
FLoMSqueezer: An Effective Approach For Clustering
Categorical Data Stream

M Sora1, S Roy2 and S I Singh3

 1Department of Computer Science & Engineering,

Rajiv Gandhi University, Doimukh 791112, Arunachal Pradesh, INDIA

2Department of Information Technology,
North Eastern Hill University, Shillong 793022, Megalaya, INDIA

3Department of Computer Science & Engineering,
Tezpur University, Tezpur 7984028, Assam, INDIA

Abstract

Squeezer is an effective histogram based approach for categorical
data stream clustering. Drawback of Squeezer is that it is not
scalable in terms of memory. The size of histogram increases with
the increase in records in the dataset. Accommodation of
unpredictably large histogram in the main memory is not always
feasible. To handle the bottleneck, a modified version of Squzeer,
FLoMSqueezer, is proposed in this paper. It uses concise
sampling technique for handling increasing memory requirement
by the Squzeer. Experimental results shows that proposed
approach scales better in terms of quantitative cluster, memory as
well as execution time.

Keywords: Cluster analysis, data stream, histogram, sampling,
quantitative cluster.

1. Introduction

With the advent of storage technology, internet and
network technology, enormous amount of incremental data
generated every day in a timely fashion in the form of data
stream. Handling such a huge stream of data gives rise to a
new data processing model [1].Unlike traditional data
processing, which is normally static in nature, stream data
arrives in the form of continuous, high-volume, fast, and
time-varying streams and the processing of such streams
entail a near real-time constraint. Data streams knowledge
discovery systems are usually constrained by three limited
resources: time, memory and sample size. Nowadays, time
and memory seem to be the bottleneck for machine learning
applications, mainly the last one. Many important
applications, ranging from network security, sensor data

processing, to stock analysis, climate monitoring, are a part
of the data stream model. From the last decade, data mining
[3] meaning extracting useful information or knowledge
from large amounts of data, has become the key technique
to analyze and understand data. Typical data mining tasks
include association mining, classification, and clustering.
These techniques help find interesting patterns, regularities,
and anomalies in the data. However, traditional data mining
techniques cannot directly apply to data streams. This is
because mining algorithms developed in the past target disk
resident or in-core datasets, and usually make several
passes of the data. Mining data streams are allowed only
one look at the data, and techniques have to keep pace with
the arrival of new data. Furthermore, dynamic data streams
pose new challenges, because their underlying distribution
might be changing. The problem of clustering becomes
more challenging when the data is categorical, that is, when
there is no inherent distance measure between data values.
This is often the case in many domains where data is
described by a set of descriptive attributes, some of which
are neither numerical nor inherently ordered in any way. A
data stream is a massive unbounded sequence of data
elements continuously generated at a rapid rate.
Consequently, the knowledge embedded in a data stream is
more likely to be changed as time goes by. Identifying the
recent change of a data stream, especially for an online data
stream, can provide valuable information by analysis of the
data stream [4].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 284

2. Data stream mining

Data stream are continuous flow of data. A data stream
mining is ordered sequence of points that can read only one
or small number of times. Formally, a data stream is a
sequence of point x1,….xi,……xn read in increasing
ordered of indices i. according data stream model[2]. The
performance of an algorithm that operates on data stream is
measured by number of passes that the algorithm must
make over stream, when constrained in terms of available
memory, in addition to the more conventional measures.
The data stream model is motivated by emerging
application involving massive data sets, e.g customer click
streams, telephone records; large set of web pages,
multimedia data, and sets of retail chain transaction can be
modeled as data streams. These data are far too large to fit
in main memory and are typically stored in secondary
storage devices, making access, partially random access
very expensive. Data stream algorithms access the input
only a linear scan without random access and require to
scan only once over the data. Furthermore, since amount of
data far exceeds the amount of space (main memory)
available to the algorithm, it is not possible to remember to
much of data scanned in the past. These scarcity of space
necessities the design of novel kind of algorithm that stores
only the past data, leaving enough memory for future data.
Clustering has recently been studied across several
disciplines, but only few techniques have developed
scalable very large datasets. In more recently years, a few
categorical stream clustering algorithms has formulated
such as Squeezer [5] algorithms for categorical data
streams.

