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Abstract 

Image denoising is a common procedure in digital image 
processing aiming at the removal of noise which may corrupt an 
image during its acquisition or transmission while sustaining its 
quality. A statistical model is proposed depending on the 
magnitude of wavelet coefficients and noise variance for each 
coefficient is estimated based on the subband it belongs to using 
Maximum Likelihood (ML) estimator or a Maximum a Posterior 
(MAP) estimator. An adaptive thresholding is proposed which is 
applied to each subband coefficient except the low pass or 
approximation subband. This is done by fixing the optimum 
thresholding value depending on the decomposition level. The 
proposed method describes a new method for suppression of 
noise in image by fusing the wavelet denoising technique with 
optimized thresholding function to which a multiplying factor (α) 
is included to make the threshold value dependent on 
decomposition level. Due to this, the proposed technique yields 
significantly superior image quality by preserving the edges, 
producing a better PSNR value.  The efficiency is proved on 
comparing with Bayes shrink (BS), Modified Bayes Shrink 
(MBS) and Normal Shrink (NS) for different noise level. 
Keywords: Image denoising, decomposition level, wavelet 
coefficients, optimum thresholding  

1. Introduction 

Estimating an image that is corrupted by additive noise has 
been of interest to many researchers for practical as well as 
theoretical reason. The problem is to recover the original 
image from the noisy data by sustaining the possible 
important image features. Various statistical wavelet 
models for images have been proposed. A simple and 
popular model is independent and identically distributed 
(iid) Generalized Gaussian Distribution (GGD) model for 
wavelet coefficients [1, 2]. This model has been 
successfully used in image denoising and restoration. In 
recent years, there has been a fair amount of research on 
filtering using wavelet coefficients thresholding because 
wavelets provide an appropriate basis for separating noisy 

signal from the image signal. The problem of wavelet 
based denoising can be expressed as an estimation of clean 
coefficients from noisy data with Bayesian estimation 
techniques. If the Maximum a Posterior (MAP) estimator 
is used for this problem, the solution requires a prior 
knowledge about the distribution of wavelet coefficients. 
Based on the distribution type, the corresponding estimator 
(shrinkage function) is obtained. The classical soft 
threshold shrinkage function can also be obtained by a 
Laplacian probability density function (pdf) [3]. Many 
researchers have proposed the bivariate pdfs for modeling 
the interscale dependency [3, 4, 5, 6]. Usually these pdfs 
improve the denoising results they may lead to complicated 
algorithms. Intrascale dependency states that pdfs using 
spatial local parameters are able to capture the statistical 
properties of wavelets [7, 8]. Mihcak [8] proposes a 
Gaussian pdf with local variance for denoising and earns 
impressive results with his simple algorithm. In this paper, 
we use a Laplacian pdf with local variance to model the 
heavy-tailed property and interscale and intrascale 
dependencies of wavelet coefficients. This pdf is univariate 
we estimate the local variance of each coefficients using its 
spatial adjacent and its parent’s spatial adjacent to 
incorporate both inter and intrascale dependencies in this 
estimation. Denoising is commonly done by wavelet 
shrinkage irrespective to the type of DWT applied. 
 
Wavelet shrinkage is a method of removing noise from 
images by shrinking the empirical wavelet coefficients in 
the wavelet domain and it is a non linear image denoising 
procedure to remove the noise. A common shrinkage 
approach is thresholding [9, 10] which sets the wavelet 
coefficients with “small” magnitudes to zero while retains 
shrinking in magnitude for the remaining ones. Originally, 
Donoho and Johnstone proposed the use of a universal 
threshold uniformly throughout the entire wavelet 
decomposition tree which was found to be more efficient 
[11, 12, 13, 14, 15]. Although thresholding with a uniform 
threshold per subband is attractive due to its simplicity, the 
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performance is limited and the denoising quality is often 
not satisfactory. Thus wavelet shrinkage methods using 
separate threshold in each subband have been developed 
over recent years. Some methods of selecting thresholds 
that are adaptive to different spatial characteristics have 
been recently proposed and investigated [16, 17, 18]. In 
general, adaptive approaches have found to be more 
effective than their global counterparts. 
 
