

Using Bee Colony Optimization to Solve the Task
Scheduling Problem in Homogenous Systems

Vahid Arabnejad1, Ali Moeini2 and Nasrollah Moghadam3

 1 Department of Computer Engineering, Islamic Azad University, South branch

Tehran, Iran

2 Computer Engineering Dept., University of Tehran
Tehran, Iran,

3 Computer Engineering Dept., University of Tarbiat Modares
Tehran, Iran

Abstract
Bee colony optimization (BCO) is one of the most recent
algorithms in swarm intelligence that can be used in optimization
problems this algorithm is based on the intelligent behavior of
honey bees in foraging process. In this paper bee colony
optimization is applied to solve the task scheduling problem
which tasks have dependency with each other. Scheduling of
tasks that represents by directed acyclic graph is a NP-complete
problem. The main purpose of this problem is obtaining the
minimum schedule length that is called make-span. To realize the
performance of BCO in this problem, the obtained results are
presented and compared with the most successful methods such
as Ant colony system, Tabu search and simulate annealing. The
comparison shows that BCO produces the solutions in a different
way and it is still among the bests.
Keywords: Bee Colony Optimization, Task Graph, Task
Scheduling Problem, Homogenous Processors.

1. Introduction

One of the most significant, vital, and complex
problems of parallel execution is referred as Scheduling
a set of either dependent or independent tasks on a
set of processors . Parallel programs can be divided
into a group of smaller tasks which are usually related
to each other. Minimizing of the scheduling length
(make-span) is known as the only purpose of task
scheduling problem in order to allocate tasks to
processors such that dependencies between tasks are
satisfied.
Task scheduling problem is separated into two groups
which are either with or without communication costs, in
which each group could be individually proposed in
heterogeneous or homogeneous systems.
The algorithms for finding the optimal result for the
multiple-processor scheduling problem have been

demonstrated to be NP-complete [1, 6].
Many metaheuristic have been proposed based on methods
and approaches to the task scheduling [2-5].
Behaviors of Social insects such as ants and bees in the
real world have been studied many years to solve many
problems. Ant colony algorithm is an example of swarm
intelligence algorithms for solving combinatorial
optimization problems. Ants can find the shortest path
from the food source to their nest by using pheromone
[10].
 In this paper Task Scheduling Problem has been solved by
the bee colony optimization. The bee colony optimization
algorithm is inspired by the behavior of a honey bee
colony in nectar collection, is another example of swarm
intelligence. BCO has been proposed by Lucic and
Teodorovic [6-8]. Artificial bees in BCO cooperate to
solve combinatorial optimization problem. Every bee
during the search process makes some moves and
constructs a solution [5]. Furthermore, we add a global
memory for bees to compare their result with previous
iteration results that will be explained in details later.

2. Definition of Task Scheduling Problem

The problem of task scheduling is indicated by a directed
acyclic graph (DAG). This graph is shown by
 G (V, E, w, c) which has four characters that are:
V is the set of v nodes, and each node 𝑣𝑣𝑖𝑖 ∈ V represents a
task.
W is a V computation costs array in which each 𝑤𝑤𝑖𝑖 gives
the estimated time of task execution.
E is the set of communication edges. The directed edge
𝑒𝑒𝑖𝑖𝑖𝑖 joins nodes 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖 , where node 𝑣𝑣𝑖𝑖 is called the
parent node and node 𝑣𝑣𝑖𝑖 is called the child node.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 348