2.1 Categorical Domains and Attributes

Categorical Domains and Attributes: Let A1, …, Am be a
set of categorical attributes with domains D1,…, Dm
respectively. Let the dataset D = {X1, X2, …, Xn } be a set
of objects described by m categorical attributes, A1, …,
Am. The value set Vi of Ai is set of values of Ai that are
present in D. For each vε Vi, the frequency f (v), denoted
as fv, is number of objects Oε X with O.Ai = v. Suppose
the number of distinct attribute values of Ai is pi, we define
the histogram of Ai as the set of pairs: hi = {(v1, f1), (v2,
f2),…,(

ipv ,
ipf)}. The histogram of the data set D is

defined as: H = {h1, h2, …, hm}.

2.2 Dissimilarity Measures: Let X, Y be two categorical
objects described by m categorical attributes. The
dissimilarity measure between X and Y can be defined by
the total mismatches of the corresponding attribute values
of the two objects. The smaller the number of mismatches
is, the more similar the two objects. Formally,

)(, jj1 yxY)(X,d
m

1j
∑
=

= δ
 (1)

where =)(, jj yxδ)(1
)(0

jj

jj

yx
yx

≠
=

 (2)
Given the dataset D = {X1, X2, …, Xn} and an object Y,
The dissimilarity measure between X and Y can be defined
by the average of the sum of the distances between Xi and
Y.

n

yxd
YDd

n

j
j∑

=

=
= 1

)(
),(

1

2

 (3)
If we take the histogram H = {h1, h2, …, hm} as compact
representation of the data set D, eq (3) can be redefined as

n

yx
YHd

m

j
j∑

=

=
= 1

)(
),(

1

2

φ

 (4)
Where

)(* , jj

j

jj yvf)y,(h
p

1l
∑
=

= δφ

 (5)
In some cases, it is convenient to use similarity rather than
distance. Similarity between Y and H is define as

n

yh
YHSim

m

j
jj∑

== 1
),(

),(
ψ

 (6)
Where

))(1(* , jj

j

jj yvf)y,(h
p

1l
∑
=

−= δψ
 (7)

From the implementation efficiency viewpoint, eq. (6) can
be computed more efficiently because it only requires
computing the frequencies of matched attribute value pairs
[1].
The clustering accuracy for measuring the clustering results
was computed as follows. Given the final number of
clusters, k, clustering accuracy r was defined as:

n
a

r
k

i
i∑== 1

where n is the number of record in the dataset, ai is the
number of instances occurring in both cluster i and its
corresponding class, which had the maximal value. In other
words, ai is the number of records with the class label that
dominates clusters i. Consequently, the clustering is defined
as e=1-r. Furthermore, we define the absolute clustering
error ace as: ace=e*n.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 285

3. Related Works

Below we present some existing works for handling
categorical data as well as data streams.

3.1 STIRR [11]: (Sieving through Iterated Relational
Reinforcement) is an algorithm based on non-linear
dynamical systems. The database is represented as a graph
where each distinct value in the domain of each attribute is
represented by a weighted node. Thus if there are N
attributes and the domain size of i -th attribute is di . Then
the number of nodes is the graph is∑i id . For each tuple is

the database, an edge represents a set of nodes which
participate in that tuple. Thus a tuple is collection of nodes
one from each attribute type. The set of weights of all the
nodes define a configuration of this structure. The initial
weights of all the nodes can be either assigned uniformly or
randomly or by focusing technique. STIRR iteratively
changes the configuration by updating weight of any node.
The new weight of the node is calculated based on a
combiner function, which combines the weights of other
nodes participating in any tuple with given node for which
the weight to be updated. Thus it moves from one
configuration to the other till it reaches a stable point,
called as basin. The convergence is dependent on the
combiner function. Analyzing the stability is hard for any
arbitrary combiner function. However, for simple
combination function like sum of multiplication, the system
definitely converges to a fixed point. It is easy to see that
for categorical attributes, the values which are related
through common tuples influence each other during weight
modification. Thus one does not require any similarity
metric to be defined for categorical attributes. Interestingly,
in order to cluster the set of tuples, STIRR maintains
multiple copies of weights. When the fixed point is
reached, the weight is one or more of the basins isolate two
groups of attribute values on each attribute the first with
large positive weights and second with small negative
weights. The nodes with large positive weights and second
with small negative weights are grouped to determine
cluster. These groups correspond intuitively to projections
of clusters on the attribute. However, the automatic
identification of such sets of closely related attribute values
from their weights requires a non-trivial post-processing
step; such a post-processing step was not addressed in their
work. Moreover, the post-processing step will also
determine what ‘cluster’ are output. The underlying idea of
STIRR is unique but it may be hard to analyze the stability
f the system for any useful combiner function. One requires
rigorous experimentation and fine tuning of parameters to
arrive at a meaningful clustering[4].