In this paper a new model is proposed based on wavelet 
coefficients and noise variance is estimated for each 
coefficient depending on the subband using Maximum 
Likelihood (ML) estimator. A multiplying factor (  is 

included in the optimum threshold formula to make the 
threshold value dependent on decomposition level. After 
computing threshold, apply soft thresholding to each noisy 
coefficient. By inverting the multi scale decomposition, the 
resultant quality image with less blurring and preserving 
more detail information is reconstructed. 

2. Wavelet Coefficient Model 

Considering the advantages and limitations of the 
statistical model a new model is proposed based on the 
wavelet coefficients. Wavelet coefficients with large 
magnitudes are representatives of edges or some textures. 
While those with small magnitude are associated with 
smooth regions such as the background. 
 
In this smooth region the signal variance for every sub 
band are estimated by a ML estimator. This method 
presents effective results but their spatial adaptivity is not 
well suited near object edges where the variance field is 
not smoothly varied. To overcome this the coefficient in 
each subband except the first fine scale is partitioned into 
two classes based on the magnitudes of their parents, 
namely significant class and insignificant class in the 
corresponding region .The significant class represents high 
activity regions and insignificant class corresponds to 
smooth region. The sizes of the two classes are controlled 
by the significance threshold T. If the magnitude of the 
parent is larger than T then the coefficient is included in 
significant class otherwise it is included in insignificant 
class.  
 
The two classes have different statics. The histogram of the 
coefficient in insignificant class is highly concentrated 
around zero while that of significant class is more spread 
out. Hence the coefficients in significant class are modeled 
as independent identically distributed (iid) Laplacian with 
zero mean. For the coefficient in insignificant model which 
corresponds to homogeneous regions, the usage of 

intrascale model in Estimation Quantization [EQ] coder is 
appropriate [19]. It provides a good fit for the first order 
statics of wavelet coefficients and well models the 
nonstationary nature of low-activity regions. 
 

2.1 Statistical Model  

The observation model is expressed as follows Y X V= + , 
where Y  is the wavelet transform of the degraded image,  
X  is the wavelet transform of the original image,  
V denotes the wavelet transform of the noise components 
following the Gaussian distribution 2(0, )VN σ  Since X and  
V  are mutually independent, the variances of Y ,  X  and 
V  are given by   

                        
2 2 2
Y X Vσ σ σ= +                             (1) 

3. Estimation of Noise Variance 

The following steps are used to evaluate the variance 
estimate for each wavelet coefficients depending on the 
subband. 
Step 1: The noise variance 2

Vσ  can be accurately estimated 
from the first decomposition level diagonal subband HH1 
by the robust and accurate median estimator [20]. 

           

2

2 ( )
0.6745V

median y V
σ

 
=  
 

                        (2) 

Where ( )y V  represents the coefficients HH1 subband. 
Step 2: The coarse subbands are not processed because the 
coarse subband has very high SNR. These coefficients are 
considered reliable. 
Step 3: For each of the three subbands (horizontal, vertical 
and diagonal orientations) coefficients within the subband 
are modeled as identically independently distributed with 
zero mean and variance  2

,x jσ  (where j  indicates the 
subband). The variance estimate is computed from the 
noisy coefficients in subband  j  as 

2 2
, max{0, var{ , } }i vx j y i subbandjσ σ= ∈ −

(3) 
Using MAP, estimation of x  is obtained by applying a soft 
threshold λ  as given in equation (4) to each noisy 
coefficient. 