C is the set of communication costs, and edge 𝑒𝑒𝑖𝑖𝑖𝑖 has a
communication cost 𝑐𝑐𝑖𝑖𝑖𝑖 ∈ C.
The relationship of data-dependency from task 𝑡𝑡𝑖𝑖 to
𝑡𝑡𝑖𝑖 could be indicated via directed edge 𝑒𝑒𝑖𝑖𝑖𝑖 in the set
E = {𝑒𝑒𝑖𝑖𝑖𝑖 | i, j ∈ {1, 2... |V |}. On the other words, task
𝑡𝑡𝑖𝑖 transfers vital relevant information to task 𝑡𝑡𝑖𝑖 after
finishing its execution. The amount of data transferred
from task 𝑡𝑡𝑖𝑖 to task 𝑡𝑡𝑖𝑖 , is measured by the weight of the
edge 𝑒𝑒𝑖𝑖𝑖𝑖 , which is denoted D(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖).
The task 𝑡𝑡𝑖𝑖 is named the predecessor for the task 𝑡𝑡𝑖𝑖 , and
the task 𝑡𝑡𝑖𝑖 is the successor for the task 𝑡𝑡𝑖𝑖 . Pred(𝑡𝑡𝑖𝑖) denotes
a set of its predecessors, and Succ(𝑡𝑡𝑖𝑖) denotes a set of its
successors. In DAG, if a task 𝑡𝑡𝑖𝑖 exists that could satisfy
Pred(𝑡𝑡𝑖𝑖)=φ, it is called the entry task and is denoted by
𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒 . On the other hand, if there is a task 𝑡𝑡𝑖𝑖 that could be
able to satisfy the equation of Succ(𝑡𝑡𝑖𝑖)=φ, this task is
called the exit task and is denoted by 𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑡𝑡 .
Some virtual tasks under the following conditions are
added into the DAG, in order to ensure the DAG has only
one input and one output tasks. A virtual entry task with
zero workload should be joined to the DAG while there
are many entry tasks in a DAG. The directed edges from
this virtual entry task to each entry task can be established,
and the amount of transmission data of these directed
edges is zero. On the other words, if there are many exit
tasks in a DAG, and then a virtual exit task that has zero
workload should be joined to the DAG. The directed edges
from each exit task to this virtual exit task are established,
and the amount of transmission data of these directed
edges is zero, too. Therefore, a DAG that only has one
 𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒 and 𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑡𝑡 can be designed [11].
In order to find the finishing time of each node execution,
its start time is added with its weight that is [12]:

 𝑡𝑡𝑓𝑓(𝑖𝑖) = 𝑡𝑡𝑠𝑠(𝑖𝑖) + 𝑤𝑤(𝑖𝑖) (1)

Two nodes could not be executed on just one processor
simultaneously. The costs relationships between the nodes
that are executed on a same processor are considered to be
zero because these are some local relationships.
The time in which a communication arrives at the
destination processor is mentioned as the edge finish time.
For a graph G (V, E, w, c) with nodes 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑖𝑖 and the
edge 𝑒𝑒𝑖𝑖𝑖𝑖 the amount of finishing time for that edge is
equivalent with the sum of the completion time of node
𝑒𝑒𝑖𝑖 execution and the weight of the edge 𝑒𝑒𝑖𝑖𝑖𝑖 [12].

𝑡𝑡𝑓𝑓�𝑒𝑒𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑠𝑠𝑒𝑒𝑐𝑐 ,𝑃𝑃𝑑𝑑𝑠𝑠𝑡𝑡 � = 𝑡𝑡𝑓𝑓(𝑒𝑒𝑖𝑖 ,𝑃𝑃𝑠𝑠𝑒𝑒𝑐𝑐) + �
0 𝑖𝑖𝑓𝑓𝑃𝑃𝑠𝑠𝑒𝑒𝑐𝑐 = 𝑃𝑃𝑑𝑑𝑠𝑠𝑡𝑡

 𝑐𝑐�𝑒𝑒𝑖𝑖𝑖𝑖 � 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒
� (2)

As it could be seen from the equation above, there are two
cases for the weight of edge 𝑒𝑒𝑖𝑖𝑖𝑖 that indicates the
relationship’s cost: if node 𝑒𝑒𝑖𝑖 is executed on the same
processor in which node 𝑒𝑒𝑖𝑖 were processed, or in the other

words nodes 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑖𝑖 have the same processor, the
weight of that edge is considered to be zero. Otherwise,
the written number on that edge shows its weight and 𝑒𝑒𝑖𝑖
could not be executed as long as 𝑒𝑒𝑖𝑖 that was executed
completely. The node 𝑒𝑒𝑖𝑖 will be started to be executed
immediately after the completion of node 𝑒𝑒𝑖𝑖 . This problem
is known and defined as the problem of priority constraint
(limitation). The nearest time that the execution of node 𝑒𝑒𝑖𝑖
could be started is named Data Ready Time and it is
indicated by DRT that could be computed through the
equation below:

