

Solving touristic trip planning problem by using taboo search
approach

Kadri Sylejmani1, 2 and Agni Dika1

 1 Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Prishtina
Prishtina, 10000, Kosovo

2 Faculty of Informatics, Vienna University of Technology
Vienna, A-1040, Austria

Abstract

In this paper, we introduce an algorithm that automatically plans
a touristic trip by considering some hard and soft constrains.
Opening and closing hours of POIs (Points of Interest), trip
duration and trip allocated budget represent the hard constraints,
while the satisfaction factors of the POIs and travelling distance
in the trip are considered as soft constraints. We use the soft
constraints to evaluate the generated solution of the algorithm.
The algorithm is developed by utilizing the taboo search method
as a meta heuristic. The operators of Swap, Insert and Delete are
used to explore the search space. The Swap and Insert operator
are used in each iteration of the algorithm loop, while the Delete
operator is used whenever the algorithm tends to enter in an
endless cycle. The algorithm is developed by using Java
programming language, while the data repositories are created in
the XML format. The algorithm is tested with 40 instances of
POIs of the city of Vienna. Various entry parameters of the
algorithm are used to test its performance. The results gained are
discussed and compared in respect to the optimal solution.
Keywords: point of interest, optimization, planning, Swap,
Insert, Delete.

1. Introduction

Tourists that visit one city or region during a trip of a
limited time, find it impossible to visit all POIs that exist
in that particular area. Thus, they have to select some POIs
that they consider as more interesting and worthy for them.
Doing the plan of visit that includes most interesting POIs
to visit, for the available time, is usually a complex task. In
such situations, it would be helpful for the tourist to have a
system that runs on a hand held device, which would
enable him to automatically plan the touristic trip. In
general, systems like that tend to fulfill as much as
possible the satisfaction of tourist by making a
personalized trip plan. Usually, the constraints considered
by planning systems under discussion are: geographical
locations of POIs and their opening and closing hours,
personal score of each POI for the tourist, duration of the
trip, etc. In order to produce a trip that fits all/most of

these constraints, a heuristic that tends to find an
optimized trip needs to be introduced.

The simplest problem in trip planning can be compared to
the Orienteering Problem (OP) [1], where a number of n
locations are given, each of them having a score s. The
goal is to have a single tour trip that includes as many
points as possible, so the satisfaction factor of the trip is
maximized. The Team Orienteering Problem (TOP) is an
extended form of OP, which generalizes the problem for
multiple tours [2]. Further, the Team Orienteering Problem
with Time Windows (TOPTW) is an advanced version of
TOP, where each location is associated with a time
window that represents the timings when the visit could be
realized [3]. In TOPTW the goal is to determine m routes,
each limited by Tmax, that maximizes the total collected
score. In fact, the TOPTW is a simplified version of the
Tourist Trip Design Problem (TTDP) [4].

An additional feature associated to these planning systems
is that they have to plan the trip in real time, so that they
can respond to changing user requests and preferences as
well as unexpected events. In order to achieve optimal
values, for such hard planning problems, for the execution
time of around tens of seconds, we need to use a meta-
heuristic to solve the problem. For instance, when more
time than planned, is spent to visit a particular POI,
tourists would like to be able to generate an updated trip
plan in real time (possibly not lasting more than some tens
of seconds).

The main contribution of this paper is introduction of an
algorithm that finds optimal solutions for trip planning
problem, in the execution time of some tens of seconds
(varying from the particular details of the trip). The goal is
to find a solid solution (not the best possible) in less than
10 seconds. This can be achieved by having a fast
evaluation process of the candidate solutions, and by
utilizing flexible operators to explore the search space. In
this paper, we use taboo search heuristic as a guiding

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 139

method for the search process. The taboo search heuristic
uses the memory lists to save the prior search information,
which, afterwards, is used to guide the search process
towards finding the global optimal solution.

In the next section a literature review is presented and in
Section 3 a problem definition is introduced. In Section 4
the detailed description of the algorithm is given, while in
Section 5 the experimental results are shown. Discussions,
conclusions and future work are elaborated in Section 6
and 7 respectively.

2. Literature review

There are many algorithms that deal with OP, TOP or
TOPTW that are discussed in the literature. These
algorithms could be also applied for the purpose of trip
planning. A taboo search heuristic that effectively solves
the TOP is presented in [5]. Roughly, this heuristic finds
the solution by iteratively repeating the steps of
initialization, solution improvement and evaluation. It
utilizes a number of input parameters, which are used to
fine tuning the performance of the algorithm.

Another algorithm, which is based on Guided Local
Search (GLS) method [7] and can solve the TOP problem
as well, is elaborated in [6]. In consecutive iterations of the
algorithm, GLS method does the penalization of specific
unwanted solutions. The penalization operator decreases
the value of evaluation function for the specific solutions.
This enables the algorithm to escape from getting stuck in
the local optimum and carry on with further searches in
different regions of search space.

An algorithm that is based on Variable Neighborhood
Search (VNS) method [8], is presented in [9]. VNS
systematically searches for a better solution, by changing
the procedure of neighborhood creation. This changes the
search direction either towards the optimal solution (local
search) or towards the opposite direction (shaking of
search process). This method, in its basic version, has the
advantage of not requiring too many input parameters,
while being able to produce solutions of high quality.

In [10] a simple algorithm that belongs to the family of
Iterated Local Search (ILS) [11] is presented. Based on the
experimental results, this algorithm is able of finding good
solutions when applied for the data sets known in the
literature. In a combined way, the operators of Insertion
and Shake are applied. Instead of finding a number of
random ILS solutions, the algorithm does build a sequence
of solutions, obtained with the local search method. In this
algorithm, it is important to have a balance between the

number of iterations of algorithm execution and the
frequency of Shake operator utilization.

