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Abstract 

In this paper, we introduce an algorithm that automatically  plans 
a touristic trip by considering some hard and soft constrains. 
Opening and closing hours of POIs (Points of Interest), trip 
duration and trip allocated budget represent the hard constraints, 
while the satisfaction factors of the POIs and travelling distance 
in the trip are considered as soft constraints. We use the soft 
constraints to evaluate the generated solution of the algorithm. 
The algorithm is developed by utilizing the taboo search method 
as a meta heuristic. The operators of Swap, Insert and Delete are 
used to explore the search space. The Swap and Insert operator 
are used in each iteration of the algorithm loop, while the Delete 
operator is used whenever the algorithm tends to enter in an 
endless cycle. The algorithm is developed by using Java 
programming language, while the data repositories are created in 
the XML format. The algorithm is tested with 40 instances of 
POIs of the city of Vienna. Various entry parameters of the 
algorithm are used to test its performance. The results gained are 
discussed and compared in respect to the optimal solution.  
Keywords: point of interest, optimization, planning, Swap, 
Insert, Delete. 

1. Introduction 

Tourists that visit one city or region during a trip of a 
limited time, find it impossible to visit all POIs that exist 
in that particular area. Thus, they have to select some POIs 
that they consider as more interesting and worthy for them. 
Doing the plan of visit that includes most interesting POIs 
to visit, for the available time, is usually a complex task. In 
such situations, it would be helpful for the tourist to have a 
system that runs on a hand held device, which would 
enable him to automatically plan the touristic trip. In 
general, systems like that tend to fulfill as much as 
possible the satisfaction of tourist by making a 
personalized trip plan. Usually, the constraints considered 
by planning systems under discussion are: geographical 
locations of POIs and their opening and closing hours, 
personal score of each POI for the tourist, duration of the 
trip, etc. In order to produce a trip that fits all/most of 

these constraints, a heuristic that tends to find an 
optimized trip needs to be introduced.  

 
The simplest problem in trip planning can be compared to 
the Orienteering Problem (OP) [1], where a number of n 
locations are given, each of them having a score s. The 
goal is to have a single tour trip that includes as many 
points as possible, so the satisfaction factor of the trip is 
maximized. The Team Orienteering Problem (TOP) is an 
extended form of OP, which generalizes the problem for 
multiple tours [2]. Further, the Team Orienteering Problem 
with Time Windows (TOPTW) is an advanced version of 
TOP, where each location is associated with a time 
window that represents the timings when the visit could be 
realized [3]. In TOPTW the goal is to determine m routes, 
each limited by Tmax, that maximizes the total collected 
score. In fact, the TOPTW is a simplified version of the 
Tourist Trip Design Problem (TTDP) [4]. 

 
An additional feature associated to these planning systems 
is that they have to plan the trip in real time, so that they 
can respond to changing user requests and preferences as 
well as unexpected events. In order to achieve optimal 
values, for such hard planning problems, for the execution 
time of around tens of seconds, we need to use a meta-
heuristic to solve the problem. For instance, when more 
time than planned, is spent to visit a particular POI, 
tourists would like to be able to generate an updated trip 
plan in real time (possibly not lasting more than some tens 
of seconds). 

 
The main contribution of this paper is introduction of an 
algorithm that finds optimal solutions for trip planning 
problem, in the execution time of some tens of seconds 
(varying from the particular details of the trip). The goal is 
to find a solid solution (not the best possible) in less than 
10 seconds. This can be achieved by having a fast 
evaluation process of the candidate solutions, and by 
utilizing flexible operators to explore the search space. In 
this paper, we use taboo search heuristic as a guiding 
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method for the search process. The taboo search heuristic 
uses the memory lists to save the prior search information, 
which, afterwards, is used to guide the search process 
towards finding the global optimal solution. 

 
In the next section a literature review is presented and in 
Section 3 a problem definition is introduced. In Section 4 
the detailed description of the algorithm is given, while in 
Section 5 the experimental results are shown.  Discussions, 
conclusions and future work are elaborated in Section 6 
and 7 respectively. 