2 2
,2 / ,v x j j subbandλ σ σ= ∈                      (4) 

Step 4: In each of the other high sub bands, coefficients 
are assigned either to significant or insignificant classes 
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depending on the magnitude of their estimated parent 
relative to the significance threshold T , where  

22 logT Nσ= (5) 
(i)  Coefficients in significant class are modeled as iid 
Laplacian with zero mean and their variance 2

,x insigσ  is 

estimated from the noisy coefficients as mentioned in step 
3. Again the MAP estimator is a simple soft thresholding 
scheme where its threshold value is adjusted to the signal 
variance. 
(ii) Coefficients in insignificant class which has small 
magnitude representing smooth areas, 2

,x insigσ  is 

estimated using ML estimator in order to have an estimate 
for a local neighborhood 2

xσ  where variance is assumed to 
be constant. The estimate of the class coefficient variance 
is  

2 2 2
, 1

1 ( ( ) )M
Vx insig V

y V
M

σ σ
=

= −∑   (6)                    

where M represents the number of wavelet coefficients 
residing in local neighborhood N. Considering the 
coefficients belonging to a insignificant class inside the 
window are used by excluding the one which belong to  
significant class, the MAP estimator is given by 

                           
2
,

2 2
,

x insig
i

Vx insig

x y
σ

σ σ
=

+
       (7)                                                                                         

Thus the coefficient of estimates corresponding to the high 
subband are obtained by repeating the above steps from 
parent to child subband, starting from the coarse scale and 
terminating in the highest subband. 

4. Optimum Value Threshold and Proposed 
Technique 

Wavelet thresholding [21, 22, 23] is a signal estimation 
technique that exploits the capabilities of wavelet 
transform for signal denoising. It removes noise by killing 
coefficients that are insignificant relative to some threshold 
and turns out to be simple and effective which depends 
heavily on the choice of a thresholding parameter. The 
choice of this threshold determines the efficacy of 
denoising to a great extent. 
 
 
4.1 Threshold Selection 
 
Finding an optimum value thresholding is not an easy task. 
A small threshold may yield a result close to the input, but 

the result may still be noisy. A large threshold on the other 
hand, produces a signal with a large number of zero 
coefficients. This leads to a smooth signal. Paying too 
much attention to smoothness destroys details and it may 
cause blur and artifacts in image processing.  
Soft thresholding method is used to analyze the 
performance of denoising system for different levels of 
DWT decomposition, as it results in better denoising 
performance than other denoising methods.  Also it leads 
to less severe distortion of the object of interest than other 
thresholding methods [24]. Several approaches have been 
suggested for setting the threshold for each band of the 
wavelet decomposition. A common approach is to compute 
the sample variance 2σ  of the coefficients in each band 
and set the threshold to any multiple of standard deviation 
σ  for that band [25]. Thus, to implement a soft threshold 
of the DWT coefficients for a particular wavelet band, the 
coefficients of that band should be thresholded as shown in 
Fig. 1(a). The soft thresholding is generally represented by, 
 

* *

*

( )( )
0

soft ik ik ik
ik

ik

sign d d ifd
d

ifd
λ λ
λ

− >
=

≤     (8) 

             
 

 
Fig.1 Soft threshold Characteristics with λ = aσ 
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Fig.2 Soft threshold Characteristics with λ = 1 

 
4.2 Optimum Value Threshold 
 
An adaptive thresholding is proposed by fixing the 
optimum thresholding value depending on the 
decomposition level. At every decomposition level, four 
frequency subbands are obtained namely LL, LH, HL, HH. 
The next level should be applied to the low frequency 
subband LL only. This process is continued until a 
prespecified level (level 2) is reached. In wavelet domain, 
as the level of subbands increases its coefficients becomes 
smoother. That is, subband HL2 is smoother than the 
corresponding subband in the first level (HL1) and so the 
threshold value of HL2 should be smaller than that of HL1. 
 
In the wavelet decomposition, the magnitude of the 
coefficient varies depending on the decomposition level. 
Therefore, if all levels are processed with one threshold 
value, the processed image may be overly smoothened so 
that sufficient information preservation is not possible and 
the image gets blurred. To overcome this problem and to 
obtain a significantly superior quality image, the 
multiplying factor is included in the threshold formula to 

get better PSNR value by preserving edges where 

2 logL K Mα −=        (9) 
L is the number of wavelet decomposition level, K is the 
level at which the subband is available, M is the total 
number of wavelet coefficients. Using this multiplication 
factor α the optimum threshold formula for the proposed 
technique is given by  

                    
*λ αλ=                         (10) 

Where ,λ σ are calculated using equations (4) and (9) 
respectively. 
 