Greedy Randomized Adaptive Search Procedure (GRASP)
[12] is first used to solve the TOP in [13]. In general,
GRASP method is executed for a pre specified number of
iterations, where initially the procedure for solution
construction is executed, followed by a procedure for local
search. The behavior of the procedure for solution
construction is controlled by the so called parameter
“Greediness”, which represents the quotient between the
Greediness and Randomness of the algorithm. This
quotient shows how much the algorithm uses Greediness
approach compared to Randomness approach, or vice
versa. Different iterations of the algorithm are independent
from each other, which mean that they return independent
results.

In a Tourist Information System (TIS) presented in [14],
authors use a trip planning algorithm that is developed
using genetic algorithms. The path for visiting the selected
POIs is created in two separate steps. The first step does
the calculation of the shortest path between each and every
POI, by using A* algorithm. The second step decides
about the order of visits to particular POIs. In this case, the
genetic algorithms are used to create a list of candidate
solutions. Furthermore, regardless of the execution time of
the algorithm, an approximated solution is always returned.
By using genetic algorithms, the algorithm under
discussion, is able to propose multiple paths to the tourists.
This flexible feature will allow them to select one of the
proposed routes.

3. Formulation as mathematical problem

The proposed algorithm lies on the field of optimizations
of touristic tours, where a number of constraints are
considered for planning and optimization of the tour. The
goal is to plan a multiple day trip that will serve the tourist
to visit a number of touristic sites/POI (Point Of Interests).
This problem can be considered as a version of
Orienteering Problem with Time Windows (OPTW). A set
of n locations is given, where each of them (i=1,…, n) is
associated with a satisfaction value Si ,an entrance fee fi, a
typical visit duration ti an opening (Oi) and closing (Ci)
hour. Usually the trip has several tours, with breaks in
between (night time and mid daybreaks). Each tour is
limited to a maximal period of time Tmax and it starts at a
particular fixed point and ends at another fixed point. In
general, the starting / ending time and tour duration are
variable for each particular day. Mostly, the starting and
ending point are the same for a tour of a single day (e.g.
the tour starts and finishes at the hotel). The time tij
needed to travel from location i to j, and vice versa, is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 140

known for all locations. In general, not all locations can be
visited during the trip, since the duration of the trip is
limited to m tours and the tours themselves are limited to
Tmax. Each location can be visited at most once. The visit
is associated with a maximum budget Bmax, which should
not be exceeded throughout the entire trip.

No waiting times are considered at the POIs, meaning that
the tourist will not have to wait any time prior to the
realization of the visit to the POIs. This determines an
additional constraint that makes sure that the timings of
visits 𝑣𝑣𝑖𝑖 are scheduled only when POIs are open.

The aim is to find a trip with m tours that includes as many
available POIs as possible, by ensuring that the trip
remains under budget and also taking in to account the
total satisfaction factor and travel time of the trip. The
intention is to have a higher satisfaction factor and shorter
travel time. The trip budget and duration is considered as
hard constraint, while the constraints of satisfaction factor
and travel time are taken as soft constraints, and as such
take part in the evaluation of the proposed solution.

The constraints of satisfaction factor and travel distance
are non proportional between themselves. For instance, if
there are more POIs in the trip, the satisfaction factor will
be higher, while the travel time will be higher too, which
conflicts with the travel time aspiration constraint. On the
other hand, in order to degrease the travel time, it is
needed to have less visits in the trip, which would
minimize the satisfaction factor, which again opposes the
intention to get a maximal satisfaction factor for the trip.
Hence, defining an evaluation function of the trip that
enables finding the optimal value, of both satisfaction
factor and travel time constraints, is needed.

Based on the facts elaborated above, the running planning
problem can be defined with following mathematical
expressions:

𝑀𝑀𝑀𝑀𝑀𝑀{∑ (𝑆𝑆𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝑀𝑀𝑖𝑖)} (1)

∑ (𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝑀𝑀𝑖𝑖) ≤ 𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀 (2)

Where:

𝑀𝑀𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑣𝑣𝑣𝑣 𝑣𝑣𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑑𝑑 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝
0, 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑣𝑣𝑣𝑣 𝑣𝑣𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑑𝑑 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝

�

n – Number of available POIs for visit
Si – Satisfaction factor of point i
Bi- Entry fee of point i

𝑀𝑀𝑖𝑖𝑛𝑛 ��∑ �∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

∗ 𝑦𝑦𝑖𝑖𝑖𝑖 �𝑛𝑛
𝑖𝑖=1 � + ∑ (𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖)� (3)

Where:

𝑦𝑦𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑀𝑀 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑖𝑖𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑣𝑣𝑣𝑣 𝑏𝑏𝑦𝑦 𝑀𝑀 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 𝒋𝒋
0, 𝑖𝑖𝑖𝑖 𝑀𝑀 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑖𝑖𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑣𝑣𝑣𝑣 𝑏𝑏𝑦𝑦 𝑀𝑀 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 𝑖𝑖

�

𝑑𝑑𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑
0, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑

�

𝑣𝑣𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑓𝑓𝑀𝑀𝑖𝑖𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑
0, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑓𝑓𝑀𝑀𝑖𝑖𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑

�

tij – travel time from point i to j
tsi – travel time from start point to point i
tei – travel time from point i to end point

∑ 𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 1𝐵𝐵
𝑖𝑖=1 (j=1, …, n) (4)

Where:

𝑧𝑧𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑛𝑛 𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝒋𝒋
0, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑛𝑛 𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝒋𝒋

�

𝐵𝐵 – Number of POIs visited during the entire trip

𝑝𝑝𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 & 𝑣𝑣𝑖𝑖 + 𝑝𝑝𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1, … ,𝐵𝐵 (5)

Expression (1) defines the intended maximal satisfaction
factor of the trip, while expression (2) ensures that trip is
equal or lower than the budget allocated for the trip.
Formula (3) expresses the minimal travel time aspiration,
by considering the travel times between visited points
themselves and also between them and the starting/ending
points. Expression (4) makes sure that a particular point is
visited at most one time, while expression (5) makes the
trip feasible only when all the points of interests are open
on their scheduled time.

