
 Nurture IDR Segmentation and Multiple Instruction
Queues in Superscalar Pipelining Processor

J.Nandini meeraa1, N.Indhuja2, S.Devi Abirami3 and K.Rathinakumar4

1 Computer Science and Engineering, Narasu’s Sarathy Institute of Technology
Salem, Tamil Nadu, India

2 Computer Science and Engineering, Narasu’s Sarathy Institute of Technology
Salem, Tamil Nadu, India

3 Computer Science and Engineering, Narasu’s Sarathy Institute of Technology
Salem, Tamil Nadu, India

4 Electronics and Communication Engineering, Narasu’s Sarathy Institute of Technology
Salem, Tamil Nadu, India

 Abstract
This paper proposes a model which improves the speed of
the pipelining mechanism therefore increasing the speed of
the processor. Superscalar operation is used to get
maximum throughput from the processor using the
pipelining concept. This proposal can be considered as the
advancement of the super scalar property in pipelining
which presently exists. We introduce a concept, using
multiple instruction queues and a new unit called as
Identifier unit. The Identifier unit is designed as having the
ability of the identifying the type of the instruction which is
being fetched and separating it based on its types thus
creating separate segments of execution, which in turn
increases the speed of the processor. Moreover we have
implemented separate decoding and the executing unit for
each type of the instruction segments.
Keywords: Pipelining, Superscalar property, Identifier
unit and Multiple Instruction queue.

1. Introduction

In a computer system the work of the processor is to
execute the instructions given by the user. The
processor executes the instructions in different
fashions. Olden days the machine level instructions
were executed in serial fashion which took lot of time
the Pipelining mechanism is used achieve high
execution rate in a processor. Superscalar operation is
used to improve the speed of the processor.

Nurture IDR segmentation and multiple instruction
queues in superscalar pipelining processor, is a model
which is the modification of superscalar property.
This model can enhance the speed of the pipelining
processor. The core idea of this process is
segmentation of the machine instructions which is
being fetched from the fetch unit based on its type
and storing it into separate instruction queue for each
type, thus forming multiple instruction queues.

Pipelining is the first concept which is to be known in
detail to understand the working of the Nurture IDR
segmentation and multiple instruction queues in
superscalar pipelining processor. Moreover the
superscalar operation and the processing of the
instruction through it, is important because it is the
base of the proposed system. The implementation of
Nurture IDR segmentation and multiple instruction
queues in superscalar pipelining processor is aimed at
increasing the speed of the superscalar pipelined
processor. The working of each unit of the proposed
system such as fetch unit, identifier unit, decode unit,
execute unit and write unit are explained with
sufficient information of its design and working. The
new concept of Nurture IDR segmentation and
multiple instruction queues in superscalar pipelining
processor will definitely create an evolution in the
speed of the superscalar pipelined processor.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 127

2. Pipelining
The olden processors used the sequential technique to
execute the instructions. The instructions were
fetched and executed one by one in serial fashion,
which took lot of time. Once the instruction is being
fetched by the fetch unit it is executed by the
execution unit during the execution of the instruction
the fetch unit is ideal.

The following diagram Fig: 1 shows the execution of
the instructions in the sequential execution of
instruction

 Fig: 1 sequential technique of execution

This order of execution had many disadvantages
which lead to the invention of the Pipelining
mechanism. Pipelining is the concept which has
separate stages called as the fetch unit, decode unit
and execute unit and the write unit [1].By using the
pipelining the time taken to execute an instruction
is faster the sequential order of execution. This made
the pipelining mechanism to a successful fashion
of execution of the machine instruction in the
processor. This mechanism is being used in present
processors.

Pipelined instruction processing is a basic technique
used in the design of micro-architectures [2].
Pipelining is method in which the instructions
are executed in separate stages such as the fetch unit,
decode unit and execute unit and the write unit.
The fetch unit will actually read the instruction from
the memory unit hence fetching it and after which the
instruction reaches into the decoding unit where
the instruction is decoded from high level language
to low level language [1]. Then it enters into the
execution unit where the ALU performs the
arithmetic and the logical operations. Finally the
executed instruction in sent to the write unit to write

the results. Consider the following example to
understand the working mechanism of pipelining
concept. In a PC manufacturing company, there are
different units of people working to manufacture a
single PC. First the design unit plans the design of
the PC.

Then supplier unit supplies the hardware material
needed, then the assembling unit do the assembling
work of the hardware which is followed by the
testing unit so on. Once the designing is over by
the design unit for the first PC it proceeds to the
next. Pipelining overlaps the execution of multiple
instructions within a functional unit, much like
an assembly line overlaps the steps in the
construction of a product [3].

