for that component is a set of
controls in columnar representation.

3. Multi record component: The Multi record
component can be referenced to be a datagrid
where data is represented in tabular form. It can

be used for viewing data only or for editing or
deleting. The most famous form for editing or
deleting records in that component is through
adding links for each record in the datagrid.

4. Navigator component: There are several actions
occurs when a link is clicked. For example, on
clicking a link the user can move to another page
or make changes on the same page.

 iAgile supports these types of components via the idea
of that for every screen there is at least a conceptual master
class and potential set of dependant classes. The properties
of each class will be added from every screen to those
classes in order to form the final class definition.

4. iAgile Software Architecture Design

One extreme importance is illustrating the relationship
between engineering principles and architectural view; this
section will illustrate a number of insights into what iAgile
software architecture might be. Fig.3 shows the component
diagram of iAgile architecture, which implements the
EEUID framework.
The software architecture is composed of:

1. The Enhanced Early Development of Graphical
user Interface package: designed for designing
the pages’ UI via constructing each page of the
system in the form of one or several components

Figure 2: iAgile layout and content editor

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 294

and it stores the classes’ details associated with
each screen. This package will generate the
pages’ user interface in the form of HTML, the
XML class description files and the XML
behavior files. The XML class description file
structure is shown in fig. 4, and the XML
behavior file structure is shown in fig. 5.

2. The UML diagram generator component:
processes the “XML class description files” in
order to generate the current system class diagram
that is crucial part of the system which will be
used mainly to generate the database schema.

3. The UML transformer package: will use the class
diagram and XML behavior file to generate the
final expected outputs of the system.

Figure 3: iAgile software architecture’s component diagram

Figure 4: EEUID designer’s XML class description file structure

Figure 5: EEUID designer’s XML behavior file structure

Figure 6: iAgile UML sequence diagram

A UML sequence diagram is shown in fig. 6 to illustrate
iAgile process sequence. First, the system analyst starts to
design the system pages, each time a component is added
in any page, a class description for this page must be
provided to indicate whether this class is master or
dependant class and whether it have been used previously
in other page or not, this is the most critical task to be done
as all later steps will depend on this major step. Once the
pages for this project iteration are completed, the system
will be able to generate the final three outputs. All
successive iterations are done the same way and modified
outputs for the previous iteration will be generated
smoothly.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 295

4. iAgile in Action

This section will demonstrate a simple example of how
iAgile will reach the expected final results. Consider a web
page for “patients’ registration” as shown in fig. 7.

To construct the web page in fig. 7, the page will
contain two components: Insert_OneRecord component
and Navigation_Edit_Multirecord component.

Figure 7: Patients’ registration web page

First, the user drags Insert_OneRecord component to

the content editor and a screen for master class details will
appear. If the data on the web page appears for the first
time in the system, then the web page contains a new
master class, details for the class properties that will
appear on the screen should be completed e.g. to add
patient name class property, then details should be as
follow: Control Type → Text Box, name → Patient Name,
Data Type → String, Length → thousand. The rest
properties should be filled as shown in fig. 8.

Second, the user drags Navigation_Edit_Multirecord

component to have a data grid in the web page with edit

and delete link buttons. Finally to add the extra button for
the search criteria and view the results in the data grid, the
user should drags a button and sets its action details from
the panel in the most bottom of the screen shown on fig.2
to define the action inputs and outputs. After the system
analyst finish constructing the web pages for this project
iteration, a class diagram will be generated automatically
making use of the iAgile metadata files represented in the
XML behavior file and the XML class diagram
description. iAgile will thereafter generate the three
expected outputs, which are database schema, data access
layer and detailed design documents, further details
illustrated in next sections.

5.1 The tool support for the early
development of graphical user interface
practice components

Starting from the class diagram classes we need to
transform objects into tables in the database. To store
an object in a relational database, it should be flatten,
i.e. create a data representation for this object. To
retrieve the object, data retrieved from the database
and then object is created — often referred to as
restoring the object — based on that data [2]. There
are existing approaches to generate the relational
database (RDB) schema from a given class diagram
[1, 2], but still it is complicated task as mappings can
be done in several ways and choices for each mapping
way to use should be defined.
From the previous generated class diagram, we can
have RDB schema according to the following mapping
choices [6]:

a) Mapping Meta-data: Class properties are
mapped to table columns:

 Figure 8: master class details

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 296

b) Inheritance Relationships: are best mapped by
mapping each class to table, due to the simplicity
in implementation and understanding.

c) Relationships between classes: will be maintained
in relational databases through the use of foreign
keys.

d) Object Identifiers: will be maintained in relational
databases through the use of primary keys.

5.2 Data Access Layer

To generate the appropriate classes and files for object
relational (OR) data access layer an adequate ORM tool
should be chosen first, large number of ready-made tools
(O/R mapping tools) are present in the market due to the
popularity of using such technologies according to its
advantages discussed in [6, 5, 12]. These tools allow
mapping between objects and RDB. Examples of these
tools are Hibernate/NHibernate, Entity Framework, Open
Access, Subsonic, Light Speed, Data Objects.Net and Hera
Framework. iAgile here implements the NHibernate tool as
it is the most usable ORM tool for .NET and java as well
[11].
 iAgile automatically generates the object relational
access layer files that fit for the relational database schema
using the NHibernate engine, the following files will be
generated for each web page in the project:

• Domain object (classes) – contains class
properties getters and setters and main class
operation.