2. Literature review  

There are many algorithms that deal with OP, TOP or 
TOPTW that are discussed in the literature. These 
algorithms could be also applied for the purpose of trip 
planning. A taboo search heuristic that effectively solves 
the TOP is presented in [5]. Roughly, this heuristic finds 
the solution by iteratively repeating the steps of 
initialization, solution improvement and evaluation. It 
utilizes a number of input parameters, which are used to 
fine tuning the performance of the algorithm.  
 
Another algorithm, which is based on Guided Local 
Search (GLS) method [7] and can solve the TOP problem 
as well, is elaborated in [6]. In consecutive iterations of the 
algorithm, GLS method does the penalization of specific 
unwanted solutions. The penalization operator decreases 
the value of evaluation function for the specific solutions. 
This enables the algorithm to escape from getting stuck in 
the local optimum and carry on with further searches in 
different regions of search space. 
 
An algorithm that is based on Variable Neighborhood 
Search (VNS) method [8], is presented in [9]. VNS 
systematically searches for a better solution, by changing 
the procedure of neighborhood creation. This changes the 
search direction either towards the optimal solution (local 
search) or towards the opposite direction (shaking of 
search process). This method, in its basic version, has the 
advantage of not requiring too many input parameters, 
while being able to produce solutions of high quality.  
 
In [10] a simple algorithm that belongs to the family of 
Iterated Local Search (ILS) [11] is presented. Based on the 
experimental results, this algorithm is able of finding good 
solutions when applied for the data sets known in the 
literature. In a combined way, the operators of Insertion 
and Shake are applied. Instead of finding a number of 
random ILS solutions, the algorithm does build a sequence 
of solutions, obtained with the local search method. In this 
algorithm, it is important to have a balance between the 

number of iterations of algorithm execution and the 
frequency of Shake operator utilization. 

Greedy Randomized Adaptive Search Procedure (GRASP) 
[12] is first used to solve the TOP in [13]. In general, 
GRASP method is executed for a pre specified number of 
iterations, where initially the procedure for solution 
construction is executed, followed by a procedure for local 
search. The behavior of the procedure for solution 
construction is controlled by the so called parameter 
“Greediness”, which represents the quotient between the 
Greediness and Randomness of the algorithm. This 
quotient shows how much the algorithm uses Greediness 
approach compared to Randomness approach, or vice 
versa. Different iterations of the algorithm are independent 
from each other, which mean that they return independent 
results. 

In a Tourist Information System (TIS) presented in [14], 
authors use a trip planning algorithm that is developed 
using genetic algorithms. The path for visiting the selected 
POIs is created in two separate steps. The first step does 
the calculation of the shortest path between each and every 
POI, by using A* algorithm. The second step decides 
about the order of visits to particular POIs. In this case, the 
genetic algorithms are used to create a list of candidate 
solutions. Furthermore, regardless of the execution time of 
the algorithm, an approximated solution is always returned. 
By using genetic algorithms, the algorithm under 
discussion, is able to propose multiple paths to the tourists. 
This flexible feature will allow them to select one of the 
proposed routes. 

3. Formulation as mathematical problem 

The proposed algorithm lies on the field of optimizations 
of touristic tours, where a number of constraints are 
considered for planning and optimization of the tour. The 
goal is to plan a multiple day trip that will serve the tourist 
to visit a number of touristic sites/POI (Point Of Interests). 
This problem can be considered as a version of 
Orienteering Problem with Time Windows (OPTW). A set 
of n locations is given, where each of them (i=1,…, n) is 
associated with a satisfaction value Si ,an entrance fee fi,  a 
typical visit duration ti  an opening (Oi) and closing (Ci) 
hour.  Usually the trip has several tours, with breaks in 
between (night time and mid daybreaks). Each tour is 
limited to a maximal period of time Tmax and it starts at a 
particular fixed point and ends at another fixed point. In 
general, the starting / ending time and tour duration are 
variable for each particular day. Mostly, the starting and 
ending point are the same for a tour of a single day (e.g. 
the tour starts and finishes at the hotel). The time tij  
needed to travel from location i to j, and vice versa, is 
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known for all locations. In general, not all locations can be 
visited during the trip, since the duration of the trip is 
limited to m tours and the tours themselves are limited to 
Tmax. Each location can be visited at most once. The visit 
is associated with a maximum budget Bmax, which should 
not be exceeded throughout the entire trip. 
 