4. Description of the algorithm

Overview
Trip planning is done based on the entry data that describe
the trip. The entry data sets are categorized in three
different kinds:

• Data that describe the trip, such as: start/end date of

trip, allocated budget, accommodation location, and
number of tours to be taken during the trip, coefficient
of weight of satisfaction factor and travel time, tourist
preferences for categories and types of POIs and an
additional entry parameter that specifies one of the two
possible regimes of work of the algorithm.

• Data that describe the POIs, such as: name of the POI,
typical visit duration, location, entry fee, working
hours, type and category of POI.

• Data about travel distances between each and every
POI that is available. The travel distances are
expressed in unit of minutes.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 141

As seen in the figure 1, the trip planning algorithm
consists of two separate modules. One of them deals with
calculation of personal score for the POIs, while the other
one does the actual planning of the trip. In this paper,
calculation of personal score (satisfaction factor), which is

the process that is known as matchmaking between tourist
preferences and POIs, is done by utilizing a simple
algorithm introduced by Souffriau & Maervoet et al [15].
The value range of satisfaction factor produced by this
matchmaking algorithm is between 0 and 48. Since, in our
case we assume that the range of values for satisfaction
factors of POIs is between 0 and 100, we have used a
transformation function to convert the range of values
from [0 – 48] to the range [0 – 100].

𝑆𝑆𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑(𝑀𝑀𝑀𝑀𝑀𝑀=100) =
 100 ∗ [𝑆𝑆𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑(𝑀𝑀𝑀𝑀𝑀𝑀=48)]

48

Module for trip planning

The process of trip planning creates an itinerary that
consists of predefined number touristic tours to be taken
during the trip period. The optimization of the trip
planning is done by utilizing the taboo search heuristic. In
our case, the taboo search heuristic uses the operators of
Swapping and Insertion for exploring the search space.
The Delete operator is used in some iteration to escape the
local optimum. The taboo search heuristic is known for its
process of memorizing previous search information, which
facilitates the escape from local optimum by changing the
search direction. In our example, the planning module can
be customized by nine different entry parameters, as
shown in the pseudo code given below.

Algorithm Main(TLS, MT, MTWI, MBTNTS, ACI, PC, FMH, DN,

FTWMV)
begin
‘ Operators = {Swap, Insert};
‘ Initialize taboo memories;
‘ Create initial solution Sc;
‘ Evaluate Sc;

‘ Sb = Sc;
‘ iterationNumber = 0; IterationsWithoutImprovement = 0;
‘ while (iterationNumber <= MT) do
‘ ‘ ‘ Divert=(iterationsWithoutImprovement % DN) == 0;
‘ ‘ ‘ for each operator in Operators do
‘ ‘‘ ‘ Generate neighbourhood of Sc by using current
operator;
‘ ‘‘ ‘ Find best non taboo and taboo neighbour of Sc (Divert);
‘ ‘‘ ‘ if IterationsWithoutImprovement greater than ACI then
‘ ‘‘ ‘ AspirationCriteria=best taboo nighbor >
‘ ‘‘ ‘ best solution found so far;
‘ ‘‘ ‘ else
‘ ‘‘ ‘ AspirationCriteria= best taboo nighbor –
‘ ‘‘ ‘ best non taboo nighbor > MBTNTS;
‘ ‘‘ ‘ end
‘ ‘‘ ‘ if there is a feasible non taboo / taboo neighbour then
‘ ‘‘ ‘ if AspirationCriteria is fulfilled then
‘ ‘‘ ‘ ‘ Sc =Best taboo neighbour;
‘ ‘‘ ‘ ‘ else
‘ ‘‘ ‘ ‘ Sc =Best non taboo neighbour;
‘ ‘‘ ‘ ‘ end
‘ ‘‘ ‘ ‘ if operator is Swap then
‘ ‘‘ ‘ ‘ ‘ acceptanceCriteria = Sc better than Sb;
‘ ‘‘ ‘ ‘ else
‘ ‘‘ ‘ ‘ ‘ if FTWMV then
‘ ‘‘ ‘ ‘ ‘ acceptanceCriteria= Sc better than Sb or
‘ ‘‘ ‘ ‘ ‘ number of visits in Sc >number of visits in Sb ;
‘ ‘‘ ‘ ‘ ‘ else
‘ ‘‘ ‘ ‘ ‘ acceptanceCriteria= Sc better than Sb;
‘ ‘‘ ‘ ‘ ‘ end
‘ ‘‘ ‘ ‘ end
‘ ‘‘ ‘ ‘if acceptanceCriteria is fulfilled than
‘ ‘‘ ‘ ‘ Sb = Sc;
‘ ‘‘ ‘ ‘end
‘ ‘‘ ‘ else
‘ ‘‘ ‘ Delete a visit from trip;
‘ ‘‘ ‘ end
‘ ‘ ‘ next;
‘ ‘ if there is improvement in current iteration then
‘ ‘ ‘ IterationsWithoutImprovement=0;
‘ ‘ ‘ else
‘ ‘ ‘ IterationsWithoutImprovement +1;
‘ ‘ ‘ end
‘ ‘ ‘ if IterationsWithoutImprovement equals MTWI then
‘ ‘ ‘ Exit loop;
‘ ‘ ‘ end
‘ ‘ ‘ iterationNumber +1;
‘ end
end
Return Sb;

In the Table 1 we present the description for the entry
parameters of the algorithm.

