
HASoC for Developing a Software System

Salah Eldin Abdelrahman1, and Mohammed Badawy2

 1 Computer Science and Engineering Dept., Faculty of Electronic Engineering, Menoufia University
Menouf, 32952, Egypt

2 Computer Science and Engineering Dept., Faculty of Electronic Engineering, Menoufia University
Menouf, 32952, Egypt

Abstract

We present an object-oriented development of a software system.
The development is based on the customization of the lifecycle of
a novel developing method called HASoC (Hardware and
Software Objects on Chip). The development is presented in
order to evaluate HASoC and establish a complete A-to-Z object-
oriented teaching example for developing software systems. The
evaluation is performed through an object-oriented development
process of a software system and is aimed to prove the HASoC
practicability and reveal its limitations. The HASoC method was
originally aimed for developing embedded systems that are
targeted at system-on-a-chip (SoC) implementations.
Keywords: Object-Oriented Approaches, UML, Object-
Oriented Database, Software Development, Lifecycle Modeling.

1. Introduction

Object-oriented technology offers several specific benefits
to software development. Good software engineering
stresses modularity, especially in system architecture,
detailed design, and implementation phases [1]. Therefore,
the benefits of object-orientation are realized throughout
the entire development lifecycle, which is typically
supported by a set of system models. The system models,
which are necessary to communicate the required
information that users understand, can be translated into
implementation code. object-oriented technology can be
consistently applied in the analysis, design, implementation,
and test phases of software systems. This means that an
object-oriented approach is model-based and covers the
development lifecycle in an integrated way.

The basic concept of object-oriented development
approaches is that systems should be built from a
collection of reusable interacting objects. Various object-
oriented methods have been used for systems analysis and
design. Therefore, the necessity to standardize these
methods has become important. The contemporary
modeling language called the Unified Modeling Language
(UML) [2] has emerged from the various object-oriented

analysis and design notations of these methods in order to
meet this necessity.

The developers of UML have attempted to unify past
experience of software modeling techniques and
incorporate a number of the current software practices into
a standard language. UML combines the commonly
accepted concepts, notation, and terminology from many
object-oriented development methods and selects a clear
definition of them. The UML is process, domain, and
media independent. It represents the conceptual and
physical elements of systems as a set of views, which
permit systems to be understood for different purposes.
UML views are divided into Structural Classifications,
Dynamic Behaviors, and Model Management as well as
Extension Mechanisms [3, 4].

According to [5, 6], object-oriented development
approaches provide architects, designers, and developers
with the conceptual framework, i.e. object model, to attack
the rapid increase of systems complexity, and enhance
system flexibility. The object model encompasses the
principles of abstraction, encapsulation, modularity,
hierarchy, typing, concurrency, and persistence, and it
provides a conceptual foundation of object-oriented
development approaches. Therefore, such approaches offer
several potential benefits for system developers and users.
Since almost nothing is perfect and without cost, the
benefits of object-oriented development are associated
with potential limitations, problems, and drawbacks. As [7]
has pointed out, most object-oriented development costs
are concerned with performance and the difficulties of
moving from non-objected-oriented to object-oriented
development techniques.

A set of case studies are driven to illustrate and
demonstrate the developing stages of object-oriented
approaches. As mentioned in [5, 12, 15-18], not only one
use case study is driven but also different case studies are
driven. Each of such case studies illustrates and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 118

demonstrates one stage of the development process. This
leads to miss modeling mapping among the development
stages. Therefore, the relation between different system
models is not clear. Driving only one case study for all
stages of the development process makes the relationship
between system’s models more clear and the transfer from
one model to another straightforward.

This paper firstly aims to illustrate and demonstrate the
design approach of the HASoC (Hardware and Software
Objects on Chip) method presented in [19] for a software
system to evaluate its performance against these systems.
The evaluation is performed through the customization of
HASoC lifecycle and object-oriented development process.
In addition to the evaluation of the novel developing
method HASoC for software systems development, a
complete A-to-Z object-oriented teaching example for
developing such systems is established. We chose a
database system as an example of a software system to
apply the HASoC method. This software system will be
explained later in this paper.