In the processor there are different units, which are
listed as follows:

 Fetch unit
 Decode unit
 Execute unit
 Write unit

Pipelining is controlled by the clock whose period
is such that the fetching, decoding, executing and
write steps of each instruction can be completed in
one clock cycle [1].

The following Fig: 2 show the process of pipelining
mechanism in a processor with clock cycle.

 Fig: 2 Pipelined Instruction executions in four steps

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 128

3. Superscalar operation

Before the invention of the superscalar operation the
execution of the instructions was done in sequential
order which consumed a lot of time and ultimately
resulted in the speed of the processor which was very
slow in the execution process.

The following Fig: 3 show the execution of the
instructions in without using the superscalar
mechanism.

 Fig: 3 normal execution of instruction

Superscalar processors include multiple functional
units, such as arithmetic logic units and floating-point
units. This enables the processor to exploit
instruction-level parallelism (ILP), executing
several independent instructions concurrently [3].

The key concept of superscalar operation os using of
two separate execution units due to which the time of
execution is fast than the normal pilelining processor.
There buffers are used to store the instruction from
the decode unit and the execution temperorily before
they reach the next unit of processing mechanism.

Under the superscalar operation there are the
following process [1].

 Out-of-order Execution.
 Execution Completion
 Dispatch Operation

Pipeline makes it possible to execute instruction
concurrently [1]. Instructions are present in the
pipelining at the same time, but they are in different
stages of their execution [1]. While one instruction is
performing an ALU operation, another instruction is
being decoded and yet another is being fetched from
the memory [1].

The front end of the processor is responsible for
fetching instructions from memory and supplying
them to the issue stage [4]. First the instruction is
being fetched from the memory and in the instruction
fetch block show the function of the fetch unit. It is
followed by the instruction queue in which the
instructions are stored in a queue waiting to be
decoded. Then buffer are used to store the decoded
instructions temporarily followed by two execution
units namely,
 Floating point unit
 Integer point unit

The following Fig: 4 show the block diagram of the
Superscalar property using the processor with two
execution units. This gives the mechanism of the
superscalar operation in a processor.

 Fig: 4 Superscalar operations

By using separate execution improves the speed of
the processor. Calculation of the instruction per cycle
throughput (IPC) of superscalar processors [4] is very
important to know the speed of the processor. High
performance superscalar processors dynamically
predict branches and execute instructions along the
predicted control flow path [5]. Thus by using this
mechanism the speed and the potential of the
processor were increased.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 129

4. Nurture IDR Segmentation and
Multiple Instruction Queues in
Superscalar Pipelining Processor

In Nurture IDR segmentation and multiple instruction
queues in superscalar pipelining processor, we have
introduced a new unit named as the Identifier unit.
When the instruction is fetched from the memory by

The fetch unit it enters into the identifier unit which
identifies the type of the instruction and separates the
instructions by creating individual segments of
executions. Once the instruction type is identified it
enters into its corresponding instruction queue then
followed by the decoding unit and the executing unit.
When the execution is completed it reaches into the
write unit.

 Fig: 5 Proposed Nurture IDR segmentation and multiple instruction queues

Identifier unit can be considered as the heart of the
entire Nurture IDR segmentation and multiple
instruction queues in superscalar pipelining processor
shown in Fig: 5. Because when it separates the
instruction and sends it corresponding instruction
queue the time consumed is very less and ultimately
the speed of the processor increases. While an
instruction of one type is being processed, the next
instruction is fetched and identified and separated and
so on. By doing this the performances of the
processor can be definitely improved. In Nurture IDR
segmentation and multiple instruction queues,
multiple instruction queues are used here to store
different types of machine instructions in each queue.
So lot of instructions are fetched and identified and
stored in the corresponding queues.

The number of queue depends on the number of types
of machine instruction. Each queue sends the
instruction to the corresponding decode and
execution units.

4.1 Fetch unit

 Instruction Fetch unit fetch the instruction from the
memory [1].Every fetch operation sends one
instruction to the Identifier unit through directly
transfer. Only after sending an instruction to the
identifier unit the fetch unit will fetch the next
instruction. Fetch unit will fetch the instruction
one by one from the memory. If pre-fetching is not
used, the fetching and the decoding widths will be
equal; the instruction fetcher has the responsibility
of determining the new instruction counter [6]. Fetch
throughput by addressing can be improved by three
factors: fetch efficiency, by partitioning the fetch unit
among threads; fetch effectiveness, by improving the
quality of the instructions fetched; and fetch
availability; by eliminating conditions that block the
fetch unit [7].Conventional instruction fetch
mechanisms fetch contiguous blocks of instructions
in each cycle. They are difficult to scale since taken
branches make it hard to increase the size of these

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 130

blocks beyond eight instructions. The wider the fetch
unit, the more likely it is that fetch slots will be
wasted because of discontinuities in the instruction
stream [8].Only when the fetch unit functions without
any interruption the instruction will be transferred
to next unit through which the speed of the processor
can be maintained. Here in this Nurture IDR
segmentation and multiple instruction queues
concept after fetching the instructions are forwarded
to the identifier unit where the type is identified and
the stored in corresponding instruction queues. If the
speed of the fetch unit is high obviously the speed of
the processor will also be high.