Table 1: Algorithm parameter description

Parameter Abbrev. Description

Taboo List
Size TLS

Specifies the number of iterations
that a move will remain taboo. E.g.
TLS=5 indicates that swapping
between point i and j cannot be
performed in next five iterations.

Max Tries MT
Indicates the total number of
iterations that the algorithm will
run.

Fig. 1 Block scheme of the algorithm

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 142

Max Tries
Without
Improve-

ment

MTWI

Specifies the total number of
iterations that the algorithm will
run without any further
improvement.

Margin
Between

Taboo And
Non Taboo

Solution

MBTNTS

Indicates how much better a taboo
solution should be, compared to a
non taboo solution, such that it
would fulfill the aspiration criteria.

Aspiration
Criteria

Iterations
ACI

Defines the number of iterations
without improvement, which will
utilize the version of aspiration
criteria with margin between taboo
and non taboo solution. After
passing the number of iterations,
indicated by ACI, the aspiration
criteria is calculated in its usual
form (accepting a taboo solution
only if it is better than the best
solution found that far).

Penalty
Coefficient PC

Takes a value between 0 and 1,
which is used to penalize frequent
moves that have occurred during
the search process.

Frequency
Memory
Horizon

FMH

Determines the number of
iterations after which the frequency
based memory will be reset.

Diversifica-
tion

Number
DN

Specifies how often the search
process will be diversified. Every
DN iterations the diversification
process will take place.

Find Trip
With

Maximum
Visits

FTWMV

It is a logical parameter that
defines one of the two possible
regimes of work of the algorithm.
If its vale is True, the algorithm
will try to find the best trip with
maximal number of POIs.
Conversely, if its value is False,
the algorithm will focus only in
finding the best evaluated trip,
even though the resulting trip may
not have the maximal number of
POIs.

The algorithm uses two operators for exploring the search
space, which are shown in the initial part of the pseudo
code. The Swap operator does the swapping of POIs that
are on trip with POIs that are currently out of the trip.
Insertion of new POIs into the trip is made by Insert
operator. The so called Taboo Memories are used to save
information about the recency and frequency of swaping
and inserting individual POIs. These memories will enable
the search process to avoid getting stuck in the local
optimum and also direct the search process in the new
regions of search space (that far not explored). Before the
algorithm starts looping, an initial solution is created,
which is than evaluated and accepted as best current

solution. In general, the initial solution is created by
randomly inserting new POIs, until there is no left space.

The algorithm will be iteratively executed by MT
iterations. The Boolean variable Divert will be calculated
for each iteration of the algorithm and it is used to decide
whether the search diversification operator shall be applied
in current iteration. Its value is True if division of variable
iterationsWithoutImprovement and parameter DN returns
an integer, otherwise its value is False.

Inside the main algorithm loop, another loop (named the
operator loop) is executed for two times. In the first
execution, the operator loop uses the Swap operator, while
in the second time it uses the Insert operator. In both
executions, with Swap and Insert operator, the generation
of neighborhood is full, which means that all possible
combinations are considered. Swap operator swaps each
POI on trip with each POI out of the trip, while the Insert
operator inserts each non included POI before and after
each included POI.

After the process of neighborhood generation, each valid
neighbor is evaluated and the best non taboo and neighbor
of current iteration are selected. In case the evaluation is
done for the neighborhood generated by Swap operator,
for some specific iterations (exactly every DN iterations)
the operator of penalizations is used.

After finding the best two solutions (one of them taboo
and the other one non taboo), the algorithm checks
whether the aspiration criteria is fulfilled. This algorithm,
depending on the value of ACI parameters, works with
two sorts of aspiration criteria. If value of variable
IterationsWithoutImprovement is greater than value of
parameter ACI, then the aspiration criteria is defined as:
“Best taboo neighbor must be better than best solutions
found so far, so that the taboo neighbor could be accepted
as actual solution”, otherwise, the aspiration criteria is
defined as “result of subtraction between taboo and non
taboo solution should be greater than the value of
parameter MBTNTS, so that the best taboo solution is
accepted as actual solution”.

If at least one of the neighbor solutions (taboo or non
taboo) represents a feasible solution, the algorithm carries
on with selection of the aspiration criteria, otherwise, the
operator that deletes a POI from the trip, is applied. The
POI deletion is conducted randomly in one of the tours of
the trip. If aspiration criteria is fulfilled, then best taboo
neighbor is accepted as the actual solution, otherwise the
best non taboo solution is accepted as current solution.

Next, the variable acceptanceCriteria is defined, which is
used to determine whether the current solution could be

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 143

accepted as best solution found so far. Depending on the
value of logical parameter FTWMV, the variable
acceptanceCriteria could be defined in two different ways.
If its value is False, than the varable acceptanceCriteria
will be set to allow a current solution to become the best
solution found so far, only if it is better. Otherwise, when
parameter FTWMV is True, a current solution can become
the best solution if it has more visit on the trip, regardless
that it may not have a greater evaluation then the best
solution found so far.

Inside the algorithm loop, the number of iterations without
improvement is counted. If this number reaches the value
defined by parameter MTWI or the predefined number of
maximum iterations MT exceeds, than the algorithm
execution stops and the best found solution is returned.