This paper is organized as five sections. In the following
section, an overview of the HASoC method as used in this
paper is provided. The third section considers and
indicates the customization of the HASoC lifecycle to
target it specifically at the development of pure software
systems. The development process of a software system is
demonstrated and illustrated in section four. In the fifth
section, the paper is concluded with final remarks.

2. HASoC Overview

HASoC is a method for developing 'complete' embedded
systems that are targeted at system-on-chip (SoC)
implementations. HASoC aims to develop the entire
system not its components that meets functional and non-
functional requirements. It supports concurrent
development of computer systems software and hardware
components. Since the use of contemporary object-
oriented analysis and design techniques is helpful for
developing embedded systems, HASoC is an object-
oriented method. HASoC utilizes object-oriented
principles, in general, and the generalized UML-RT profile
in particular for system modeling. The generalized UML-
RT profile is an extension of the standard UML. This
profile includes alternative forms of behavioral description
and a new communications mechanism. So, HASoC has a
richer behavioral modeling capability than other embedded
systems development methods such as POLIS [8],
MOOSE [9, 10], and COSY [11].

A set of positive characteristics and development
techniques from a number of existing well-defined
development approaches have been merged within HASoC.
The existence of such techniques is helpful to meet or
reduce the effect of many of the challenges that face
developers of embedded systems. These challenges include
the ever increasing time-to-market pressure, the
productivity gap, and the complexity of embedded systems
coupled with the multi-disciplinary nature of the
development task. Iterative, incremental, and use-case-
driven techniques have been merged within the HASoC
lifecycle (see Figure 1) to make it responsive to changing
system requirements. The system functionality is gathered
and specified in a set of use cases that are depicted in a use
case model of the system. If one or more requirements of a
system are changed, the HASoC lifecycle provides
developers with the ability to update the system
functionality by editing, adding, or removing one or more
use cases. As well as the ability to accommodate changes
in system requirements, the adoption of these techniques
leads to a simplification of the development task, as it is
achieved in a set of iterations rather than a single pass
through the lifecycle. The adoption of the use-case driven
technique also provides designers with the ability to
manage the system development process, and trace
requirements.

Object and Class
Models

Specification and
Validation of Behaviour

UNCOMMITTED MODELLING

Functionality
Selection

Interface Mechanisms Partitioning

COMMITTED MODELLING

EvaluationMapping

SYSTEM INTEGRATION

System Software Hardware Platform

PLATFORM MODELLING

Use Case View Context View Platform Identification

EXTERNAL VIEWS

+ +

+

Development
stage

Keys:
+

Concurrent
development

Development
sequence

Development
phase Product Proposal

Product concept

Fig. 1 The HASoC lifecycle.

The platform-based design approach has been integrated
into the HASoC lifecycle. This integration, coupled with
the above techniques provides a concurrent development
facility within HASoC. The application and platform

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 119

models of a system can be concurrently constructed and
evaluated at the early stages of development. This enables
different specialists within the development groups to work
in parallel but always in the context of a homogenous
model of the complete system. Therefore, the development
time of a system may be reduced, which is helpful in
reducing the time-to-market of the product. The concurrent
development capability of the HASoC method supports the
reuse of pre-existing platforms, and the early exploration
of system trade-offs. It provides consistency between the
development of the application and platform models of a
system.

3. HASoC Lifecycle for Software Systems

Although the basic HASoC lifecycle has been identified as
shown in Figure 1, it is possible to operate different
lifecycles in the context of the method. This could allow
developers to adopt UML or HASoC-based modeling
whilst still using a variant of their original lifecycle. It also
offers the possibility of customizing the lifecycle to suit a
particular project or type of project, or even specific
application domains. However, we investigate this kind of
use of the HASoC method to develop software systems.

Object and Class
Models

Specification and
Validation of Behaviour

UNCOMMITTED MODELLING

Functionality
Selection

Interface Mechanisms

COMMITTED MODELLING

System Software Hardware Platform

PLATFORM MODELLING

Use Case View Context View Platform Identification

EXTERNAL VIEWS

+ +

+

Development
stage

Keys:
+

Concurrent
development

Development
sequence

Development
phase Product Proposal

Product concept

 Fig. 2 The customized HASoC lifecycle for software systems.