No waiting times are considered at the POIs, meaning that 
the tourist will not have to wait any time prior to the 
realization of the visit to the POIs. This determines an 
additional constraint that makes sure that the timings of 
visits  𝑣𝑣𝑖𝑖  are scheduled only when POIs are open. 
 
The aim is to find a trip with m tours that includes as many 
available POIs as possible, by ensuring that the trip 
remains under budget and also taking in to account the 
total satisfaction factor and travel time of the trip. The 
intention is to have a higher satisfaction factor and shorter 
travel time. The trip budget and duration is considered as 
hard constraint, while the constraints of satisfaction factor 
and travel time are taken as soft constraints, and as such 
take part in the evaluation of the proposed solution.  
 
The constraints of satisfaction factor and travel distance 
are non proportional between themselves. For instance, if 
there are more POIs in the trip, the satisfaction factor will 
be higher, while the travel time will be higher too, which 
conflicts with the travel time aspiration constraint. On the 
other hand, in order to degrease the travel time, it is 
needed to have less visits in the trip, which would 
minimize the satisfaction factor, which again opposes the 
intention to get a maximal satisfaction factor for the trip. 
Hence, defining an evaluation function of the trip that 
enables finding the optimal value, of both satisfaction 
factor and travel time constraints, is needed. 
 
Based on the facts elaborated above, the running planning 
problem can be defined with following mathematical 
expressions: 
 

𝑀𝑀𝑀𝑀𝑀𝑀{∑ (𝑆𝑆𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝑀𝑀𝑖𝑖)}   (1) 

 
∑ (𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝑀𝑀𝑖𝑖) ≤ 𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀   (2) 

 
Where: 

𝑀𝑀𝑖𝑖 = �1,             𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑣𝑣𝑣𝑣 𝑣𝑣𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑑𝑑 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝
0,     𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑣𝑣𝑣𝑣 𝑣𝑣𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑑𝑑 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝 

� 

n – Number of available POIs for visit 
Si – Satisfaction factor of point i 
Bi- Entry fee of point i  
 

𝑀𝑀𝑖𝑖𝑛𝑛 ��∑ �∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

∗ 𝑦𝑦𝑖𝑖𝑖𝑖 �𝑛𝑛
𝑖𝑖=1 � + ∑ (𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖)�    (3) 

  
Where: 

 

𝑦𝑦𝑖𝑖𝑖𝑖 = �1,           𝑖𝑖𝑖𝑖 𝑀𝑀 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑖𝑖𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑣𝑣𝑣𝑣 𝑏𝑏𝑦𝑦 𝑀𝑀 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 𝒋𝒋
0,   𝑖𝑖𝑖𝑖 𝑀𝑀 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑖𝑖𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑣𝑣𝑣𝑣 𝑏𝑏𝑦𝑦 𝑀𝑀 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 𝑖𝑖 

� 

𝑑𝑑𝑖𝑖 = �1,             𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑
0,     𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑 

� 

𝑣𝑣𝑖𝑖 = �1,             𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑓𝑓𝑀𝑀𝑖𝑖𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑
0,     𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑓𝑓𝑀𝑀𝑖𝑖𝑝𝑝 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑 

� 

tij – travel time from point i to j 
tsi – travel time from start point to point i 
tei – travel time from point i to end point 
 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 1𝐵𝐵
𝑖𝑖=1   (j=1, …, n)  (4) 

 
Where: 

𝑧𝑧𝑖𝑖𝑖𝑖 = �1,               𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑛𝑛 𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝒋𝒋 
0,     𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝 𝒊𝒊 𝑖𝑖𝑛𝑛 𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝 𝑖𝑖𝑖𝑖 𝑛𝑛𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝒋𝒋  

� 

𝐵𝐵 – Number of POIs visited during the entire trip 
 
 

𝑝𝑝𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖   &  𝑣𝑣𝑖𝑖 + 𝑝𝑝𝑖𝑖 ≤  𝑐𝑐𝑖𝑖 ,   𝑖𝑖 = 1, … ,𝐵𝐵   (5) 
 
 
Expression (1) defines the intended maximal satisfaction 
factor of the trip, while expression (2) ensures that trip is 
equal or lower than the budget allocated for the trip. 
Formula (3) expresses the minimal travel time aspiration, 
by considering the travel times between visited points 
themselves and also between them and the starting/ending 
points. Expression (4) makes sure that a particular point is 
visited at most one time, while expression (5) makes the 
trip feasible only when all the points of interests are open 
on their scheduled time.  