3.2 CACTUS[8]: Catagorical data ClusTering Using
Summeries is a sort of subspace clustering. CACTUS
attempts to split the database vertically and tries to cluster
the set of projection of these tuples to only a pair of
attributes. Its basic principle can be described as follows:
let us consider two attributes values of two different
attributes in the database. Say, ai of attribute type A and aj
of attribute type B. there may be tuples where ai and aj co-
occur. The support of these two values in the database is
the proportion of tuples in which they appear together. If
this support exceeds a pre-specified value, we say these
values are strongly connected. This concept can be to
compute the inter-attribute and intra-attribute summaries of
the given data set. Most interesting aspect of these steps are
that these can be computed using-attribute and intra-
attribute summary. It is not necessary to refer to the original
data base. CACTUS first identifies the cluster projections
on all pairs of attributes by fixing one attribute. Then it
generates an interesting set to represent the cluster
projection on this attribute for n-cluster(involving all the
attributes). Once all the cluster projections on individual
attributes are generated, these are synthesized to get the
clusters of the database. The major steps of CACTUS are:
Finding cluster projection on given attribute Ai with respect
to another attribute Aj Intersecting all the cluster projection
for any given Ai to get the cluster projection Ai with
respect to all attribute. Synthesizing the resulting cluster
projections to the main clusters.

3.3. COOLCAT [6]: It is capable of efficiently cluster
large data sets of records with categorical attributes.
COOLCAT's clustering results are very stable for different
sample sizes and parameter settings. Also, the criteria for
clustering are a very intuitive one, since it is deeply rooted
on the well-known notion of entropy. Entropy and
Clustering Entropy is the measure of information and
uncertainty of a random variable. Formally, if X is a
random variable, S(X) the set of values that X can take, and
p(x) the probability function of X, the entropy E(X) is
defined as shown in Equation:

))(()()(
)(

xplogxpXE
XSx
∑−=
ε

The entropy of a multivariate vector x = {X1,…..Xn} can
be computed as shown in Equation
() ∑

∈
−=

)S(X11x
)...x)log(x...xp(xxE n1n1

Entropy is sometimes referred to as a measure of the
amount of "disorder" in a system. It is novel method which
uses the notion of group records.
COOLCAT initially finds a suitable set of clusters out of a
sample, |s| taken from the dataset(|s|<<N, where N is the
size of entire dataset). Form the sample dataset it first find
k most “dissimilar” records by maximizing the minimum

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 286

pairwise entropy of chosen points. That is COOLCAT

starts by finding the two points 1sp and 2sp that
maximize E(1sp , 2sp) and placing them into two separate
clusters(C1, C2) making records. From there it proceeds
incrementally .

3.4 ROCK [10]: Robust hierarchical clustering with links
uses a novel concept of links to measure the
similarity/proximity between a pair of data points. The
number of links between two tuples is the number of
common neighbors they have in the data set. It is an
agglomerative hierarchical clustering algorithm that
employs links and not distances when merging clusters.
Methods in ROCK naturally extend to non-metric similarity
measures that are relevant in situations where a domain
expert/similarity table is the only source of knowledge.
 Starting with each tuple in its own cluster, the two
closet cluster are merged until the required number of
clusters are obtained. ROCK, instead of working on the
whole data set, clusters a sample randomly drawn from the
data set, and then partitions the entire data set on the
clusters from the sample. The basic idea of ROCK is based
on the following definition.
Neighbor: An object’s neighbors are those objects that are
considerably similar to it. Let sim(Oi , Oj) be similarity
function that is normalize and captures the closeness
between the pair of objects Oi and Oj. The similarity
function sim assumes values between 0 and 1. Given a
threshold θ(between 0 and 1), a pair of objects O i and Oj
are define as neighbours if sim(Oi, Oj)≥θ.
Link: The link(Oi , Oj) between the object is define as the
number of common neighbors between Oi and Oj . ROCK
attempts to maximize the sum of link(Oq , Or) for pairs of
objects Oq and Or belonging to single cluster and at the
same time to minimize the sum of the link(Oq , Or) for
object pairs belonging to other cluster.
Link between clusters: It is a summation of links of all
pairs, where each pair is formed by taking one object from
each cluster.
Goodness measure: The goodness measure between two
cluster is the result obtained after dividing the number of
cross-links between the clusters by the expected number of
cross-links between the cluster.
 The link based adopts the global perspective of the
clustering problem. It captures the global knowledge of
neighboring data points into the relationship between the
individual pair of points. After drawing the random sample
from the database, a hierarchical clustering algorithm that
employs links is applied to the sample objects. It follows
the standard principle of hierarchical clustering. It start
with singleton objects as an individual class and
progressively merges the two clusters based on the
goodness criteria, determined by link structure. The