Determining the legality of the neighbor
A neighbor would be legal if it fulfills the hard constraints:

• All visits in the trip are scheduled when
respective POIs are open,

• The trip budget is not exceeded, and
• The length of each tour in the trip remains in the

pre specified duration
The pseudo code for determining candidate feasibility is
given in the following:

Determine legality of neighbor
begin
 legality=false;
 if new vist is open in scheduled time do
 if neighbor cost is under budget do
 if neighbor is viable in time do
 legality= true;
 end
 end
 end
end
return legality;

Determine time viability of neighbor(changed tour)
begin
 viability=false;

if length of changed tour is not grater than orginla tour
length do

 vilabilty=true;
 end
end
Return viabilty;

Evaluation function
Evaluation of the candidate solution is done by
considering two soft constraints, namely the total trip
satisfaction factor and total trip travel time. The goal is to
find an optimal trip that has the total satisfaction factor as
higher as possible, while the travel time remains as low as
possible. In order to realize this, we have used an

evaluation/fitness function that consists of two
components:

𝐸𝐸𝑣𝑣𝑀𝑀𝑓𝑓𝑑𝑑𝑀𝑀𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑑𝑑𝑛𝑛𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 =
𝑓𝑓1 ∗ [𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑𝑛𝑛𝑝𝑝𝑑𝑑𝐵𝐵] +

𝑓𝑓2 ∗ [𝑝𝑝𝑑𝑑𝑀𝑀𝑣𝑣𝑣𝑣𝑓𝑓 𝑝𝑝𝑖𝑖𝐵𝐵𝑣𝑣𝑛𝑛𝑝𝑝𝑑𝑑𝐵𝐵]

Parameters 𝑓𝑓1 and 𝑓𝑓2 represent the weight coefficients
for the particular components of the evaluation function.
In order to have a proportional effect in to the evaluation
function, when the value of individual components
changes, we have used the normalized values of both
components:

𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑𝑛𝑛𝑝𝑝𝑑𝑑𝐵𝐵 =

100 ∗
𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑓𝑓 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑

𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖𝐵𝐵𝑀𝑀𝑓𝑓 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑

Where:

𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑓𝑓 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑 = ∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛

𝑖𝑖=1

𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖𝐵𝐵𝑀𝑀𝑓𝑓 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑 = 100 ∗ MNP

SDT
∗ [TDWB]

𝑆𝑆𝑆𝑆𝑖𝑖–Satisfaction factor of POI with index i,
n – Number of POIs included into the trip,
MNP – Maximal Number of POIs that are aimed to be
visited per day
SDT – Standard Duration of a Tour
TDWB – Trip Duration Without Breaks

Based on the practical experience, we consider that the
maximal desired number of POIs to be visited during one
day tour is 20, while the duration of the tour of one day is
usually 8 hours. In order to have a realistic view for the
maximal satisfaction factor, we have considered only the
time when the tourist is supposed to be active in his trip
(TDWB), by omitting the breaks that the tourist may take
(e.g. such as sleeping at the hotel at night).

Since we use the approach of maximizing the value of
evaluation function, mathematically, we would need to
maximize the values of both its components. While for the
satisfaction factor component this is right, for the travel
time component it should be the opposite aim. Hence, in
order to facilitate the maximization of both components
and aim in minimizing the travel time, we try to maximize
the complementary value of travel time, which in fact will
minimize the travel time, by using:

𝑝𝑝𝑑𝑑𝑀𝑀𝑣𝑣𝑣𝑣𝑓𝑓 𝑝𝑝𝑖𝑖𝐵𝐵𝑣𝑣𝑛𝑛𝑝𝑝𝑑𝑑𝐵𝐵 = 100 ∗ (1 −
𝑝𝑝𝑑𝑑𝑀𝑀𝑣𝑣𝑣𝑣𝑓𝑓 𝑝𝑝𝑖𝑖𝐵𝐵𝑣𝑣

TDWB
)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 144

5. Experimental results
The algorithm is tested by utilizing 10 different instances
of tourist profiles. In addition, we have used 40 instances
of POIs of the city of Vienna. As a starting/ending point of
each tour of the trip we have used a hotel in the same city.
Travel distances between POIs are expressed in the unit of
minute.
All calculations are made by using a PC with an Intel Core
2 processor with 2.0 GHz and the RAM memory of 2.55
GB.

In the following experiments, if not differently stated, we
have used a trip with execution details as shown in table 2.

Table 2: Default data for experiments

Parameter Value
Trip duration Two tours, five hours

each
Trip Budget 200 euro
Tour start time 11:00
Tour end time 16:00
Weight of satisfaction factor 70%
Weight of travel time 30%
Execution time of the algorithm 5 minutes

Our experiments aim in obtaining the optimal values for
the entry parameters of the algorithm, such as: finding the
optimal taboo list size, margin of aspiration criteria,
frequency of applying the operator for search
diversification etc. If not differently stated, the algorithm
is executed 10 times for each instance, and then, the
average values of the results of particular executions are
taken.

Tests with various versions of initial solutions
We have tested the algorithm with three different kinds of
versions of initial solutions:

1. Random initial solution – where POIs are
randomly entered into the trip itinerary, as much
as there is room in it.

2. Initial solution with POIs sorted in ascending
order – where POIs are entered into the trip based
on the value of satisfaction factor. The POIs that
have lower satisfaction factor are prioritized for
earlier insertion into the trip itinerary.

3. Initial solution with POIs sorted in descending
order –in this case, as well as in the previous
case, the POIs are entered into the trip based on
the value of satisfaction factor. Conversely, in
this case the POIs that have higher satisfaction
factor have higher chance for earlier insertion into
the trip itinerary.

By using instance 8, the algorithm is executed 10 times for
each three different initial solutions. Respective results of
the execution of the algorithm for each different initial
solution are compared, and then the maximal value from
one of the three initial solutions is recorded. The number
of maximums shown in figure 2, indicate that random
initial solution performs better than the other two initial
solutions, because it has been better in seven executions
compared to the other initial solutions. On the other hand,
the ordered lists versions (both in ascending and
descending order) have never resulted better than the other
ones. In three executions, at least two of the three different
initial solutions have produced the same evaluation of the
produced solution.