4. Description of the algorithm 

Overview 
Trip planning is done based on the entry data that describe 
the trip. The entry data sets are categorized in three 
different kinds: 
 
• Data that describe the trip, such as: start/end date of 

trip, allocated budget, accommodation location, and 
number of tours to be taken during the trip, coefficient 
of weight of satisfaction factor and travel time, tourist 
preferences for categories and types of POIs and an 
additional entry parameter that specifies one of the two 
possible regimes of work of the algorithm. 

• Data that describe the POIs, such as: name of the POI, 
typical visit duration, location, entry fee, working 
hours, type and category of POI. 

• Data about travel distances between each and every 
POI that is available. The travel distances are 
expressed in unit of minutes.  
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As seen in the figure 1, the trip planning algorithm 
consists of two separate modules. One of them deals with 
calculation of personal score for the POIs, while the other 
one does the actual planning of the trip. In this paper, 
calculation of personal score (satisfaction factor), which is 

the process that is known as matchmaking between tourist 
preferences and POIs, is done by utilizing a simple 
algorithm introduced by Souffriau & Maervoet et al [15]. 
The value range of satisfaction factor produced by this 
matchmaking algorithm is between 0 and 48. Since, in our 
case we assume that the range of values for satisfaction 
factors of POIs is between 0 and 100, we have used a 
transformation function to convert the range of values 
from [0 – 48] to the range [0 – 100]. 
 

𝑆𝑆𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑(𝑀𝑀𝑀𝑀𝑀𝑀=100) = 
 100 ∗ [𝑆𝑆𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑(𝑀𝑀𝑀𝑀𝑀𝑀=48)]

48
 

 

Module for trip planning 

The process of trip planning creates an itinerary that 
consists of predefined number touristic tours to be taken 
during the trip period. The optimization of the trip 
planning is done by utilizing the taboo search heuristic. In 
our case, the taboo search heuristic uses the operators of 
Swapping and Insertion for exploring the search space. 
The Delete operator is used in some iteration to escape the 
local optimum. The taboo search heuristic is known for its 
process of memorizing previous search information, which 
facilitates the escape from local optimum by changing the 
search direction. In our example, the planning module can 
be customized by nine different entry parameters, as 
shown in the pseudo code given below. 
 
 
 
Algorithm Main(TLS, MT, MTWI, MBTNTS, ACI, PC, FMH, DN,   

FTWMV) 
begin 
‘ Operators = {Swap, Insert}; 
‘ Initialize taboo memories; 
‘ Create initial solution Sc; 
‘ Evaluate Sc; 