merging is continued till one of the following two criteria is
met: (1) a specified number of clusters is obtained or, (2)
no links remain between the clusters [4].

3.5 CLOPE [7] : Clustering with CLOPE algorithm is
developed starting from heuristic method of increasing the
height-to-width ratio of the cluster histogram. While being
quite effective, CLOPE is very fast and scalable when
clustering large transactional databases with high
dimensions, such as market basket data and web server logs.
 To construct cluster histogram, occurrence of every
distinct item is counted for each cluster, and then height (H)
and width (W) of the cluster is obtained. For example,
cluster {ab, abc, acd} has occurrences of a :3,b :2,c :2 and
d:1. Therefore, its corresponding cluster histogram’s (H),
width (W) and H/W ratio are 2.0, 4.0 and 0.5 respectively.
 CLOPE uses a global criterion function that tries to
increase the intra-cluster overlapping of transaction items
by increasing the height-to-width ratio of the cluster
histogram. Moreover, it generalizes the idea by introducing
a parameter to tightness of the cluster. Different number of
clusters can be obtained by varying parameter. A larger
height-to-width ratio of the cluster histogram means better
intra-cluster similarity. And, the global criterion function is
defined using the geometric properties of the cluster
histogram [5].

3.6 SQUEEZER [5]: It is an efficient algorithm for
clustering categorical data, Squeezer, which can produce
high quality clustering results and at the same time deserve
good scalability. The Squeezer algorithm read tuples from
dataset one by one. When the first tuple arrives, it form a
cluster alone. The consequent tuples are either put into
existing cluster or rejected by all existing clusters to form a
new cluster by given similarity function define between
tuple and cluster.. It is obvious that the squeezer algorithm
only makes one scan over the dataset, thus, highly efficient
for disk resident datasets where the I/O cost become
bottleneck of efficiency. It suitable for clustering data
streams, where given a sequence of points, the objective is
to maintain consistently good clustering of the sequence so
far, using a small amount of memory and time. It can also
be handle outliers efficiently and directly in Squeezer.
Squeezer achieves both high quality of clustering results
and scalability. The summery of Squeezer algorithm as
follows:
A novel algorithm for clustering categorical data, Squeezer
combines both efficiency and quality of clustering results.
The algorithm is extremely suitable for clustering data
streams, where a given sequence of points, the objective is
to maintain consistently good clustering of the sequence so
far, using a small amount of memory and time. Outlier can
be handled efficiently and directly. The algorithm does not
require the number of desired clusters as an input parameter.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 287

This is very important since the user usually does not know
this number in advance. The only parameter to be specified
is the value of similarity between the tuple and cluster,
which incorporates the user’s exception that how closely
the tuples in a cluster should be.

SQUEEZER Algorithm:
Inputs :
DS = Categorical Data Stream
St = user defined similarity threshold
Algorithm
for each record t in DS do Begin
 for each existing cluster Ci
 begin
 Measure the similarity between t and Ci
 end
 Smax = Max(all similarity measures)
 Tc = target cluster with Smax
 if smax > = St then
 Include t in Tc
 Update the histogram of Tc
 else
 Create a new cluster with t
 Create its histogram
 end if
 end
The time and space complexities of the Squeezer algorithm
depend on the size of dataset and the number attributes.