𝑡𝑡𝑑𝑑𝑒𝑒 �𝑒𝑒𝑖𝑖 ,𝑃𝑃� = max

𝑒𝑒𝑖𝑖∈𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑 𝑒𝑒𝑖𝑖
�𝑡𝑡𝑓𝑓�𝑒𝑒𝑖𝑖𝑖𝑖 , 𝑝𝑝𝑒𝑒𝑜𝑜𝑐𝑐𝑒𝑒(𝑒𝑒𝑖𝑖),𝑃𝑃�� (3)

If node 𝑒𝑒𝑖𝑖 is an root node 𝑡𝑡𝑑𝑑𝑒𝑒 �𝑒𝑒𝑖𝑖 ,𝑃𝑃� = 0
Limitations on the start time of node n could be formulized
via DRT:

𝑡𝑡𝑠𝑠(𝑒𝑒,𝑃𝑃) ≥ 𝑡𝑡𝑑𝑑𝑒𝑒 (𝑒𝑒,𝑃𝑃) (4)

A scheduler duty is considered to be completed when the
last node of our graph was scheduled and there were not
any other nodes for scheduling. If we want to obtain the
length of a scheduler it would be:

𝑠𝑠𝑠𝑠(𝑆𝑆) = max

𝑒𝑒∈𝑉𝑉
�𝑡𝑡𝑓𝑓(𝑒𝑒)� − min

𝑒𝑒∈𝑉𝑉
{𝑡𝑡𝑠𝑠(𝑒𝑒)} (5)

A target parallel system P consists of a set of identical
connected processors which has the following properties:

1. All of the processors could execute only a task
during its allocated period of time.

2. The amount of communication costs between
tasks which are executed on the same processor
should be as negligible as the case that it could
be presume to zero.

3. The communication network is fully connected,
in which every processor could communicate
with other processors, directly.

3. Bee Colony Optimization

Each bee hive has a place which is called dance floor.
Every Bee starts to dance after when it came back to its
hive from a foraging. The main purpose of this kind of
dancing is to convince the other bees to be accompanied
by them. The procedure of finding a food source in the
BCO algorithm is separated into 2 steps.
Forward pass: in this step bees leave their hive for finding
a proper food source around their hive. A parameter which
is called NC (number of solution components) is defined
here. This parameter determines the number of tasks that
must be visited by each bee in its forward pass. Then a
partial solution is generated according to the tasks which
are visited by each bee in every forward pass procedure.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 349

The amount of NC is determined practically before the
process of searching will be started.
Backward pass: all of bees come back to their home in this
step and then they start to calculate and evaluate their
answers. Afterwards, these answers are compared with
each other in order to find the best answer. In other words,
each bee should decide to be loyal to its path or not. Each
bee could do one the three jobs below when it came back
to the hive [13]:

1- It could advertise its own path in order to absorb
the other bees.

2- It could leave its path and join to another bee.
3- It could decide not to advertise its own path;

however it keeps on its path.
In these step, those bees which generate more
appropriate and better results have more chances of
success in order to advertise and absorb the other
bees. They communicate their obtained information
about the quality of partial solution and their results
with other bees via their dances. The duration of every
bee’s dance is highly likely related to the quality of its
obtained result.
These two steps are repeated consecutively in order to
generate a complete result which is equivalent to
execute all tasks in the task scheduling problem. At
last, the most proper and best result is chosen.
Below, a pseudo code for the BCO algorithm is
written [14]:
B: the number of bees involved in the search.
NC: the number of forward (backward) passes in a single
iteration.
Do

1- Initializing
2- For (i = 0 ; i < NC ; i ++)

 //forward pass
a) For (b = 0 ; b < B ; b ++)

 (1) Evaluate all possible moves;
 (2) Choose one move using the roulette wheel.