‘ Sb = Sc; 
‘ iterationNumber = 0; IterationsWithoutImprovement = 0; 
‘ while (iterationNumber <= MT) do 
‘ ‘ ‘ Divert=(iterationsWithoutImprovement % DN) == 0; 
‘ ‘ ‘ for each operator in Operators do 
‘ ‘‘   ‘ Generate neighbourhood of Sc by using current 
operator; 
‘ ‘‘   ‘ Find best non taboo and taboo neighbour of Sc (Divert); 
‘ ‘‘   ‘ if IterationsWithoutImprovement greater than ACI  then 
‘ ‘‘   ‘     AspirationCriteria=best taboo nighbor >  
‘ ‘‘    ‘    best solution found so far; 
‘ ‘‘  ‘ else 
‘ ‘‘   ‘    AspirationCriteria= best taboo nighbor –  
‘ ‘‘   ‘   best non taboo nighbor > MBTNTS; 
‘ ‘‘   ‘ end 
‘                 ‘‘   ‘ if there is a feasible non taboo / taboo neighbour then 
‘ ‘‘   ‘      if AspirationCriteria is fulfilled then 
‘ ‘‘   ‘  ‘ Sc =Best taboo neighbour; 
‘ ‘‘   ‘   ‘  else 
‘ ‘‘   ‘  ‘ Sc =Best non taboo neighbour; 
‘ ‘‘   ‘  ‘   end 
‘ ‘‘   ‘ ‘   if operator is Swap then 
‘ ‘‘   ‘ ‘  ‘ acceptanceCriteria = Sc better than Sb; 
‘ ‘‘   ‘ ‘   else   
‘ ‘‘   ‘  ‘  ‘  if FTWMV then 
‘ ‘‘   ‘  ‘  ‘ acceptanceCriteria= Sc better than Sb or  
‘ ‘‘   ‘  ‘  ‘ number of visits in Sc >number of visits in Sb ; 
‘ ‘‘    ‘  ‘  ‘ else 
‘ ‘‘    ‘   ‘  ‘    acceptanceCriteria= Sc better than Sb; 
‘ ‘‘   ‘  ‘  ‘ end 
‘ ‘‘    ‘  ‘ end 
‘ ‘‘   ‘    ‘if acceptanceCriteria is fulfilled than 
‘ ‘‘  ‘   ‘    Sb = Sc; 
‘ ‘‘  ‘   ‘end 
‘ ‘‘  ‘ else 
‘ ‘‘ ‘      Delete a visit from trip; 
‘ ‘‘ ‘ end 
‘ ‘ ‘ next; 
‘ ‘    if there is improvement in current iteration then 
‘ ‘ ‘    IterationsWithoutImprovement=0; 
‘ ‘ ‘ else 
‘ ‘ ‘    IterationsWithoutImprovement +1; 
‘ ‘ ‘  end 
‘ ‘  ‘ if IterationsWithoutImprovement equals  MTWI then 
‘ ‘  ‘    Exit loop; 
‘ ‘  ‘ end 
‘ ‘  ‘ iterationNumber +1; 
‘ end 
end 
Return Sb; 
 
In the Table 1 we present the description for the entry 
parameters of the algorithm. 

 
Table 1: Algorithm parameter description 

Parameter  Abbrev. Description 

Taboo List 
Size TLS 

Specifies the number of iterations 
that a move will remain taboo. E.g. 
TLS=5 indicates that swapping 
between point i and j cannot be 
performed in next five iterations. 

Max Tries MT 
Indicates the total number of 
iterations that the algorithm will 
run. 

Fig.  1 Block scheme of the algorithm 
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Max Tries 
Without 
Improve-

ment 

MTWI 

Specifies the total number of 
iterations that the algorithm will 
run without any further 
improvement. 

Margin 
Between 

Taboo And 
Non Taboo 

Solution 

MBTNTS 

Indicates how much better a taboo 
solution should be, compared to a 
non taboo solution, such that it 
would fulfill the aspiration criteria.  

Aspiration 
Criteria 

Iterations 
ACI 

Defines the number of iterations 
without improvement, which will 
utilize the version of aspiration 
criteria with margin between taboo 
and non taboo solution. After 
passing the number of iterations, 
indicated by ACI, the aspiration 
criteria is calculated in its usual 
form (accepting a taboo solution 
only if it is better than the best 
solution found that far). 

Penalty 
Coefficient PC 

Takes a value between 0 and 1, 
which is used to penalize frequent 
moves that have occurred during 
the search process. 

Frequency 
Memory 
Horizon 

FMH 

Determines the number of 
iterations after which the frequency 
based memory will be reset.  

Diversifica-
tion 

Number 
DN 

Specifies how often the search 
process will be diversified. Every 
DN iterations the diversification 
process will take place. 

Find Trip 
With 

Maximum 
Visits 

FTWMV 

It is a logical parameter that 
defines one of the two possible 
regimes of work of the algorithm. 
If its vale is True, the algorithm 
will try to find the best trip with 
maximal number of POIs. 
Conversely, if its value is False, 
the algorithm will focus only in 
finding the best evaluated trip, 
even though the resulting trip may 
not have the maximal number of 
POIs. 

 
The algorithm uses two operators for exploring the search 
space, which are shown in the initial part of the pseudo 
code. The Swap operator does the swapping of POIs that 
are on trip with POIs that are currently out of the trip. 
Insertion of new POIs into the trip is made by Insert 
operator. The so called Taboo Memories are used to save 
information about the recency and frequency of swaping 
and inserting individual POIs. These memories will enable 
the search process to avoid getting stuck in the local 
optimum and also direct the search process in the new 
regions of search space (that far not explored). Before the 
algorithm starts looping, an initial solution is created, 
which is than evaluated and accepted as best current 

solution. In general, the initial solution is created by 
randomly inserting new POIs, until there is no left space. 
 