4. Motivation

4.1 Unbounded Memory Requirements

Since data streams are potentially unbounded in size, the
amount of storage required to compute an exact answer to a
data stream query may also grow without bound. While
external memory algorithms for handling data sets larger
than main memory have been studied, such algorithms are
not well suited to data stream applications since they do not
support continuous queries and are typically too slow for
real-time response. The continuous data stream model is
most applicable to problems where timely query responses
are important and there are large volumes of data that are
being continually produced at a high rate over time. New
data is constantly arriving even as the old data is being
processed; the amount of computation time per data
element must be low, or else the latency of the computation
will be too high and the algorithm will not be able to keep
pace with the data stream. For this reason, we are interested
in algorithms that are able to confine themselves to main
memory without accessing disk. In the data stream model
of computation, once a data element has been streamed by,
it cannot be revisited. A few algorithms have been

proposed in recent years for clustering categorical data
stream. Squeezer is one of the promising technique,
however its performance degrades as the size of the
histogram increase. Below we present a new sampling
based approach to overcome the bottleneck of Squeezer.

5. FLoMSqueezer: A sampling based
approach

The aim was to improve Squeezer to make suitable for
clustering categorical data stream and to make less error,
reduce the size of histogram and computational time. It is
found that if concise sampling technique is applied the new
algorithm gives less memory footprint.

5.1 Definition and Notations

 1) Similarity Measure: Similarity between an object
Y and D is now defined as Sim(H,Y) = SUM(f(hi,yi)/n ; I =
1, 2, …. M Where f(hi,yi) = SUM(fj * (1-distance(vj,yi))

 2) Histogram: Histograms are commonly-used summary
structures to succinctly capture the distribution of values in
a data set. A compact representation of a cluster, H =
Histogram of D = {h1,h2,h3,…..hn} where hi = {(v1, f1),
(v2,f2),….(vp,fp) where p is the no of distinct value of
attribute Ai and fi is the no of objects in D having this
value vi. For every record processed, we have to calculate
the similarity with existing clusters, update or create a new
histogram, and do the pruning if it’s at footprint bound.

 3) Cluster error: e = 1 – r where r = SUM(Ai)/n I =
1,2……k where n = total no of data points in the data set
and Ai is the no of instances occurring in both the cluster I
and its corresponding class. Absolute cluster error ace =
e*n.
 4) Sampling: Sampling is the most versatile
approximation technique available. Most data processing
algorithms can be used on a random sample of a data set
rather than the original data with little or no modification.
Sampling-based algorithms can produce approximate
answers that are provably close to the exact answer.

5.2 Processing step of FLoMSqueezer

 Sampling techniques have been introduced into the
update histogram module of squeezer algorithm. For every
incoming tuple t in target cluster Tc, for each attribute
value t.A of tuple t in target cluster Tc. It checks the
corresponding dimensions of the histogram tc with a
probability of 1/p. Whether t.A is present in the histogram

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 288

Tc. If t.A present in the histogram of corresponding
dimensions, that simply increment the count of attribute
value. Otherwise t.A remains singleton entry. After every
operation on the histogram the histogram for particular
dimension is greater some pre-specified Footprint bound
“g” then it first raise the value of (P) to (P’) sampling rate
and sample the histogram for that dimensions in terms of
P’.

FLoMSqueezer Algorithm
Inputs :
 DS = Categorical Data Stream
 St = user defined similarity threshold
 p = initial sampling rate
 g = pre specified footprint bound
Algorithm
 for each record t in DS do
 begin
 for each existing cluster Ci
 begin
 Measure the similarity between t and Ci
 end
 Smax = Max(all similarity measures)
 Tc = target cluster with Smax
 if smax > = St then
 Include t in Tc
 for each t.A in t begin
 with a probability (1/p) check
 if t.A is in Histogram for Tc.
 if t.A is present then
 Increase its count in its <value,count> pair
 else
 t.A remain as a sigleton
 end
 if S.A >= g
 then Raise p to p’
 Subject each sample points in S.A to p’
 end if
 p = p’
 else
 Create a new cluster with t
 Create its histogram
 end if
 end

5.3 Analysis

Firstly, It is shown that the FLoMSqueezer algorithm can
be proved to have space guarantee on main memory
consumed.

1) Theorem 1: A concise sample method is a uniform
random sample of the data set such that values
appearing more than once in the sample are
represented as <value, frequency> pairs. S =

{<v1,f1>,<v2,f2>,………<vj,fj>, vj+1,…..vl}
Sample size represented by S = l – j + SUM(fk) k =
1….j. Memory footprint of S=I+j.

 2) Theorem 2: FLoMSqueezer algorithm uses ‘g’ pre
specified footprint bound. If S.A >= g then sampling start.
Initial sampling raise p to p’ each sample point in S.A to p’
it terminates if p=p’.