Some parts of the HASoC lifecycle may be cancelled, in
particular, the partition-map-evaluate cycle. Figure 2
illustrate the customization of the HASoC lifecycle for
software systems development. This development starts

with the basic concept definition of the application and
progress through external views and uncommitted stages.
We drive the University Registration System (URS) as a
case study application.

4. The Software Development Process

The software development process partially follows the
HASoC development phases (see Figure 2). These phases
include product proposal, external views of the product,
and the uncommitted modeling. In the next sections, we
explain the steps of each phase in details.

4.1 Product Proposal

The application as a case study in this paper is a University
Registration System (URS). The URS has enough features
to partially illustrate and demonstrate the design approach
adopted in HASoC to develop a software system. It is
acknowledged that the development discussed in this paper
may not be optimal for a URS. However, it was chosen to
illustrate and evaluate as many aspects of the HASoC
method.

Students enroll in courses which are offered by instructors.
The registrar’s office is in charge of maintaining a
schedule of courses in a course catalog. They have the
authority to add and delete courses and to add schedule
changes. They also set enrolment limits on courses (such as,
number of students in a course and studying the
prerequisite of that course). The financial aid office is in
charge of processing student’s aid applications for which
the students have to apply. The instructors are in charge of
setting course offerings, receiving their courses’ rosters,
and entering the grades of courses they are teaching.
Whereas, the students are in charge of being able to
register for courses and apply for the financial aid. Assume
that we have to design a database that maintains the data
about students, Instructors, courses, aid, etc. We also want
to design the application that enables us to do the course
registration, financial-aid application processing, and
maintaining of the university-wide course catalog by the
registrar’s office.

4.2 External Views of the URS

In the previous phase, the URS requirements have been
recorded as a textual report that documents, classifies and
clarifies (in an ad hoc way) what is initially known about
the system. In this phase, the URS requirements are
analyzed and categorized. The external views are
developed to express the externally observable behavior
that is required of the URS, and its interface with the
surrounding environment, see Figure 3.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 120

Fig. 3 External views of the HASoC lifecycle

4.2.1 The Context View

The URS Context View aims to state precisely but at a
high-level of abstraction, the communications between the
URS and its environment. The design and construction of
this view are based on the analysis of the above statement
that reports the URS requirements. The URS Context View,
which is illustrated in Figure 4, depicts the complete URS
under development as a single object (the system object)
surrounded by external objects (actors) with which it has to
communicate or interface. We describe the URS actors as
in Table 1 based on an analysis of the written statement of
the URS. The actors send a set of messages to the URS,
which issues a set of responses. The set of messages passed
between the URS and its actors defines the interactions
between the URS and its surroundings. Table 2 names and
describes the messages and the URS responses.

Fig. 4 A URS context diagram

Table 1 The description of the URS actors

Actor Description
Registrar An employee who maintains the schedule,

sets the enrollment limits, and monitors the
registration process.

Instructor A person who offers the courses, receives the
rosters, and enters the grades of the students.

Student A person, who registers for a course, applies
for a financial aid.

Aid
Officer

An employee who receives the application for
an aid and return a notification of acceptance.

Table 2:The description of the external interacting messages of the URS
with its actors

Message Description The URS response

schedule
Courses are added or

deleted and the schedule
is changed by the

registrar.

It accepts the
commands and

updates the catalog.

rules
The registrar sets the
enrolment limits on

courses.

It accepts or refuses
the registrations
based on those

limits.

monitori
ng

 The registrar monitors
the use of the system.

It sends messages
about the use of the

system to the
registrar.

register The student requests a
registration for courses.

It accepts all or part
of his/her request

based on the rules.

applicati
on

The student applies for a
financial aid.

It accepts or refuses
the aid. It sends the
request to the aid

officer.

results
Messages returned to the

student about his/her
registration or aid

requests.

It sends a message
to the student about

accepting or
refusing his/her

requests.

notificati
on

A notification of
acceptance the aid is sent

by the aid officer.

It sends the
notification to the

student.

courses The instructor offers some
courses.

It adds these
courses to the

catalog.

grades The instructor enters the
grades of students

It saves the grades
in the system.

rosters
The instructor receives
the rosters of his/her

courses.

It sends rosters to
the instructors for

their courses.