Variance of the algorithm result for different
executions
Instance 8 is executed 10 times and the variance between
different executions is shown in the following figure.

Fig. 3 Variance of the algorithm performance for different executions

29.5
30

30.5
31

31.5
32

32.5
33

33.5
34

34.5
35

35.5
36

36.5
37

37.5
38

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300

T
ri

p
sc

or
e

Time[S]

Execution 1
Execution 2
Execution 3
Execution 4
Execution 5
Execution 6
Execution 7
Execution 8
Execution 9
Execution 10

0
1
2
3
4
5
6
7
8

N
um

be
r

of
 m

ax
im

um
s

Random Initial Solution
Ascending Ordered List
Descending Ordered List
Evean values

Fig. 2 Algorithm performance for different initial solutions

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 145

It can be stated that for almost all executions, the best
solution is found for approximately 40 seconds (except
execution 1), and the solution with average evaluation is
found for approximately 10 seconds.

Selection of taboo list size
In this experiment, all instances are executed 10 times with
taboo list sizes 3, 6 and 9. Afterwards, the average values
of individual executions of instances are calculated. Then
the average values for individual taboo list sizes for all
instances are taken. The results are shown in the below
table.

Table 3 : Comparison of taboo list size

Taboo
list
size Minimum Maximum Average

Standard
deviation

3 31,376 31,599 31,444 0,072

6 31,680 31,947 31,769 0,084

9 31,392 31,510 31,430 0,041

Furthermore, we have also counted the number of
instances for which a particular taboo list size produces
better results (cf. figure 4).

Fig. 4 Selection of taboo list size

From table 3 and figure 4, it can be conclude that taboo list
size of 6 produces better results. In general, the solutions
obtained by using the taboo list size of 6, are better for
average 0.3 points than the solutions gained by two other
taboo list sizes used in the experiment.

Diversification of search process
The diversification process ensures that the algorithm
continues to search for the global optimal solution. This
process is applied every N iterations. The experiment
shows that applying the search diversification process
yields to better results. Furthermore, if we apply it more
often, we would gain better results.

Best trip versus trip with maximum POIs
The algorithm under discussion works in two different
kinds of modes. The first one tries to find the highest
evaluating trip, while the second one, aims in finding the
best evaluating trip that has maximum number of POIs.
The working mode of the algorithm is specified by the
user.
The following figure, expresses a comparison between the
two algorithm regimes in terms of execution time, number
of POIs and evaluation.

As seen in the figure, the overall trip score and number of
POIs do not have a significant increase in the second mode
(Best trip with maximum POIs) compared to the first
mode (Best trip). Conversely, it only increases the average
execution time for around 28 seconds.

Comparison of algorithm results for different tourist
instances
In figure 7, we show the variation of trip score for
different tourist instances. It can be noticed that for all

0

1

2

3

4

5

6

3 6 9

N
um

be
r o

f i
ns

ta
nc

es

Taboo list size

28.2

28.3

28.4

28.5

28.6

28.7

28.8

Yes No

Tr
ip

 sc
or

e

Search
diversification

0
1
2
3
4
5
6
7
8
9

10

Yes No

N
um

be
r

of
 in

st
an

ce
s

Search
diversification

0
1
2
3
4
5
6
7

5 10 15 20

N
um

be
r

of
 in

st
an

ce
s

Number of iterations
for diversification

Figure 5 Advantages in applying search diversification process

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68

Best trip Best trip with maximum
number of POIs

Trip score

Number of POIs

Execution time [S]

Fig. 6 Comparison of the two regimes of the algorithm

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 146

instances, for the period of around 10 seconds, we gain
solutions that evaluate near to final solutions. During this
10 second period, almost all instances are improved for
about three points compared to their initial solution. After
this period, no significant improvements are made (in most
cases the improvement is less than one point). Hence, it
can be concluded that further execution of the algorithm
does not bring to significant improvement. Conversely, it
will only have the negative impact of increasing the
execution time of the algorithm.

Fig. 7 Execution of the algorithm for different tourist instances

Comparison of different implementation of Swap
operator

The basic implementation of Swap operator swaps each
POI that is on the trip itinerary with each POI outside the
trip itinerary. We have called this as “Large Swap”, since
the solution neighborhood is created with all possible
combinations enabled by Swap operator. In addition, by
using Min/Max Conflicts method, we have implemented
the Swap operator in its “Small Swap” mode, where only
three POIs of the current trip itinerary that have the largest
travel time (travelling time from previous POI to the
current POI) are considered for swapping with the POIs
out of the trip itinerary. The third version of the Swap
operator is implemented by using the Hill climbing
method.

In figure 8, we have shown the execution of instance no. 8
with the three different versions of Swap operator. The
instance no. 8 is executed 10 times with each different
implementation of Swap operator, and the average values
of 10 executions are presented in the figure.

Fig. 8 Performance of the algorithm for different implementation of Swap

operator

Figure 8 shows that the “Large Swap” version yields to
better results, while the “Small Swap” version and the Hill
Climbing method evaluate nearly to the same value. The
Hill Climbing method performs faster than the other two
versions (best solution is found in around 5 seconds), but
quality of the solutions found by this method is worse. In
addition, “Large swap” version is quicker (best solution
found in approximately 210 seconds) than the “Small
swap” version (best solution found in about 260 seconds).

Comparison of different implementation of Swap
operator for various number of tours

In table 4, we show results gained by executing the
algorithm (using instance No. 8) with different Swap
operator implementation and different trip lengths.