 

4.3 Proposed threshold algorithm 
 
The proposed block diagram of wavelet based image 
denoising system is shown in Fig. 2. Wavelet Based 
Denoising method relies on the fact that noise commonly 
manifests itself as fine- grained structure in the image and 
DWT provides a scale based decomposition. Thus, most of 
the noise tends to be represented by wavelet coefficient at 
the finer scales. Discarding these coefficients would result 
in a natural filtering of the noise on the basis of scale. As 
the coefficients at such scales also tend to be primary 
carriers of edge information, the DWT noisy coefficients 
can be made zero if their values are below its optimum 
threshold value. On the other hand, the edge relating 
coefficients are usually above the threshold. The inverse 
DWT of the thresholded coefficients is the denoised 
image. 

NOISY IMAGE 

APPLY DWT 
AND 

DECOMPOSE 
WAVELET 

COEFFICIENT

APPLY 
THRESHOLD 
TECHNIQUE

DENOISED 
IMAGE

ESTIMATION 
OF VARIANCE 

MAP 
ESTIMATOR

 
Fig. 3 Block diagram of the proposed method 

 
Algorithm:  
The complete algorithm of the proposed wavelet based 
denoising technique is explained in the following steps: 
Input: Noisy image 
Output: Denoised image 
Step 1: Perform Multiscale decomposition of the image 
corrupted by Gaussian noise using wavelet transform. 
Step 2:  Estimate the noise variance 2

Vσ using equation (2) 
for each scale and compute the scale parameter. 
Step 3:  For each of the three subbands variance estimate is 
computed from the noisy coefficient in subband j using 
equation (3). 
Step 4:   In each of the other high subbands the estimates 
of the class coefficient variance are estimated using 
equation (3) and (6). 
Step 5: Calculate threshold value using optimum value 
threshold formula as given in equation (10) after finding 
the multiplying factor σ  for each subband using the 
relation given in (9) 
 After computing threshold for each subband except the 
low pass or approximation subband, apply soft 
thresholding to each wavelet coefficient using threshold 
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given in equation (8), by substituting the threshold value 
obtained in Step 5. 
Step6: Invert the multiple decomposition to reconstruct the 
denoised image. 

5. Experiment and Results 

The above algorithm has been applied on several natural 
gray scale test images like Lena Barbara and pepper at 
different Gaussian Noise level (standard 
deviation 0.001,0.002,0.003,0.004σ = . Here we used 
Daubechius (Db4), the least asymmetric compactly 
supported wavelet at two levels of decomposition. 
Performance of noise reduction algorithm is measured 
using quantitative performance measure such as Peak 
Signal to Noise Ratio (PSNR) as given in Table-1 and 
interms of visual quality of images, as shown in fig-4.To 
evaluate the performance of the proposed method, it is 
compared with the Baye’s shrink, Modified Baye’s shrink 
and Normal shrink using PSNR which is defined as 

2

10
25520log ( )PSNR dB
MSE

=                                          (11) 

Where MSE  denotes the Mean Square Error between the 
original and denoised image given by 

2

1 1

1 ( )
M N

ij ij
i j

MSE X Y
MN = =

= −∑∑                                       (12) 

Where ,M N  are width and height of image. Y –Noisy 
image X –original image. 
 