 //backward pass
b) For (b = 0 ; b < B ; b ++)

Evaluate (partial/complete) solution for bee
b;

c) For (b = 0 ; b < B ; b ++)
Loyalty decision using the roulette wheel for
bee b;

d) For (b = 0 ; b < B ; b ++)
If (b is follower), choose a recruiter by the
roulette wheel.

 3. Evaluate all solutions and find the best one
While stopping criteria is not satisfied

In task scheduling problem, two factors should be
considered by each bee in every forward pass:

1) Which task should be selected to execute
2) Which CPU should be chosen to execute the task

First of all, each bee calculates the number of executable
tasks, which could be executed when all of their dependent
precedence tasks were completed. Then, each bee could
peek one of these tasks by consideration of some factors
such as duration of task execution, the number of other
tasks which are related to a significant task and etc. after
choosing a desired task, a proper processor should be
chosen by that bee. The probability of choosing a proper
processor could be calculated via the formula below:

𝑝𝑝𝑖𝑖 =
1 − 𝑇𝑇𝑖𝑖
∑ 𝑇𝑇𝑖𝑖𝑒𝑒
𝑖𝑖=0

 When j = 1,2, … k (6)

Where, 𝑇𝑇𝑖𝑖 is the quickest duration of task execution on the
jth CPU, and also k is the number of CPUs.
In this algorithm a global memory is defined and
considered for all of bees. When each stage of forward
pass completes, after the determination of all the bees
which have the permission of dance, their results are
averaged and saved in the memory. The bees use these
saved information after the next iteration wants to be
started. While a partial solution is generated, if the average
of posterior results is not acceptable in comparison with
the prior results, the mentioned way will be forgotten and
leaved by bees and they will come back to their hive. The
speed of execution would be increased clearly via this
method.
After the first step of task scheduling is completed and all
the bees come back to their hive, they will start to share
their information to the other bees. In this stage the amount
of each bee’s loyalty to its path could be calculated by the
formula below [14, 15]:

𝑃𝑃𝑏𝑏𝑢𝑢+1 = 𝑒𝑒
−(𝑂𝑂𝑚𝑚𝑚𝑚𝑒𝑒 −𝑂𝑂𝑏𝑏)

𝑢𝑢� ; b = 1, 2 … B (7)

Where
u - The forward pass counter (taking values 1, 2… NC)

𝑂𝑂𝑏𝑏 is calculated by

𝑂𝑂𝑏𝑏 =
𝐶𝐶𝑚𝑚𝑚𝑚𝑒𝑒 − 𝐶𝐶𝑏𝑏
𝐶𝐶𝑚𝑚𝑚𝑚𝑒𝑒 − 𝐶𝐶𝑚𝑚𝑖𝑖𝑒𝑒

 (8)

𝐶𝐶𝑏𝑏 is the result of partial solution for the bth bee. Partial
solution result means the latest time point of finishing the
last task at any processors.
𝐶𝐶𝑚𝑚𝑚𝑚𝑒𝑒 and 𝐶𝐶𝑚𝑚𝑖𝑖𝑒𝑒 are respectively the largest and smallest
partial solution results producing by all bees.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 350

3-Result

In this paper the random graph generator is used to test the
proposed algorithm. Graphs based on parameters that will
describe below, have been produced.

1. N: Number of nodes (tasks) in the DAG
2. Width or Fat: This parameter represents the

maximum number of tasks that can be executed
simultaneously. It means that the higher value of
this parameter will result a higher degree of
parallelism.

3. Density: this parameter indicates the numbers of
edges between tasks of two levels of the DAG.

4. Regularity: It is the uniformity of the number of
tasks in each level;

5. Jump: this factor indicates the maximum
number of levels that an edge could go. For
example, every edge can connect with other
nodes in 4 levels below with jump=4in the DAG.

6. CCR: it is the ratio of the communication cost to
computation cost.

These parameters can have different values. We generated
about 648 different graphs with combination of these
different values that indicate in table [1].

