

A Methodological Review for the Analysis of Divide & Conquer
Based Sorting/ Searching Algorithms

Mr. Deepak Abhayankar1 and Mrs. Maya Ingle2

1School of Computer Science, Devi Ahilya University
Indore, M.P. 452017, India

2School of Computer Science, Devi Ahilya University ,
Indore, M.P. 452017, India

Abstract

This paper develops a practical methodology for the analysis of
sorting/searching algorithms. To achieve this objective an
analytical study of Quicksort and searching problem was
undertaken. This work explains that asymptotic analysis can be
misleading if applied slovenly. The study provides a fresh insight
into the working of Quicksort and Binary search. Also this
presents an exact analysis of Quicksort. Our study finds that
asymptotic analysis is a sort of approximation and may hide
many useful facts. It was shown that infinite inefficient
algorithms can easily be classified with a few efficient algorithms
using asymptotic approach.

1. Introduction

There have been abundant computer applications which
need sorting/searching as a key component. Since SQL
operations use it as an internal database subroutine, all
database applications gain advantage of an efficient
sorting/searching algorithm. Also sorting/searching is a
must for some rudimentary database operations like a
creation of indices and binary searches. Sorting is
functional in operations like finding closest pair,
determining an element's uniqueness, finding kth largest
element, and identifying membership. Many practical
applications in computational geometry need sorting. For
instance sorting is used to find the convex hull in
computational geometry [10]. Applications that need
sorting/searching include supply chain management,
bioinformatics and computer graphics. Since
sorting/searching problem has a lot of importance in real
world, hence it will be fruitful to evolve a practical
framework or methodology for analysis of sorting
algorithms.

This paper develops an intuitive framework or
methodology for the analysis of sorting/searching

algorithms. To achieve this objective an analytical study of
Quicksort and searching problem was carried out. This
effort explains that asymptotic analysis can be misleading
if applied carelessly. This study provides a fresh insight
into the working of Quicksort and Binary search. Also this
study presents an exact analysis of Quicksort. Although
there already exist a few average case analyses, majority
of the attempts finish up as asymptotic analysis. Our study
finds that asymptotic analysis is a sort of approximation
and may hide many useful facts such as large constant
factors which make any algorithm insane for practical
purposes. It was shown that infinite inefficient algorithms
can easily be classified with a few efficient algorithms
using asymptotic approach.

2. Searching an Analytic Study

It is not difficult to design a set of binary search like
divide and conquer searching algorithms which lead to
following recurrence.

T(n) = c + T(nk/k+1)

T(1) = d

Master theorem suggests the solution of the recurrence
relation is T(n) = O(log n).

 For k = 1 we will have recurrence relation for
binary search. For k = 2 one gets ternary search. One of
the observations of this study is that for k > 1 we can
produce a sequence of increasingly inefficient algorithms
by incrementing the value of 1. But asymptotic analysis
puts all the algorithms in the same set. In fact all
algorithms can flaunt logarithmic time complexity. It is the
constant factor that differs. The key conclusion is that
constant factor matters and one cannot blindly trust the
asymptotic order. The algorithm designer has to examine
the situation thoughtfully. Too high a constant factor will

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 531

render an algorithm useless with certainty. This endeavor
finds that an exact analysis may provide better insight than
what asymptotic analysis may offer.

3. Probabilistic Analysis of Quicksort

3.1 Review of Probabilistic Analysis

In probability theory, a probabilistic arrangement is
defined by a sample space S and a probability measure p.
The points of the sample space are the possible result of
the experiment and are called elementary events. An event
is a subset of the sample space. For instance, one event we
may care about is the event that the first die comes up 1.
Another is the event that the two dice sum to 7. The
probability of an event is just the sum of the probabilities
of the elementary events contained inside it [9].

 A random variable is a function from elementary
events to integers or reals. For instance, another way we
can talk formally about these dice is to define the random
variable Y1 representing the result of the first die, Y2
representing the result of the second die, and Y = Y1 + Y2
representing the sum of the two. We could then ask: what
is the probability that Y = 6? [9].

 One property of a random variable we often care
about is its expectation. For a discrete random variable Y
over sample space S, the expected value of Y is: E[Y] =
Pr(e1) Y[e1] + Pr(e2) Y[e2] +..............Pr(en) X[en] for all
e∈S. An important fact about expected values is Linearity
of Expectation: for any two random variables U and V,
E[U+V] = E[U] + E[V]. This fact is incredibly important
for analysis of algorithms because it allows us to analyze a
complicated random variable by writing it as a sum of
simple random variables and then separately analyzing
these simple RVs[9].