 6. Results and Discussion

6.1 Quality of Clustering with Real-life Datasets

Comparison of FLoMSqueezer with Squeezer is done with
real-life Mushroom dataset, which are obtained from UCI
Machine Learning Repository and have been tested both
algorithms. The Mushroom dataset has 22 attributes with
8124 tuples. Each tuple records physical characteristics of a
single mushroom. A classification label of poisonous or
edible is provided with each tuple. The numbers of edible
and poisonous mushrooms in the dataset are 4208 and
3916, respectively.

6.2 Tuning Parameter

The footprint bound ‘g’ and initial sampling ‘p’ rate makes
the FLoMSqueezer algorithm differ from the squeezer
algorithm. These parameters can affect the results of
clustering and speed of the algorithm. In the sequel, an
empirical result shows how they can affect the
FLoMSqueezer algorithm Mushroom dataset.
Firstly, each histogram Hi is pruned by deleting some
entries at bucket boundaries. Apparently, large ‘g’ results
more pruning. When the initial sampling is increased and
the similarity was set to 7,8,9,10,11,12,13,14,15,16
respectively, the processing time decreases. This algorithm
tend to produce more stable cluster when similarity
threshold become larger and footprint bound become low
and initial sampling rate increases.

6.3 Scalability Evaluation

1. Scalability with Synthetic Dataset: The stream size (i.e
number of rows), the number of attributes and number of
classes are major parameters in the synthetic categorical
data streams. The experiments were carried out with
synthetic datasets. The scalability of the algorithm is
determine by sample size, by taking dataset with 6
attributes and 8 tuples then the performance is same in
small dataset. But Squeezer algorithm deteriorates with
increase of database size.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 289

2. Scalability with Real Dataset: The experiment is
carried out with real-life dataset the Mushroom dataset [9],
which are obtained from UCI Machine Learning
Repository. Both the algorithms clusters based on the
threshold value, initial sampling rate, footprint bound are
taken. Table shows that comparison between time,
histogram clustering errors and number of clusters produce
by two algorithms. The proposed algorithm performs better
then Squeezer algorithm in handling histogram size, time
and clustering error.

7. Experimental Results

 A comprehensive performance study has been
conducted to evaluate above method. Both the quality of
the clustering results and the efficiency are examined.
Synthetic dataset and Real-life dataset are used to evaluate
the quality of clustering results. The experiments were
divided into three parts:
1) Firstly we tested with execution time on the data stream
of different sizes.
2) Secondly, we studied the effect the histogram size.
3) Thirdly, we demonstrated the changes of error value,
comparing error value.

Clustering Efficiency Curve

0

0.1

0.2

0.3

0.4

0.5

0.6

7 8 9 10 11 12 13 14 15 16

Threshold Value

Cl
us

te
rin

g
 E

rr
or

Squeezer
FLoMSqueezer

Fig. 1 Clustering result with error comparison

The relative performance of the two algorithms with
clustering errors and threshold value shows FLoMSqueezer
algorithm out performed Squeezer algorithm.

TABLE I: Relative performance of Squeezer and
FLoMSqueezer

Ranking Average clustering
 Error

Squeezer 0.256696206
FLoMSqueezer 0.213429346

TABLE I : Histogram and time comparison

Fig. 2 shows the results of histogram comparisons between
Squeezer and FLoMSqueezer algorithm. Out of 10
different threshold values FLoMSqueezer outperform
Squeezer algorithms. It performs best in 6 cases, shows less
performs in two cases and perform equal in 2 cases. It
never performed worst in other cases.

Histogram Comparisions

0
100
200
300
400
500
600
700
800

7 8 9 10 11 12 13 14 15 16

Threshold Value

N
o.

 H
is

to
gr

am
 e

nt
ri

es

Squeezer
FLoMSqueezer

Fig. 2 Comparisons of histogram with different threshold values.

It implies that the FLoMSqueezer can produce

good clustering output with limited memory in the data
stream environment.