For small number of tours (one or two tours), the “Large
Swap” mode performs better than the other two
implementations of Swap operator. It is noticeable that for
a short duration of the trip (one or two tours), the “Large
Swap” version takes only about 10 seconds more than the
“Small Swap” version. On the other hand, for larger trips
(three or more tours) the “Small Swap” version is quicker
for about 50 seconds. Furthermore, when the trip consists
of five tours, the “Small Swap” version is faster for around
130 seconds than the “Large Swap” version. Considering
these results, sometimes it may be more appropriate to
sacrifice a little bit in the quality of the found solution (by
using the “Small Swap” version), in order generate the trip
plan faster. The Hill Climbing method does not take so
much time to find the final solution (in average 86

20
20.5

21
21.5

22
22.5

23
23.5

24
24.5

25
25.5

26
26.5

27
27.5

28
28.5

29
29.5

30
30.5

31
31.5

32
32.5

33
33.5

34
34.5

35
35.5

36
36.5

37
37.5

38

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Tr
ip

 s
co

re

Time[S]

Instance 1
Instance 2
Instance 3
Instance 4
Instance 5
Instance 6
Instance 7
Instance 8
Instance 9
Instance 10

33
33.2
33.4
33.6
33.8

34
34.2
34.4
34.6
34.8

35
35.2
35.4
35.6
35.8

36
36.2
36.4
36.6
36.8

37
37.2
37.4
37.6
37.8

0 15 30 45 60 75 90 105120135150165180195210225240255270285300

Tr
ip

 sc
or

e

Time [S]

Large swap

Small swap

Hill climbing

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 147

seconds), but the quality of the found solutions and the
small number of POIs on those solutions, makes this
method as not successful as the other two methods.

Table 4: Performance of the algorithm for different trip lengths

Large Swap Small Swap Hill Climbing

N
um

ber of
tours

Trip score

N
um

ber of
visits

Tim
e [S]

Trip score

N
um

ber of
visits

Tim
e [S]

Trip score

N
um

ber of
visits

Tim
e [S]

1 37,4 4 53,6 37,35 4 52 35,15 2,6 40,2

2 35,7 8 87,9 35,41 7,9 67,9 35,47 6,7 80,7

3 34,5 11,8
127,
8 33,86 11,4 81,7 34,07 10 97

4 33,4 15,5
168,
1 32,76 14,3 73,3 32,86 13,2

105,
6

5 32,0 18,1
226,
2 31,70 17,4 96,3 31,82 15,7

109,
1

Av-
era-
ge 34,63 11,48

132,
7 34,22 11,00 74,2 33,88 9,64 86,5

6. Discussions

In this paper we presented an algorithm that is used for
planning the touristic trip, by considering a number of soft
and hard constraints. The hard constraints consist of
opening and closing hours of POIs, the trip budget and
duration. The solutions generated by the algorithm are
evaluated by using a fitness function that considers the
overall trip satisfaction factor and tourist travel time
throughout the entire trip, which in fact represent the soft
constraints for the algorithm. The calculation of personal
satisfaction factors for the POIs is done by using a simple
algorithm introduced by [15]. The algorithm is created by
using the taboo search metaheuristic, where four different
kinds of initial solutions are tested. The exploration of
search space is done by using the operators of Insertion,
Swapping and Deletion. In order to test the performance of
the algorithm, the Swap operator is implemented in three
different formats. First two implementations are done by
using the small and large Swap approach, respectively,
while the third one is done by using the Hill Climbing
method. In each iteration of the algorithm, the Insert
operator tries to insert a POI in one of the available tours.
The Delete operator is applied in occasional iterations, so
would let the algorithm to escape from getting stack in an
endless loop.

Algorithm performance test is done by conducting a
number of experiments, which are mainly realized to
obtain the optimal values of the entry parameters of the
algorithm. The experiment with the initial solution shows
that random initial solutions perform slightly better than
the other ones. In addition, it is obvious that the variance

between the results of different executions of the algorithm
is less than one. The optimal number of iterations for
which a solution would remain taboo is six. In general,
solutions gained when using the taboo list size of six,
score for 0.3 points more than when the taboo list size is
three or nine.

It is evident that the utilization of search diversification
process yields to better results. In the conduced
experiments, we notice an average improvement of 0.3
points when diversification is applied. Furthermore,
experimental results show that the more often we apply the
diversification, the better results we gain. The penalty
coefficient of 0.8 has a slight advantage in comparison to
the other tested values.

Depending on the working mode of the algorithm, finding
the best trip or the best trip with maximal POIs, will take
approximately an average time of 40 or 60 seconds,
respectively. The quality of found solutions in both
regimes is nearly the same.

In terms of quality, the experiments with different
implementation of Swap operator show that the “Large
Swap” version outperforms the other two versions. The
“Large Swap” version scores better than the “Small Swap”
version and the Hill climbing method for 0.7 and 0.8
points, respectively. The Hill climbing method is able to
find the final solutions in about 5 seconds, whereas the
“Large and Small Swap” need much more time, which
may be up to 200 or 250 seconds, respectively.

The experiments with different trip lengths show that for a
trip of one or two tours, it may be more appropriate to use
the “Large Swap” mode, since the quality of the solutions
is better, whereas the execution time remains nearly the
same to that of “Small Swap” mode. In addition, for larger
number of tours (3 or more), it may be acceptable to
sacrifice a little bit the quality of solutions, so that we
could gain the final solution quicker by using the “Small
Swap” mode.

Finally, based on the experimental results, the algorithm is
able to produce a personal trip itinerary in margins of tens
of seconds. Further, in order to meet specific requirements,
the algorithm can be configured by using nine different
parameters. The presented results indicate that for a
reasonable time of execution, the algorithm generates a
near to optimal trip plan.