4.2.2 The Use Case View

The Use Case View of the URS establishes the forces that
will drive subsequent development stages. It can be
developed concurrently with the URS Context View as a
UML use case diagram (Figure 5) with the associated use
case descriptions (examples are shown in Table 3). It

monitoring

University
Registration

System
(UR S)

Instructor Registrar

courses

notification

 Student Aid Officer

rosters
rule

schedule

application
results register

application

grades

Use Case View Context View Platform Identification

EXTERNAL VIEWS

+ +

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 121

contains a set of use cases that define the functionality of
the URS.

Fig. 5 A use case diagram for a URS

Table 3: Use cases descriptions
Name Register courses

Summary The URS receives requests for registration from
students.

Actors Student, Registrar

Description
The students send a registration requests for
courses to the system. Registrar monitors the

registration process.

Name Validate login

Summary The URS has to validate the using of the
system.

Actors Instructor, Student

Description

The instructor and the student must have the
authority to use the URS for offering the

courses and receiving the rosters in the case of
the instructor and enrolling for courses and

applying for an aid in the case of the student.

Name Apply enrolling limits

Summary The URS ensures the limits of enrolling for
courses.

Actors Registrar, Student

Description
The registrar has to ensure that the enrolling

limits are satisfied when students registering for
courses.

Name Request rosters

Summary The URS receives a request for a roster from
the instructor.

Actors Instructor, Registrar

Description The instructor requests the names of students
who are registered for his/her courses.

Name Apply aids

Summary The URS receives the requests for aids from the
student.

Actors Aid Officer, Student

Description
The aid officer receives the requests from the

student and sends notifications by an
acceptance to him/her.

Name Offer courses

Summary The URS receives course offerings from the
instructor.

Actors Instructor

Description The instructor offers the courses he/she wants
to add to the catalog for student registration.

Name Enter grades

Summary The URS receives the grades of courses from
the instructor.

Actors Instructor

Description The instructor enters the grades of courses
he/she teaches.

4.2.3 Platform Identification

We assume the initial platform of the URS exists. This at
least consists of one microcomputer, and a set of software
including a database management system such as Oracle
[12, 20], an operating system e.g. Windows, etc. Therefore,
based on a UML deployment diagram, the initial version of
the URS platform is shown in Figure 6. The basic URS
platform may be as that in the initial platform.

<<computer>>
Microcomputer PC2

<<computer>>
Microcomputer PCn

<<computer>>
Microcomputer PC1

<<network>> LAN

<<network>>
Internet

. . .

Fig. 6 A deployment diagram for the URS platform

4.3 Uncommitted Modeling: First Iteration

For the sake of simplicity, attention is restricted to the
registration process. In other words, the intention is to
consider the development of URS registration sub-system.
The activities associated with uncommitted modeling are
shown in Figure 7. Here, the concern is the development of

Student

Aid Officer

Registrar

Instructor

University
Registration System

(URS)
Offer courses Enter grades

<<extends>>

Re quest rosters Apply aids

Apply enrolling
limits

Validate login

Register courses

 <<include>>

 <<include>>

 <<include>>

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 122

the core functionality of the URS, and assume that in the
later stages additional functionality will be introduced.

Fig. 7 Uncommitted modeling phase of the HASoC lifecycle

4.3.1 Functionality Selection

Since a typical URS has to register courses for students,
the ‘Register courses’ use case is selected as a core
functionality. We select the ‘Register courses’ use case
from the URS use case model and then develop it within
the first iteration.

 : Course

time

 : Catalog

1 : requestRegistration()

Student
 : Registeration : Schedule

2 : getCourseListing()

3 : selectCourse() 4 : addCourse()
5 : getPreReq()

6 : getSeatsLeft()

7 : [getPreReq == true &&
getSeatsLeft == true] /

updateSchedule()

Fig. 8 A sequence diagram of the “Register courses” use case

4.3.2 Object and Class Models

A UML sequence diagram representing the objects and the
interactions involved in a scenario that realizes the selected
‘Register courses’ use case is depicted in Figure 8. This
scenario describes a typical course of events that might
occur when the URS registers courses for students. The
sequence diagram indicates that the : Registration object is
active because it is capable of autonomous activities. Once
the student asks for a course, the : Registration object
receives such request and performs a number of
registration steps. The : Registration object calls the :
Catalog object for bringing the course list. Once the
student selects the requested course from the list, the :

Registration object calls the : Course object for adding the
course to the student's courses. Figure 9 illustrates the
collaboration diagram.