4.2 Identifier unit

The identifier unit is the main important unit in which
major operations takes place. In this proposal we
have tried to throw light on the idea of segmenting
the machine instructions before decoding by using
the Identifier unit. Segmentation takes place on the
bases of the types of the instructions.

The list of few instructions types commonly used are
shown as follows:

 Arithmetic instructions
 Logical instructions
 Jump instructions
 Data transfer instructions
 Boolean variable instructions
 Machine control instructions

These are most common types of instructions used in
the programming. The identifier unit identifies the
instructions based on the above types and sends it to
the corresponding instruction queue and decode and
the execute unit finally to the write unit store the
results. The identifier unit plays the important role in
Nurture IDR segmentation and multiple instruction
queues in superscalar pipelining processor. The
process of segmentation takes place in the identifier
unit. It must identify the type of the instruction and
send in the respective type of the instruction queue by
which we are increasing the speed and this type of
operation can store a large number of instructions in
the instruction queues because there are separate
queue for each type of instructions.

4.3 Multiple Instruction Queues

In Nurture IDR segmentation and multiple instruction
queues in superscalar pipelining processor we have
implemented multiple instruction queues. The
Identifier unit indentifies the type of the instruction
and stores it in the corresponding instruction queue.
This give raise the concept of multiple instructions
queues in the superscalar pipelining processor
so large number of instructions can be stored in
the processor at a time. Hence the processor witness
high performances rate and an increase in the
speed in made possible.

4.4 Decode unit

Decoder unit is used to convert high level language to
machine understandable language. Here we have
multiple decoders. For each type of instruction there
are separate decoding unit. Instructions from the
instruction queues are forwarded to the Decode unit
based on the instruction types.

The segmentation of the instructions is done before
the decoding. The decoder module decodes the
VLIW passed by the memory pre fetch module and
generates the control signals and register addresses
for all the seven instructions forming the Very Long
Instruction Word (VLIW) [9]. Thermometer-to-
binary decoder can be implemented by various
approaches, e.g., a ROM, Wallace-tre
(oronescounter), multiplexer-based decoder, fat-tree
decoder and logic-based decoder [10]. The main
concept here is we are identifying the type of the
instruction before the decoding process.

4.5 Execute unit

The execute stage performs ALU operations[11].The
complexity of modern processors [12] has made the
task of calculating or even bounding the execution
time of a sequence of operations very difficult
[13].The units in the execution engine are pipelined,
though an EU can only issue one instruction per
cycle[14].In Nurture IDR segmentation and multiple
instruction queues in superscalar pipelining processor
we have implemented multiple execution units,
which have separate execution unit for each type of
the instruction. The execution is done by the ALU
individually and finally forwarded to the Write unit.
The addition of execution units of the same type in
order to leverage instruction level parallelism [15] .

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 131

4.6 Write unit

After the execution the instructions the results of the
instructions are stored by the write unit. The write
unit will store the results in the destination location
[1]. Execution unit will send the executed results
directly to the Write unit to process the write
operation in the specified location. The process
taking place in this unit is the final stage in Nurture
IDR segmentation and multiple instruction queues in
superscalar pipelining processor. This model is the
advanced technique to improve the speed of the
processor.

5. Conclusion

This paper has ultimately focused on the goal of
increasing the speed of the pipelining processor
mechanism and segmentation of instructions before
decoding. The implementation of the identifier unit is
believed to have an optimistic impact on the speed of
the processor. The concurrent execution of
instruction can have tremendous improvement. The
implementation of Nurture IDR segmentation and
multiple instruction queues in Superscalar pipelining
processor will have a promising enhancement in the
speed therefore reducing the execution time of the
present pipelining processor. The implementation of
multiple instruction queue increase the temporary
storage so many instructions can be stored
concurrently.