Table 1: PARAMETERS AND THEIR VALUES USED FOR GENERATING
DAGS

N 10 - 20 - 30 - 40
Jump 1 - 2 - 4
Width 0.1 - 0.2 - 0.8
Density 0.2 - 0.8
Regularity 0.2 - 0.8
CCR 0.1 - 0.5 - 0.8
Number of processor 4 - 8 - 16

We selected 5 random graphs among all the generated
graphs that their details presented in the table below:

 Table 2: DAG properties

 0TWith 0TDensity 0TRegularity 0TJump 0TCCR
0TDAG1 0T0.1 0T0.2 0T0.2 0T1 0T0.5
0TDAG2 0T0.1 0T0.2 0T0.8 0T4 0T0.1
0TDAG3 0T0.1 0T0.8 0T0.2 0T4 0T0.1
0TDAG4 0T0.8 0T0.8 0T0.8 0T2 0T0.8
0TDAG5 0T0.2 0T0.2 0T0.8 0T4 0T0.1

0TWe compared make-span of these selected graphs in our
propose algorithm with Ant colony system (ACS),
Simulate Annealing (SA), and Tabu Search (TS). Each of
these DAGs is executed on 4, 8 and 16 processors.

0TTable 3: DAG1 result

0T

0TNumber of task = 40 0TNumber of task = 30
0TBCO 0TACS 0TSA 0TTS 0TBCO 0TACS 0TSA 0TTS

0T666 0T666 0T666 0T673 0T497 0T497 0T497 0T497 0TNumber of processor =4
0T579 0T579 0T579 0T585 0T442 0T442 0T442 0T442 0TNumber of processor =8
0T663 0T663 0T663 0T663 0T493 0T493 0T493 0T493 0TNumber of processor =16

0TTable 4: DAG2 result

0TNumber of task = 40 0TNumber of task = 30

0TBCO 0TACS 0TSA 0TTS 0TBCO 0TACS 0TSA 0TTS
0T290 0T290 0T290 0T290 0T201 0T201 0T200 0T201 0TNumber of processor =4
0T317 0T320 0T317 0T317 0T253 0T258 0T253 0T253 0TNumber of processor =8
0T337 0T337 0T335 0T335 0T269 0T269 0T267 0T267 0TNumber of processor =16

0TTable 5: DAG3 result

0TNumber of task = 40 0TNumber of task = 30

0TBCO 0TACS 0TSA 0TTS 0TBCO 0TACS 0TSA 0TTS
0T292 0T297 0T287 0T288 0T241 0T242 0T241 0T241 0TNumber of processor =4
0T332 0T339 0T332 0T332 0T267 0T272 0T267 0T267 0TNumber of processor =8
0T291 0T291 0T285 0T285 0T253 0T253 0T250 0T248 0TNumber of processor =16

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 351

Table 6: DAG4 result

Number of task = 40 Number of task = 30

BCO ACS SA TS BCO ACS SA TS
212 212 211 213 165 164 166 165 Number of processor =4
152 153 150 152 143 144 141 143 Number of processor =8
108 108 106 106 98 98 98 98 Number of processor =16

Table 7: DAG5 result

Number of task = 40 Number of task = 30

BCO ACS SA TS BCO ACS SA TS
225 229 225 225 201 207 200 200 Number of processor =4
263 269 263 263 169 170 169 169 Number of processor =8
203 203 200 200 209 209 203 203 Number of processor =16

 Table8: PAIR-WISE COMPARISON OF THE SCHEDULING AGORITHM

4. Conclusions

Since the Swarm intelligence become one of the
interesting methods in Parallel Computing field, a
modified version of the BCO algorithm (which is one of
the most recent nature inspired algorithms) has been
applied for solving task scheduling problem in this paper.
It simulates the intelligent behavior of bees when they are
faced with a source. The Task scheduling problem is a
kind of NP hard problems which cannot be solved with
linear algorithms. Thus metaheuristic algorithms become
so interesting to employ for solving such problems. BCO
has been rarely applied in this field and this application is
a new area for it.