• Hibernate/NHibernate hbm files – these files
represent Mapping Metadata between objects
properties and relational table columns along with
relationships between classes.

And only one file for the physical database driver
configuration that contains necessary pieces of information
in order to connect to data source. For the web page in fig.
6, two files will be generated which are Patients.cs and
Patients.hbm.

5.3 Detailed Design Documents

In Agile, documentation is sparse – often limited
to the source code and a set of user stories or UML
diagrams. While reducing the amount of documentation
can increase productivity, it does come at some risk and
cost. Documentation serves as a way to bring new
members up to speed. It is useful when transitioning the
project to a maintenance team. From a business
perspective, documents form the basis for audits assuring
proper quality procedures are followed. Documentation
serves as a domain knowledge repository and is necessary
to retain critical information over time [4, 10].

 iAgile builds quality document templates according to
the information stored during the web pages GUI building
process, one of the templates that can be produced is the
detailed design document for the designed web pages. This
will help more documentation and give agile
methodologies a competitive advantage. Sample of the
detailed design document is shown in fig. 9.

Figure 9: Detailed Design Document

The proposed detailed design document contains two

main sections. The first section contains general
information as web page name, creation date, iteration
number, database engine type, etc. The second section
explains page events by stating each control causing event
for this page and full details for inputs, outputs, mapping to
database, description and associated test first cases [6].

6. Conclusion and Future Work

There are proven practices employed in Agile
Methodologies that, when applied under the right
circumstances result in lower-risk projects and ultimately
better productivity and quality. In this article, a proposed
tool – iAgile – was presented to automatically generate a
full software product using the EEUID framework that is
based on robust software architecture in which developers
can refactor later in order to finalize the needed product
through several iterations; this will lead to even more
productivity and speed up the project delivery time.
 iAgile did not stop at the software product generation
stage, it also included automatic documentation generation
as documentation is a part of the agile software
development, but as all agile approaches include a
minimum of documentation, it makes documentation the
responsibility of the development team to ensure enough

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 297

documentation is available for future maintenance and
testing.
 Future work should include the following items for
better development process:
a. Generation of the rest software architecture models as

for any project there is not something called “best
architecture model”, but there is “adequate
architecture model” according to the project
circumstances.

b. Generation of different documentation types used for
quality and testing purposes that can be formulated
from the iAgile studio meta-data files.

c. Supporting the bidirectionality of the Enhanced EUID
framework illustrated in [6].

d. It is highly recommended integrating the tool with
other automated testing tools as NUnit and JUnit, this
will lead the agile family to gain more competitive
advantages.

e. Enhancing the GUI generation part by integrating it
with additional application of a picture editing tool,
e.g. those used for sketching UI widgets. When more
sophisticated UI behavior is necessary, embeddable
objects such as Adobe Flash need to be generated
separately. iAgile will help to model ordinary UIs, but
otherwise needs to become part of an interrelated tool-
chain.

f. Finally integrating the tool with task management
systems will allow easier project planning and task
assignments for the project managers, as after
finishing each iteration GUI design, the project
manager can assess how much work still need to be
done and start assigning missing functionalities to
developers.

Acknowledgments

I am truly and deeply grateful to my professor Dr.Ehab
Ezzat who encouraged and helped me to produce this work
and enhanced my personality as well.

References
[1] S. A., “Mapping objects to relational databases - What you

need to know and why”, 2000.
[2] S. A., “Agile Database Techniques—Effective Strategies for

the Agile Software Developer”, New York: 2003.
[3] S. A., and P. J. S., “Refactoring Databases: Evolutionary

Database Design”, Addison-Wesley, 2006.
[4] C. M., and B. S., “The Impact of Agile Methods on

Software Project Management”, in Engineering of
Computer-Based Systems conference, 2005.

[5] A. D., and V. R., “Object-Relational Mapping Techniques
for .Net Framework”, 2004.

[6] Sh. G., E. H., “Applying Agile Methodology on Database
Generation Guided by Graphical User Interface”, in

international conference on computational intelligence and
software engineering, 2011.

[7] J. H., “Agile software development ecosystems”, Boston:
2002, Addison Wesley.

[8] C. L., E. H., and O. H., “Early development of graphical
user interface (GUI) in agile methodologies”, in Informatics
and Systems Conference, 2010.

[9] C. L., E. H., and O. H., “Early Development of Graphical
User Interface (GUI) in Agile Methodologies”, Journal of
Computational Methods in Sciences and Engineering, V. 9,
No. 1, 2009.

[10] M. L., et al., “Empirical Findings in Agile Methods”, in
Universe and First Agile Universe Conference on Extreme
Programming and Agile Methods, 2002.

[11] NHibernate 3.1.0, http://www.hibernate.org/, Last date
accessed 5.2011.

[12] W. Z.; N. R., “The Real Benefits of Object-Relational DB-
Technology”, in British National Conference on Databases:
Advances in Databases.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 298