References
[1] Carl Hamacher, Zvonko Vranesic, Safwat Zaky.
Computer Architecture , Mc Graw Hill, 2002.
[2] J.A. Bergstra and C.A. Middelburg, "Maurer
Computers for Pipelined Instruction Processing", 1998.
[3] Chris Stolte, Robert Bosch, Pat Hanrahan, and Mendel
Rosenblum , "Visualizing Application Behavior on
Superscalar Processors", Stanford University.
[4] Tarek M. Taha D. Scott Wills, "An Instruction
Throughput Model of Superscalar Processors" , 2003.
[5] Walid J. Ghandour June, "Dynamic Control
Independence Predictor for Speculative Multithreading
Processors" , 2009.
 [6] Mojtaba Shojaei, Bahman Javadi*, Mohammad Kazem
Akbari, Farnaz Irannejad ,"Designing and Optimizing the
Fetch Unit for a RISC Core".
[7] Dean M. Tullsen, Susan J. Eggers, Joel S. Emery,
Henry M. Levy,Jack L. Lo, and Rebecca L. Stammy,
"Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor".
Santa Margherita Ligure, Italy, June, 1995.

[8] Paramjit Oberoi and Gurindar Sohi, "Out-of-Order
Instruction Fetch using Multiple Sequencers" ,Computer
Sciences Department, University of Wisconsin - Madison.
[9] R. SESHASAYANAN, DR.S.K. SRIVATSA, "A
novel architecture for VLIW processor", 2007.
[10] E. Sall, M. Vesterbacka, and K. O. Andersson, “A
study of digital decoders in flash analog-to-digital
converters,” in Proceedings of IEEE International
Symposium on Circuits and Systems, vol. 1, pp. 129–
132, May 2004.
[11] Ben Lickly,Isaac Liu,Sungjun Kim, Hiren D.
Patel,Stephen A. Edwards,Edward A. Lee, "Predictable
Programming on a Precision Timed
Architecture" ,2008.
[12] J. L. Henessey and D. J. Patterson, "Computer
Architecture: A Quantitative Approach". Morgan
Kaufmann Publishers, third edition, 2003.
[13] C. Ferdinand, R. Heckmann, and et. al. " Reliable and
precise WCET determination for a real-life processor",
International Conference on Embedded Software Oct.
2001.
[14] "WiDGET: Wisconsin Decoupled Grid Execution",
Tiles June 2010.
[15] H. Peter Hofstee , " Power Efficient Processor
Architecture and The Cell Processor ", Proceedings of the
11th Int’l Symposium on High-Performance Computer
Architecture 2005.

J.Nandini Meeraa pursuing bachelor’s degree in computer
science and engineering third year at Narasu’s Sarathy
Institute of Technology, Salem. Approved by All India
Council for Technical Education, New Delhi (AICTE) and is
affiliated to Anna University of Technology, Coimbatore. I
am a member of CSI computer society. My current research
interest is on creating evolution in the speed of the
processor.
.
N.Indhuja pursuing bachelor’s degree in computer science
and engineering third year at Narasu’s Sarathy Institute of
Technology, Salem. Approved by All India Council for
Technical Education, New Delhi (AICTE) and is affiliated to
Anna University of Technology, Coimbatore. I am a member
of CSI computer society. My current research interest is on
creating evolution in the speed of the processor.

S.Devi Abirami pursuing bachelor’s degree in computer
science and engineering third year at Narasu’s Sarathy
Institute of Technology, Salem. Approved by All India
Council for Technical Education, New Delhi (AICTE) and is
affiliated to Anna University of Technology, Coimbatore. I am
a member of CSI computer society. My current research
interest is on creating evolution in the speed of the
processor.

K.RathinaKumar, Working as a lecturer at Narasu’s Sarathy
Institute of Technology, Salem in the Department of
Electronics and Communication Engineering. Approved by
All India Council for Technical Education, New Delhi (AICTE)
and is affiliated to Anna University of Technology,
Coimbatore.; published paper in the international journal in

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 132

the title of “ Efficient method for escalating the performance
of programmable router for network on chip by lightweight
circuit switched approach” in International Journal of
Communication ,Computation and Innovation[IJCSI] of
volume 1, issue 2(Jan-July 2011) of ISSN 2229-6808;
published paper in the international journal in the title of
“Multi Machine power system stabilizer design using particle
swarm optimization technique” in International Journal of
Communication ,Computation and Innovation[IJCSI] of
volume 1, issue 2(Jan-July 2011) of ISSN 2229-6808;
Presented a paper in National level conference on significant
challenges of smart antennas in ADHOC networks at Idhaya
Engineering College on 26th March 2011 conducted by
department of CSE, ECE & IT in the title of National
Conference on Advanced Computing and Communication
Systems; Presented a paper in International level
conference on channel noise cancellation using blind
adaptive equalization at SSM college of engineering
between September 21-23, 2011 conducted by Department
of ECE in the title of International Conference on Computer
Communication & Signal Processing (IC3SP)-2011;

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 133