Fig. 9 A collaboration diagram of the “Register Courses” use case

From the above sequence/collaboration diagrams, the
corresponding UML class diagram is illustrated in Figure
10. This diagram depicts the static structure of the
application-specific part of the URS corresponding to this
iteration.

findCourseAdd()
cancelCourse()
addCourse()
viewSchedule()
……()

…...

Registration

updateSchedule()
showSchedule()
……()

…...

Schedule

assignAid()
denyAid()

aidType
aidAmount

FinancialAid

getPreReq()
getSeatsLeft()
getCourseListing()
……()

…...

Catalog

viewSchedule()
……()

name
serial
…...

Person

enterGrades()
offerCourse()
……()

…...

Instructor

requestRegistration()
applyAid()
……()

…...

Student

dropCourse()
addCourse()
……()

time
classroom
seats
…...

Course

Fig. 10 A UML class diagram of the URS (first iteration)

Object and Class
Models

Specification and
Validation of Behaviour

UNCOMMITTED MODELLING

Functionality
Selection

 : Course

 : Catalog

1 : requestRegistration()

Student

 : Schedule

2 : getCourseListing()3 : selectCourse()

4 : addCourse()

5 : getPreReq()
6 : getSeatsLeft()

7 : [getPreReq == true && getSeatsLeft == true] /
updateSchedule()

 : Registeration

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 123

4.3.3 The Specification and Validation of the URS
Behavior

In this stage, the detailed implementation of the classes
relevant in the current development iteration is specified.
This can be involved in a convenient way through the
synthesis of an executable model from the details of object
interactions and internal behavior specified in this stage. In
other words, model validation can be accomplished by
considering the overall behavior of the current increment.
The creation of an executable model is briefly considered
below. Each development iteration extends the class and
object models by introducing functionality into the system
specified by the use cases under consideration in the
current iteration. Hence, the use case view can be used to
provide test specifications for the executable model.

Executable Modeling

The detailed model validation can be achieved through the
execution of a full software model. The class model
provides important information for synthesis of the
executable model and supports the synthesis of interface
code. Also, the sequence diagrams provide information
about run-time inter-object communications. From these
models a skeleton of the executable model can be
synthesized. This basic model can be made executable with
the addition of supporting generic objects that control the
simulation process. Once the model is executable, then the
validation of object-level communications can be
performed. In order to provide a finer degree of behavioral
validation, detailed code would be added to the skeleton
executable model, via the addition of code to describe the
behavior of passive objects.

4.4 Committed Modeling: First Iteration

The commitment of a system model aims to move the
uncommitted model of the URS system towards an
implementable specification. Once the executable and
initial platform models of the system have been
constructed and evaluated, uncommitted objects of the
system can be committed. In case of a pure software
system, the commitment is achieved as illustrated in Figure
11 through the only Interface Mechanisms development
stage.

Interface Mechanisms

COMMITTED MODELLING

Fig. 11 The committed modeling phase of the modified HASoC lifecycle

Interface Mechanisms

The only stage in the commitment of a software system
model considers the external interface of the system. The
mechanisms by which the environment interacts with the
software system will be fixed at the start of development,
whereas in others they must be determined as part of the
design process. Clearly, the decision that is taken leads to
different sets of interface objects being added to the model.
Once the structural and behavioral aspects of the selected
‘Register courses’ use case have been developed, we move
towards the development of an implementable
specification. With respect to this use case, there are no
additional interface objects that need to be added to the
URS model.

4.5 Platform Modeling: First Iteration

The aim of the platform modeling is to describe the overall
execution environment in sufficient detail to facilitate the
implementation of the complete system, application and
platform. Therefore, the platform-modeling phase
considers those components that play a supporting role in
the operation of the URS. The hardware components
including processor, buses, memories, etc. are described
through the HAM (Hardware Platform in Figure 12), and
the software components, including the operating system,
DBMS, etc.

Fig. 12 The platform modeling phase of the modified HASoC lifecycle

At the completion of an iteration of the Platform
Identification stage, a model of the implementation of one
or more use cases exists in terms of a set of interacting
objects. In order to construct a working system, however,
further consideration must be given to those components
that play a supporting role in the operation of system.
These components including processors, buses, memories,
DBMS, and an operating system provide the execution
environment.