Cluster Occurance

0

5

10

15

20

25

7 8 9 10 11 12 13 14 15 16

Threshold Value

No
. o

f C
lu

st
er

Squeezer
LoMSqueezer

Fig. 3 Comparison of cluster occurrences

Threshold

Squeezer FLoMSqueezer
Histogram

Size
Time in
seconds

No. of
clusters

Histogram
Size

Time in
seconds

No. of
Clusters

7 183 1 2 140 1 2
8 237 1 3 299 1 5
9 289 1 4 279 1 5
10 357 1 6 333 1 7
11 401 2 8 450 2 10
12 583 4 14 556 3 14
13 550 4 15 542 3 15
14 598 5 17 583 3 17
15 637 5 20 633 4 20
16 697 7 23 697 4 23

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 290

Time Comparisions

0
1
2
3
4
5
6
7
8

7 8 9 10 11 12 13 14 15 16

Threshold Value

Ti
m

e I
n

Se
c

Squeezer FLoMSqueezer

Fig.4 The execution time with different threshold values

The result of Fig.4 shows that the choice of

st(threshold value) can affect both the quality of clustering
and execution time for FLoMSqueezer. Thus, choosing a
proper parameter value is one of the important tasks that
must be considered in the FLoMSqueezer algorithm. The
threshold St value footprint bound ‘g’ and initial sampling
rate controls the decision to merge a new tuple into an
existing cluster, or to place it in a cluster by itself. A good
choice for ‘g’, p , and St is necessary to produce a concise
and useful summarization of the data set.

8. Conclusions

An efficient algorithm, FLoMSqueezer is proposed, which
produces high quality of clusters from categorical data
streams using sampling technique. The performance of
algorithm is tested with synthetic dataset and real-life
dataset and found effective in terms of handling large
stream of categorical data.

References

[1] Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data stream systems”. In Proc of
PODS, 2002.

[2] Ding Q and Perrizo W, “Decision Tree Classification of

Spatial Data Streams Using Peano Count Trees”, Proc of
the ACM Symposium on Applied Computing, Madrid,
Spain, March 2002.

[3] Hand D J, “Statistics and Data Mining: Intersecting

Discipline”, ACM SIGKDD Explorations, 1, 1, pp. 16-19,
June 1999.

[4] Golab L and Ozsu M. “Issues in data stream management”.

In SIGMOD Record, Vol. 32, No.2, pages 5–14, June
2003.

[5] He Z, Xu X and Deng S, “Squeezer: an efficient algorithm
for clustering categorical data”, Journal of Computer
Science & Technology, 17(5), pp.611-624(2002).

[6] Yi Li, Barbara D, Couto J, “Coolcat: An entropy-based

algorithm for categorical Clustering”, In Proc of
CIKM’02, pp. 582-589, 2002.

[7] You J, Yang Y, Guan X,”Clope: A fast and effective

clustering algorithm for transactional data”. In Proc of
SIGKDD’02, Edmonton, Canada, 2002.

[8] Ganti V, Gehrke J, Ramakrishnan R. “CACTUS –clustering

categorical Using Summeries” In Proc. of ACM SIGKDD,
San Diego, California, USA, pp. 73—83, 1999.

[9] UCI Repository of Machine Learning Databases.

(http://www.ics.uci.edu/~mlearn/MLRRepository.html)

[10] Guha S, Rastogi R and Shim K, “ROCK: A robust

clustering algorithm for categorical attributes”, Proc of the
IEEE Intl Conf on Data Engineering, Sydney, March 1999.

[11] Gibson D, Kleiberg J, Raghavan P. ”Clustering

categorical data: An approach based on dynamic systems”.
In Proc. Int. Conf. Very Large Databases, New York,
August, 1998, pp.311-322.

[12] G.S Maku and R.Motwani, “Approximate frequency

count over data stream”, Proceeding of 28th VLDB
conference, Hong kong, China, 2002.

Marpe Sora obtained B.Tech form NERIST and
M.Tech from Tezpur University. Presently he is
Assistant professor in Rajiv Gandhi University,
Department of Computer Science and
Engineering Arunachal Pradesh. His main
research interests include signal and speech
processing and Data mining.

Swarup Roy did his M.Tech. in Information
Technology and pursuing his Ph.D in Comp Sc &
Engg. from Tezpur University. Presently he is an
Assistant Professor in the department of
Information Technology at North Eastern Hill
University, Shillong. He is a recipient of
university gold medal for securing first position in

M.Tech. His research interest includes Data mining and
Computational Biology. S Roy has published a number of papers
in different International Journals and refereed Int’l. Conf.
Proceedings and authored a book. He is a reviewer of few
International Journals.

Sarangthem Ibotombi Singh obtained MCA
from Manipur University. He is presently working
as Assistant Professor in the Department of
Computer Science & Engineering at Tezpur
University. His current area of interest is Data
mining, Spatial Database and Web Services.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 291

