
Identifying Reference Objects by Hierarchical Clustering in
Java Environment

Rahul Saha , Dr. G. Geetha

 Department of Computer Science and Engineering, Lovely Professional University

Phagwara, Punjab, India

Department of Computer Sciences and Applications, Lovely Professional University

 Phagwara, Punjab, India

Abstract

Recently Java programming environment has become so popular.
Java programming language is a language that is designed to be
portable enough to be executed in wide range of computers
ranging from cell phones to supercomputers. Computer programs
written in Java are compiled into Java Byte code instructions that
are suitable for execution by a Java Virtual Machine
implementation. Java virtual Machine is commonly implemented
in software by means of an interpreter for the Java Virtual
Machine instruction set. As an object oriented language, Java
utilizes the concept of objects. Our idea is to identify the
candidate objects’ references in a Java environment through
hierarchical cluster analysis using reference stack and execution
stack.

Keywords: Proximity Matrix, Reference Stack, Execution Stack,
Euclidean Distance, Object Reference, Dendogram

1. Introduction

Candidate Objects are those which can be selected as for
the options for the objects in a object oriented paradigm.
Object identification is a reverse-engineering technique that
is largely used to assist the software migration from
procedural paradigm to object-oriented paradigm. Object
identification facilitates acquiring a precise knowledge of
 the data items in a program. Object identification reduces
the degradation of original design. Object identification

typically aims at finding match-up of legacy software
components: data structures, and functions, for later
building them as object-oriented classes. However, large
application consists of numerous data structures and
functions; it needs a statistical method to facilitate
information classification.

2. Existing Concept

In the paper [1], the authors have described an approach of
hierarchical clustering in a procedural language
environment using stack and queues. Here the basic
functions of a stack and queue are taken to create proximity
matrix and pattern matrix. Pattern matrix represents a
property set of data (scores or measurements) in a table.
Each row stands for a set of properties (a pattern).
Proximity matrix represents an index of association
(proximity) between pair of patterns. The index can be
either similarity index or dissimilarity index and can be
computed. by several ways, for example, Simple matching
coefficient, Jaccard coefficient, Euclidean distance,
Manhattan distance etc. Then they have calculated
Euclidean distances between each pair and least values are
classified in a cluster. This process goes on until all the
properties are successfully clustered. The extracted
functions are shown in Table 1 and the relation definitions
are shown in Table 2.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 480

 Table.1 : Extracted functions

 Table.2: Relation Definition

Now in Table 3 the extracted functions and the related
definitions are shown. A ‘ X’ mark is put in the cells for
each corresponding function and relation definition. In
Table 4 the cells are assigned by the values 0 or 1
depending upon the ‘X’ marks of Table 3; 1 is assigned for
a ‘X’ mark else 0.

 Table.3: Properties in modular case

 R0 R1 R2 R3 R4 R
5

initStack X X

initQ X X

isEmptyStack X X

Push X X

enQ X X

Pop X X

deQ X X

 Table. 4: Pattern matrix for modular case

 R0 R1 R2 R3 R4 R
5

initStack 1 0 0 0 1 0

initQ 0 1 0 0 0 1

isEmptyStack 0 0 1 0 1 0

isEmptyQ 0 0 0 1 0 1

Push 0 0 1 0 1 0

enQ 0 0 0 1 0 1

Pop 0 0 1 0 1 0

deQ 0 0 0 1 0 1

Now a proximity matrix is generated using Euclidean-
distance method formula given below: t

d(i,k) = { ∑(xij – xkj) 2 } 1/2 ………………(Equation 1)
 j= 1

where, xij represents the j-ordered attribute of pattern i, xkj

 Software component

struct stack

struct queue

struct stack * initStack (int size)

struct queue *initQ ()

int isEmptyStack(struct stack * s)

int isEmptyQ (struct queue * q)

void push (struct stack * s, int i)

void enQ (struct queue * q, int i)

int pop (struct stack * s)

int deQ (struct queue * q)

Name Definition

R0 Return type is struct stack

R1 Return type is struct queue

R2 Has argument of type struct stack

R3 Has argument of type struct queue

R4 Use field of struct stack

R5 Use field of struct queue

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 481

represents the j-ordered attribute of pattern k, and t
represents the total attribute of pattern. Depending on this
proximity matrix clusters are made further by
agglomerative method.

3. Our Approach

The authors have illustrated the above in case of procedural
language. Our idea is to convert it into object orientation
(Java environment).We shall use the same approach but
using two stacks i.e. execution stack and reference stack so
that the basic approach of the stacks as we have seen in the
existing scenario above will be similar and we can integrate
it with our Java environment. Table 5 and 6 show the
relation definition and extracted functionalities used for our
approach.

 Table.5: Relation Definition of our approach

Now, in Table 6 we have extracted some of the
functionalities related to the stacks used in our approach
that is the functionalities regarding reference stack and
execution stack.

 Table.6: Extracted functionalities for our approach

We can use a flowchart diagram to show that how
reference and execution stacks are used in identifying the
reference to objects. The diagram is given in Fig. 1.

Name Definition

R0 Return type is struct execstack

R1 Return type is struct refstack

R2 Has argument of type struct execstack

R3 Has argument of type struct refstack

R4 Use field of struct execstack

R5 Use field of struct refstack

 Software component

struct execstack

struct refstack

struct execstack * initExec (int size)

struct refstack *initRef (int size)

int isEmptyExec(struct execstack * es)

int isEmptyRef (struct refstack* rs)

void ePush (struct execstack * es, int i)

void rPush (struct refstack * rs, int i)

int ePop (struct execstack * es)

int rPop (struct refstack * rs)

struct execstack* traExec (struct execstack * es)

struct refstack * traRef (struct refstack* rs)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 482

4. Analysis

The relation definition matrix is shown in table 7. We have
also generated the pattern matrix which is shown in Table
8.