At one end of the spectrum, a pre-existing Hardware
Platform may be used in its entirety for the implementation
of a system. However, it is more likely that an existing
platform would be customized or reconfigured for a
particular system through the addition, removal,
replacement, or modification of hardware and software IP
objects. In each iteration, the capabilities of the platform

System Software Hardware Platform

PLATFORM MODELLING

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 124

could be updated to support the additional functionality
introduced into the system in that iteration. If a new
platform were to be developed, the HASoC method may be
used (in an iterative way) to develop those parts of the
platform that are directly used by the application through
the introduction of IP cores and supporting software.

4.6 Uncommitted Modeling: Second Iteration

By the same way, we can consider and complete the
second iteration of the development of the URS. This
development starts by selecting the ‘Offer courses’ use
case from the use case model and then develop it through
the subsequent stages.

5 Conclusion

We have customized the lifecycle of the HASoC method
for software systems development, although this method
was aimed for developing embedded systems that are
targeted at system-on-chip implementations. Not all stages
of the HASoC lifecycle are applied for developing
software systems. Such development is concerned with the
evaluation of the HASoC method and established a
complete A-to-Z object-oriented teaching example for
developing software systems.

A set of specific benefits have been gained from object-
oriented development of software systems using HASoC
method. Iterative, incremental, and use-case-driven
techniques that have been merged within the HASoC
lifecycle make the development of software systems
responsive to changing system requirements. The
development process has reaped the benefits of using a
widely understood notation of UML that has been
successfully applied in the development of large-scale
software systems. Indeed, the development process has a
significant concurrency that makes the underlying platform
model of the developed system can commence much
earlier with its application model development. Moreover,
object oriented development can lead to robust and
extendible software systems.

As future work, the following topics deserve more
attention as a result of using HASoC method. It is
fundamental to investigate, at different aspects, what are
the implications and consequences of software systems
development. It is important to devise more rigorous
supporting software tools for HASoC method, to bring out
the benefits of object-oriented mechanisms like inheritance
and polymorphism. Applying the HASoC method and
demonstrating its perceived strengths in the development
of other software systems would allow more solid

assessments about the worth and usefulness of this method.
We believe that the HASoC is a realistic and feasible
method for software systems development. Moreover, the
current application areas under consideration include the
development of pure hardware systems using HASoC
method.

6 References

[1] E. J. Braude, Software Engineering: an Object-Oriented
Perspective, John Wiley & Sons Inc., 2001.

[2] http://www.uml.org
[3] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified

Modeling Language User Guide (The Second Edition),
Addison Wesley Object Technology Series, 2005. ISBN:
0321267974.

[4] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modelling Language Reference Manual: Addison Wesley,
2004.

[5] G. Booch, Object-Oriented Analysis and Design with
Applications, Third Edition: Redwood City, CA,
Benjamin/Cummings Publishing Company, Inc., 2007 ISBN:
9780201895513.

[6] G. Booch, Object-Oriented Design with Applications:
Redwood City, CA, Benjamin/Cummings Publishing
Company, Inc., 1991.

[7] I. Graham, Object-Oriented Methods Principles and Practice,
Third Edition: Addison Wesley, 2001.

[8] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B.
Tabbara, A. Jurecska, L. Laavangno, C. Passerone, K.Suzuki,
and A. Sangiovanni-Vincentelli, Hardware-Software Co-
Design of Embedded Systems: The POLIS Approach (The
Springer International Series in Engineering and Computer
Science) Kluwer Academic Publishers, 1997.

[9] Computer Systems Engineering Group, "MOOSE: User
Manual Version 5.01," http://www.cl.co.umist.ac.uk/moose,
February 1, 1999.

[10] Derrick Morris, David Evans, Peter Green, and Colin
Theaker “Object Oriented Computer Systems Engineering
(Applied Computing)”, Springer, 1996 ISBN-13: 978-
3540760207.

[11] J.-Y. Brunel, W. Kruijtzer, H. Kenter, F. Petrot, L. Pasquier,
E. d. Kock, and W. Smits, "COSY Communication IP's," in
Proceedings of Design Automation Conference (DAC), pp.
406-409, 2000.