 There are some novelties in the presented algorithm, and
the most important innovation is considering a general
memory for all bees, to compare their obtained results with
the acceptable results which are obtained previously. Like
other metaheuristic methods BCO has demonstrated solid
solutions on this problem, and the obtained results has
been presented and compared with some other powerful
and well known metaheuristic algorithms such as ACS,
SA and TS. The BCO solutions are considerably close to
SA that is the best scheme, however this mentioned
algorithm has better results in comparison with the ACS
algorithm. The results of these algorithms are shown and
compared in table8. Consequently, BCO could be
considered as a suitable solving method in order to face
NP hard problems.

ACS TS SA BCO

60%
30%
10%

45%
35%
20%

30%
55%
15%

*

better
equal
worse

BCO

40%
45%
15%

25%
60%
15%

*

15%
55%
30%

better
equal
worse

SA

20%
65%
15%

*

15%
60%
25%

20%
35%
45%

better
equal
worse

TS

*

15%
65%
20%

15%
45%
40%

10%
30%
60%

better
equal
worse

ACS

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 352

References

[1] M. R. Garey, and D. S. Johnson, “Computers and
intractability: a guide to the theory of NP-
completeness”, W. H. Freeman and Company, 1979.

[2] P. Shroff , “Genetic Simulated Annealing for
Scheduling Data-dependent tasks in Heterogeneous
Environments” Proceedings of Heterogeneous
Computing Workshop, Apr 1996, pp.98-117.

[3] F.A. Omara and M.M. Arafa , “ Genetic algorithms for
task scheduling problem” , Journal of Parallel and
Distributed Computing 70 (2010) pp 13_22

[4] N. Nissanke, A. Leulseged and S. Chillara,
“Probabilistic performance analysis in multiprocessor
scheduling”, Journal of Computing and Control
Engineering, 2002, Vol. 13, No. 4, pp.171–179.

[5] M . Rapaic, Z. Kanovic and Z. Jelicic, “A theoretical
and empirical analysis of convergence related particle
swarm optimization “, WSEAS Transactions on
Systems and Control, Nov 2009, Vol. 4, Issue 11, pp.
541-550

[6] P. Lucic, D. Teodorovic, “Bee system :modeling
combinatorial optimization transportation engineering
problems by swarm intelligence”, in preprints of the
TRISTAN IV triennial symposium on transportation
analysis, Sao Miguel, Azores Islands;2001.

[7] P. Lucic, D. Teodorovic, “Transportation modeling: an
artificial life approach”, in: Proceedings of the 14th

IEEE international conference on tools with artificial
intelligence, Washington,DC;2002.

[8] P. Lucic, D. Teodorovic, “Computing with bees:
attacking complex transportation engineering
problems”, International Journal on Artificial
Intelligence Tools 2003.

[9] E.G. Co_man, Computer and job-shop scheduling
theory. In Wiley, 1976.

[10] M. Dorigo, G. Di Caro and L.M. Gambardella, “Ant
algorithms for discrete optimization”, Artificial Life,
5:137-172, 1999.

[11] C.chaing , Y.Lee , C.Lee and T.chou , “Ant colony
optimization for task matching and scheduling” ,
Computers and Digital Techniques, IEE Proceedings -
Nov. 2006 Volume: 153 Issue: 6.

[12] O. Sinnen , Task Scheduling for parallel system ,
Wiley,2007.

[13] D.Teodorovic, M. Dell’Orco, “Bee colony
optimization: a cooperative learning approach to
complex transportation problems”, in Advanced OR
and Al. Methods in Transportation, 2005, pp. 51-60.

[14] T.Davidovic , D.Ramljak, M.Selmic and
D.Teodorovic , “Bee colony optimization for the p-
center problem” , Computers & Operations Research
38 (2011) 1367–1376.

[15] T.Davidovic, M.Selmic, D.Teodorovic, “Scheduling
Independent Tasks: Bee Colony Optimization
Approach”, 17th Mediterranean Conference on Control
& Automation Makedonia Palace, Thessaloniki,
Greece June 24 - 26, 2009.

.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 353

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4020547