3.2 Probabilistic Analysis of Quicksort with
Accurate Results

Theorem 1The expected number of comparisons made by
randomized Quicksort on an array of size n is Hn(2n+2) –
4n, where Hn = (1+ (½) +(1/3) +.............(1/n)).

Let us consider one of the random variables is Yij’s for i <
j. Denote the ith smallest element in the array by ei and the
jth smallest element by ej. If the pivot we choose is
between ei and ej then these two end up in different
buckets and machine will never compare them to each
other. If the pivot we choose is either ei or ej then
Computer does compare them. If the pivot is less than ei or
greater than ej then both ei and ej end up in the same
bucket and we have to pick another pivot. So, one can

think of this like a dart game: we throw a dart at random
into the array: if we hit ei or ej then Yij becomes 1, if we
hit between ei and ej then Yij becomes 0, and otherwise
we throw another dart. At each step, the probability that
Yij = 1 conditioned on the event that the game ends in that
step is exactly 2/(j − i + 1). Therefore, overall, the
probability that Yij = 1 is 2/(j − i + 1).

Up to this stage we follow what the other researchers have
already done [9], and from this point we move in the
direction of exact value rather than a crude upper bound.

 ---------------- (Equation A)

 Equation A is one of the central contributions of
the paper. Equation A gives the exact value of the
expected number of comparisons performed by Quicksort.
If a researcher is inclined towards asymptotic approach
s/he can easily have it. For the researchers, who are
inclined towards asymptotic approach and approximate
results, E[Y]=O(nlogn). Because Hn is approximately log
n, E[Y] becomes O(log n).

3.3 Alternative Analysis

This section is basically a byproduct of the overall study. It
is a bit crude but effective technique for asymptotic
analysis. Quicksort partition may divide the array into two
partitions. One of the partitions may be empty. If there are
two partitions then either both are of same size or one of
them will be larger than the other one. We are interested in
upper bound on the average case time. Size of the Non
smaller partition may vary from (n-1) to (n-1)/2. Average
size of Non Smaller partition was found to be

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 532

approximately (3n/4). Along the same line if we estimate
average size of Non large partition we get approximately
(n/4). This leads to following recurrence relation.

T(n) = T(n/4) + T(3n/4) + (n-1).

Application of Recursion tree approach recommends that
solution is O(n log n).

4. Results and Conclusion

Evidence of the analysis of a set of divide and conquer
search algorithms suggests that asymptotic analysis can
easily mislead. Exact analysis is a better option than
asymptotic approach. Asymptotic analysis may play a side
role but it cannot replace exact analysis. If exact
mathematical analysis is not feasible then only
approximations and asymptotic can play the key role.
References preferred to provide only the asymptotic
analysis; this study seems to be unique to go beyond
asymptotic analysis and to provide an exact analysis of
Quicksort. Moreover this study produces one more
alternative asymptotic analysis.

References
[1] D. E. Knuth, The Art of Computer Programming, Vol.
3, Pearson Education, 1998.
[2] C. A. R. Hoare, "Quicksort," Computer Journal5 (1) ,
1962, pp. 10-15.
[3] S. Baase and A. Gelder, Computer Algorithms:
Introduction to Design and Analysis, Addison-Wesley,
2000.
[4] J. L. Bentley, "Programming Pearls: how to sort,"
Communications of the ACM, Vol. Issue 4, 1986, pp. 287-
ff.
[5] R. Sedgewick, "Implementing quicksort Programs,"
Communications of the ACM, Vol. 21, Issue10, 1978, pp.
847-857.
[6]T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.
Stein, Introduction to Algorithms, Second Edition. MIT
Press and McGraw-Hill, 2001.
[7] G. S. Brodal, R. Fagerberg and G. Moruz, "On the
adaptiveness of Quicksort," Journal of Experimental
AlgorithmsACM, Vol. 12, Article 3.2, 2008.
[8] N. Wirth, Algorithms and Data Structures, © N. Wirth
1985 (Oberon version: August 2004)
[9]http://www.cs.cmu.edu/afs/cs/academic/class/15451-
s10/www/Probabilisticanalysis, Randomized Quicksort-1-
July-2011
[10] J. Chhugani, W. Macy, A. Baransi, A.D. Nguyen, M.
Hagog, S. Kumar, V. W. Lee, Y. K. Chen, P. Dubey,
“Efficient Implementation of Sorting on Multi-Core SIMD
CPU Architecture , “ Journal Proceedings of the VLDB
Endowment, Volume 1, Issue 2, August 2008.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 533

http://www.cs.cmu.edu/afs/cs/academic/class/15451-s10/www/lectures/lect0120.pdf