[12] Ramez Elmasri, and Shamkant Navathe, “Fundamentals of
Database Systems (6th Edition)”, Addison Wesley, (April 9,
2010) ISBN-13: 978-0136086208

[13] http://www.phindia.com/gupta/
[14] http://www.webhostingsearch.com/articles/oracle-database-

management-system.php
[15] Michael R. Blaha and William Premerlani, Object-oriented

Modeling and Design for Database Application Using OMT
and UML: Prentice Hall 1 edition, 1997.

[16] C.S.R. Prabhu, Object-oriented Database Systems
Approaches and Architectures, 2nd edition: Prentice-Hall,
2005

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 125

http://www.uml.org/
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Derrick%20Morris
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=David%20Evans
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Peter%20Green
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Colin%20Theaker
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Colin%20Theaker
http://www.amazon.com/Ramez-Elmasri/e/B000APV0OK/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Shamkant%20Navathe
http://www.phindia.com/gupta/
http://www.webhostingsearch.com/articles/oracle-database-management-system.php
http://www.webhostingsearch.com/articles/oracle-database-management-system.php
http://www.amazon.co.uk/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&search-alias=books-uk&field-author=Michael%20R.%20Blaha
http://www.amazon.co.uk/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&search-alias=books-uk&field-author=William%20Premerlani

[17] M. O’Docherty, Object-oriented Analysis and Design
Understanding System Development Using UML 2.0: John
Wiley and Sons, 2005

[18] J. Harrington, Object-oriented Database Design: Morgan-
Kaufman, 2000

[19] A. Salah Eldin, "Object-Oriented Technology for System-
Level Design," Ph.D. Thesis, University of Manchester
Institute of Science and Technology, UMIST, Manchester, U.
K, 2003

[20] Oracle Corporation, Oracle 10g Release 2 (10gR2), July
2005.

Salah Eldin Abd Elrahman. got his B. Sc. in Industrial
Electronics Engineering May 1988, and M. Sc. in Computer
Science and Engineering 9th of July 1994; both degrees from the
Faculty of Electronic Engineering, Menoufia University, Egypt. He
got his Ph. D. in Computations 11th of July 2003, from the Dept.
of Computation, University of Manchester Institution of Science
and Technology (UMIST), U. K. From 15th of January, 1989 to 4th
of September 1994, he was a demonstrator, from 5th of
September 1994 to 22nd of September 1998, as a lecturer, and
from 21st of September 2003 to 2005 as an assistant professor at
the department of Computer Sciences and Engineering, Faculty of
Electronic Engineering, Menoufia University, Egypt. From 2005 to
July 2010, he was an assistant professor at the department of
Computer Engineering, Faculty of Computers and Information
Systems, Taif University, Saudi Arabia and from 27st of
September 2010 to August 2011, as an assistant professor at the
Faculty of Computers and Information Technology, Tabuk
University, Saudi Arabia. he is interested to do some researches
in Using Object-Oriented Technology for Developing Embedded
Systems, Real-Time Systems, and Software Systems such as
Database Systems. The best publication is P. N. Green, M. D.
Edwards, and S. E. S. Essa, "HASoC-Towards a New Method for
System-on-a-Chip Development," Design Automation for
Embedded Systems, vol. 6, No. 4, pp. 333-353, 2002.

Mohammed Badawy received his B.Sc. and M.S. in computer
science and engineering at Menoufia University (Egypt) and
received his Ph.D. in computer science and engineering at Czech
Technical University in Prague (Czech Republic). He worked as
assistant professor in the department of Computer Science and
Engineering at Menoufia University (Egypt) from 2002 to 2005. He
worked as assistant professor in the department of Information
Technology at Taif University (Saudi Arabia) from 2005 to 2010 (3
years of them as chairman of the department). Currently, he
worked as a consultant in the deanship of Information Technology
at Islamic University (Saudi Arabia) from 2010. His research
interests includes databases, data stream systems, and software
development. He is a member of Association of Computer
Science and Information Technology (IACSIT) and a reviewer of
the International Journal of Engineering and Technology (IJET). He has
published about 13 papers in various scientific journals and
refereed conferences.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 126