5.1 Statiscal Analysis  
 
Consider the PSNR value obtained for Barbara Image of 
different noise level using our proposed technique and 
Modified Bayes Shrink method as two samples 1X  and 

2X  of sizes 1n  and 2n 1 2( 10)n n= =  respectively. The 
significant differences between these two samples were 
tested using Student’s t-test: Two samples assuming equal 
variance.  
      By using the test statistic  

1 2

1 2

1 1
s

x xt

n n

−
=

+
( ~ ( 1 2 2)t n n+ − ) d.f (degrees of freedom) 

for the above sample it is seen that  the calculated value of 
t is greater than the critical value of t at 5% level of 
significance for 18 d.f. Due to this the null 
hypothesis 0 1 2:H µ µ=   is rejected and 0 1 2:H µ µ> (1 
tailed test) is accepted. By this significant test the PSNR 
value obtained for Barbara image of different noise level 
by our proposed method is significant than by using 
modified Bayes Shrink method. A similar test is also done 

by considering the other sample as Bayes Shrink Method, 
Normal Shrink Method. In these cases also it is observed 
that the proposed method yields a significant value. Hence 
Adaptive Subband Threshold Technique out performs the 
other wavelet method by possessing high PSNR value. 
This method finds application in denoising images those 
are corrupted during transmission which is normally 
random in nature. 
 

Table- 1 Comparison of PSNR of different wavelet shrinkage 
method for different images corrupted by Gaussian noise. 

 

Image 
Nois
e 
level 

Noisy Baye’s 
Shrink 

Normal 
shrink 

Modified 
Baye’s 
Shrink 

Propos
ed 
method 

Barbara 

0.001 69.08 73.10 73.15 73.05 73.01 
0.002 62.17 66.14 66.53 66.20 67.17 
0.003 58.13 61.80 62.24 61.88 63.06 
0.004 55.28 58.69 59.12 58.79 59.99 

Lena 

0.001 69.07 75.11 75.63 75.19 76.37 
0.002 62.15 67.35 67.99 67.46 69.27 
0.003 58.10 62.63 63.23 62.73 64.51 
0.004 55.24 59.28 59.84 59.38 61.04 

House 

0.001 69.01 75.12 75.79 75.29 76.77 
0.002 62.09 67.13 67.86 67.34 69.14 
0.003 58.04 62.37 63.05 62.57 64.45 
0.004 55.18 59.02 59.64 59.21 60.75 

 
From Table -1 it is observed that the proposed 
thresholding technique out performs the other denoising 
methods by possessing high PSNR value 
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Total Noise Variance

P
S

N
R

Performance

 

 
Noise Image
Baye’s Shrink
ModifiedBayes
Normal Shrink
Proposed

 

Fig. 3: Comparison of PSNR Value of different denoising methods 
for Barbara image 
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From Fig. 3 it is observed that Baye’s shrink performs little 
denoising in high activity sub regions to preserve the 
sharpness of the edges but completely denoise the flat 
subparts of the image. Normal shrink preserve edges better 
than noise removal method using Baye’s shrink. Modified 
Baye’s shrink yields a better results for denoising and also 
adopts thresholding strategy by preserving edges better 
than Baye’s and Normal shrink. The proposed thresholding 
algorithm gives better performance than other spatial 
domain filter like Baye’s shrink, Normal shrink and 
Modified Baye’s shrink by giving a better PSNR value. 
Further it out performs the performance of the above 
mentioned thresholding algorithm by preserving the edges 
as well as removing the noise, due to the advantages of 
using the multiplying factor α included in the optimum 
value threshold formula and subband thresholding.  
 

 
Fig. 5: Quality performance of different denoising methods for 

Barbara image (noise standard deviation 0.001)Vσ = (a) 

Original image (b) Noisy Image (PSNR=69.07) (c) Adaptive 
Threshold (PSNR=73.01)  (d) Normal shrink (PSNR=73.15) (e) 
Modified Baye’s shrink (PSNR=73.05) (f) Baye’s Shrink 
(PSNR=73.02) 

6. Conclusion 

The proposed threshold estimation method is based on the 
analysis of statistical parameters like standard deviation, 
variance of the sub band coefficients using ML or MAP 
estimator which is more sub bands adaptive. Since the 
decomposition level dependent is included as a multiplying 
factor α in the optimum value threshold formula along 
with sub band variance estimation, the proposed technique 
yields significantly superior image quality by preserving 
edges and a better PSNR value. It is also observed that the 

images corrupted with less noise densities, single level of 
decomposition is sufficient. While for images corrupted 
with higher noise density second level of decomposition is 
required irrespective of the images.  
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