 Table.7: Relation definition matrix for our approach

 Table.8: Pattern Matrix for our approach

 R0 R1 R2 R3 R4 R
5

initRef 0 1 0 0 0 1

initExec 1 0 0 0 1 0

isEmptyRef 0 0 0 1 0 1

isEmptyExec 0 0 1 0 1 0

ePush 0 0 1 0 1 0

rPush 0 0 0 1 0 1

ePop 0 0 1 0 1 0

rPop 0 0 0 1 0 1

traRef 0 1 0 1 0 1

traExec 1 0 1 0 1 0

Now to generate the proximity matrices in each iteration
we have used Euclidean formula as defined in Equation 1
earlier. The formula is as below once again:

 t
d(i,k) = { ∑(xij – xkj) 2 } 1/2
 j= 1
where, xij represents the j-ordered attribute of pattern i, xkj
represents the j-ordered attribute of pattern k, and t
represents the total attribute of pattern. First proximity
matrix is shown in the Table 9.

Table.9: First proximity matrix

We have considered the least distant (0.00) values from the
Table 9 first to form the first round clusters and applied
Single linkage rule to form the second proximity matrix in
Table 10. The formula for the single linkage rule goes thus:

d [(k), (i,j)] = min {d [(k),(i)], d [(k),(j)] }

where:

d [(k),(i)] represents the similarity between cluster k and
cluster i

d [(k),j)] represents the similarity between cluster k and
cluster j

d [(k),(i, j)] represents the similarity between cluster k and
the newly formed cluster i, j.

 R0 R1 R2 R3 R4 R5

initRef X X

initExec X X

isEmptyRef X X

isEmptyExec X X

ePush X X

rPush X X

ePop X X

rPop X X

traRef X X X

traExec X X X

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 483

Table.10: Second Proximity Matrix

C1 = isEmptyRef + rPush + rPop
C2 = isEmptyExec + ePush + ePop

We now have considered the least distant (1.00) values
from the Table 10 first to form the next round of clusters
and applied the above said Single linkage rule to form the
third proximity matrix given in Table 11.

Table.11: Third Proximity Matrix

 C3 = traRef + initRef C4 = traExec + initExec

We now have considered the least distant (1.00) values
from the Table 11 to form the next round of clusters and
applied Single linkage rule to form the fourth proximity
matrix given in Table 12.

Table. 12 Fourth Proximity Matrix

 C5=C1 + C3 C6=C2+ C4

We now have considered the least distant (0.00) values
from the Table 12 to form the next round of clusters and
applied Single linkage rule to form the fifth proximity
matrix shown in Table 13.

Table.13: Fifth Proximity Matrix

 C7 = C5 + C6

 C5 C6

C5 0

C6 1.41 0

 C7

C7 0

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 484

4.1.Dendogram

Output of clustering analysis can be represented in various
forms depending on the objective of data classification.
Output of hierarchical clustering analysis is usually
represented in a special type of a tree structure called
Dendogram. Our output of clusterization is also
represented in Dendogram shown in Fig. 2 above.

5. Conclusion

From the above Dendogram, we can see that the cluster C5
contains all the functionalities that deal with reference
stack and cluster C6 contains all the functionalities that
deal with execution stack. Cluster C5 can be further
divided into C3 and C1 where C3 cluster consists of the
functionalities of traversing the reference stack i.e. traRef (
) and initialization of reference stack i.e. initRef (). Cluster
C1 consists of the functionalities like to check if the
reference stack is empty [isEmptyRef ()], to insert objects
in the reference stack [rpush ()] , and to delete an object
reference [rpop()].

Similarly, cluster C6 can be further divided into cluster C4
and cluster C2 where C4 consists of traExec () [traversing
the execution stack], initExec () [initialization of
execution stack] and cluster C2 consists of isEmptyExec (
), epush() and epop().

References

[1] Somsak Phattarsukol and Pornsiri Muenchaisri,
Identifying Candidate Objects Using Hierarchical
Clustering Analysis published in APSEC ’01 Proceedings
of the Eighth Asia-Pacific on Software Engineering
Conference, 2001.

[2] Stepan Sokolov and David Wallman, Identifying and
Tracking Object References in a Java programming
environment, published in United States Patent, Patent no:
US 6804681B2 in Oct 12, 2004.

[3] H.A. Sahraoui, W. Melo, H. Lounis, F. Dumont,
Applying Concept Formation Methods To Object
Identification In Procedural Code, In Roc. of 12th
Conference on Automated Software Engineering, pp. 210 -
218, 1997.

[4] C. Lindig, G. Snelting: Assessing Modular Structure of
Legacy Code Based on Mathematical Concept Analysis.
Proc. International Conference on Software Engineering
(ICSE 97), Boston, USA, May 1997, pp. 349-359.

[5] J. Martin, J. Odell: Object-Oriented Analysis and
Design, Prentice Hall 1992.

[6] R. Wirfs-Brock, B. Wilkerson, L. Wiener: Designing
Object-Oriented Software, Prentice Hall 1990.

Authors’ profile

Rahul Saha is pursuing his M.Tech
from Lovely Professional University,
Punjab, India in the department of
Computer Science and Engineering. His
research interest includes Software
Engineering, Network Security.

Dr. G. Geetha is the Dean of School of
Computer Sciences and Applications.
Her research interest includes
Cryptography and Software
Engineering. She has published more
than 30 papers in refereed Journals and
Conferences. She is also the Editorial
Board of IJACM and IJCRYPTO. She
is presently the President of Advanced
Computing Research Society.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 485