7. Conclusions and future work

The main contribution of this paper is the introduction of
an algorithm for touristic trip planning that is comparable

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 148

to the well known problem of Team Orienteering Problem
with Time Windows (TOPTW). In general, the trip
planning can be done in an average time of 70 seconds.
The solution evaluation is made by using a fitness function
that consists of two separate components, where one of
them considers the overall trip satisfaction factor and the
other one the total traveling time. A such fitness function
makes the trip plan more personal for the tourist and the
algorithm suitable for use in personal trip planning
systems. The algorithm performance is tested by using 40
instances of POIs of the city of Vienna and 10 different
tourist profiles. The future work includes testing the
algorithm with larger test instances. Additionally, testing
the algorithm with test dates known in the literature will
make it comparable to the existing similar algorithms. It
may also be important to design new and more specific
test instances, for example concerning the number of
possible visits, number of tours, and the length of the time
windows of POIs etc.

The relative long time to finding the optimal solution that
mainly comes as the result of the process of verifying the
legality of proposed solutions, may be a focus of research
of work in the future. Furthermore, adding new planning
constraints such as, context factors (weather, unexpected
events, traffic jams, weekends etc.) could lead to more
personalized trip plans.

In the real life, it often happens that a group of tourists go
for a joint touristic trip. Hence, introduction of an
algorithm that is able to plan a trip for group of tourists
may be desired. The consideration of personal interests of
individual tourists would be preferable. It would be ideal,
if the algorithm could create a master trip (for the whole
group) that in some portions of it could be spread into
some sub trips, so that it would match interests of sub
groups of tourist, who may have different preferences for
specific POIs. The evaluation of the trip would need to be
a general one, for the whole group of tourists, by
considering a number of soft and hard constraints
concerning the touristic trip.

References

[1] B.L. Golden, L. Levy, and R. Vohra. The orienteering

problem. Naval Research, Logistics, 34:307-318, 1987.
[2] Chao, I.-M., B. L. Golden, E. A. Wasil. 1996b. The team

orienteering problem, Eur. J. Oper. Res. 88(3) 464–474.
[3] Kantor, M. G., M. B. Rosenwein. 1992. The orienteering

problem with time windows. J. Oper. Res. Soc. 43(6) 629–
635.

[4] P. Vansteenwegen, D. Van Oudheusden. The mobile tourist
guide: an OR opportunity. OR Insights 2007; 20(3):21-7.

 [5] Tang, H., Miller-Hooks, E.: A Taboo search heuristic for the
team orienteering problem. Comput. Oper. Res. 32, 1379 –
1407 (2005)

[6] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, D. Van
Oudheusden, D.: A guided local search metaheuristic for the
team orienteering problem. Eur. J. Oper. Res. 196(1), 118-
127 (2008). Doi: 10.1016/j.ejor.2008.02.037

[7] Voudouris, C., Tsang, E.: Guided local search and its
application to the travelling salesman problem. Eur. J. Oper.
Res. 113, 469-499 (1999).

[8] Hansen, P., Mladenovic, N.: Variable neighbourhood search:
Principles and applications, Eur. J. Oper. Res. 130, 449-467
(2001).

[9] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, D. Van
Oudheusden, D.: Metahuristics for Trip Planning.
Metaheuristics in the Service Industry, pages:15-31,
10.1007/978-3-642-00939-6_2, (2009).

[10] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, D.
Van Oudheusden, D.: Iterated local search for the team
orienteering problem with time windows, Journal of
Computers & Operations Research, 36 (2009) 3281 -3290.

[11] H.R. Lourenço, O. Martin, and T. St¨utzle, “Iterated local
search,” in Handbook of Metaheuristics, ser. International
Series in Operations Research & Management Science, F.
Glover and G. Kochenberger, Eds., Kluwer Academic
Publishers, vol. 57, pp. 321–353, 2002.

[12]Feo, T.A., Resende, M.G.C. : A probabilistic heuristic for a
computationally difficult set covering problem. Operations
Research Letters, 867-71, (1989).

[13]Souffriau, W., Vansteenwegen, P., Berghe, G.V.,
Oudheusden, D.V. : A greedy randomised adaptive search
procedure for the Team Orienteering Problem, EU/MEeting
2008 on metaheuristics for logistics and vehicle routing
location, (2008)

[14] Maruyama, A., Shibata, N., Murat,a Y., Yasumoto, K., and
Ito, M. (2004). A personal Tourism Navigation Sstem to
Support Traveling Multiple Destinations with Time
Restrictions. Proceedings of the 18th International
Conference on Advanced Information Networking and
Applications (AINA ‘04), IEEE (2004)

[15] Souffriau, W., Maervoet, J., Vansteenwegen, P., Berghe,
G.V., Oudheusden, D.V. : A mobile tourist decision support
system for small footprint devices, IWANN 2009, Part I,
LNCS 5517, pp. 1248-1255, (2009)

First Author: Kadri Sylejmani, Dipl. Ing. in Computers and
Telecommunication – 2004, Msc. in Computer Science – 2010;
Teaching Assistant at Faculty of Electrical and Computer
Engineering – Department of Computer Engineering, University of
Prishtina, Kosovo; has presented several papers in scientific
conferences and workshops on his field of research; his current
research interest include filed of electronic tourism and problem
solving in Artificial Intelligence.

Second Author: Agni Dika, PhD in Computer Science – 1989;
Full professor at Faculty of Electrical and Computer Engineering –
Department of Computer Engineering, University of Prishtina,
Kosovo; his current research interest include computer logic
design and algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 149