The algorithm will be iteratively executed by MT 
iterations. The Boolean variable Divert will be calculated 
for each iteration of the algorithm and it is used to decide 
whether the search diversification operator shall be applied 
in current iteration. Its value is True if division of variable 
iterationsWithoutImprovement and parameter DN returns 
an integer, otherwise its value is False. 
 
Inside the main algorithm loop, another loop (named the 
operator loop) is executed for two times. In the first 
execution, the operator loop uses the Swap operator, while 
in the second time it uses the Insert operator. In both 
executions, with Swap and Insert operator, the generation 
of neighborhood is full, which means that all possible 
combinations are considered. Swap operator swaps each 
POI on trip with each POI out of the trip, while the Insert 
operator inserts each non included POI before and after 
each included POI. 
 
After the process of neighborhood generation, each valid 
neighbor is evaluated and the best non taboo and neighbor 
of current iteration are selected. In case the evaluation is 
done for the neighborhood generated by Swap operator, 
for some specific iterations (exactly every DN iterations) 
the operator of penalizations is used.  
 
After finding the best two solutions (one of them taboo 
and the other one non taboo), the algorithm checks 
whether the aspiration criteria is fulfilled. This algorithm, 
depending on the value of ACI parameters, works with 
two sorts of aspiration criteria. If value of variable 
IterationsWithoutImprovement is greater than value of 
parameter ACI, then the aspiration criteria is defined as: 
“Best taboo neighbor must be better than best solutions 
found so far, so that the taboo neighbor could be accepted 
as actual solution”, otherwise, the aspiration criteria is 
defined as “result of subtraction between taboo and non 
taboo solution should be greater than the value of 
parameter MBTNTS, so that the best taboo solution is 
accepted as actual solution”. 
 
If at least one of the neighbor solutions (taboo or non 
taboo) represents a feasible solution, the algorithm carries 
on with selection of the aspiration criteria, otherwise, the 
operator that deletes a POI from the trip, is applied. The 
POI deletion is conducted randomly in one of the tours of 
the trip. If aspiration criteria is fulfilled, then best taboo 
neighbor is accepted as the actual solution, otherwise the 
best non taboo solution is accepted as current solution.  
 
Next, the variable acceptanceCriteria is defined, which is 
used to determine whether the current solution could be 
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accepted as best solution found so far. Depending on the 
value of logical parameter FTWMV, the variable 
acceptanceCriteria could be defined in two different ways. 
If its value is False, than the varable acceptanceCriteria 
will be set to allow a current solution to become the best 
solution found so far, only if it is better. Otherwise, when 
parameter FTWMV is True, a current solution can become 
the best solution if it has more visit on the trip, regardless 
that it may not have a greater evaluation then the best 
solution found so far.  
 
Inside the algorithm loop, the number of iterations without 
improvement is counted. If this number reaches the value 
defined by parameter MTWI or the predefined number of 
maximum iterations MT exceeds, than the algorithm 
execution stops and the best found solution is returned. 

Determining the legality of the neighbor 
A neighbor would be legal if it fulfills the hard constraints: 

• All visits in the trip are scheduled when 
respective POIs are open, 

• The trip budget is not exceeded, and 
• The length of each tour in the trip remains in the 

pre specified duration 
The pseudo code for determining candidate feasibility is 
given in the following: 
 

Determine legality of neighbor 
begin  
 legality=false; 
 if  new vist is open in scheduled time do 
  if neighbor cost is under budget do 
   if neighbor is viable in time do 
    legality= true; 
   end 
  end 
 end 
end 
return legality; 
 
Determine time viability of neighbor(changed tour) 
begin 
 viability=false; 

if length of changed tour is not grater than orginla tour  
length do 

  vilabilty=true; 
 end 
end 
Return viabilty; 
 

Evaluation function 
Evaluation of the candidate solution is done by 
considering two soft constraints, namely the total trip 
satisfaction factor and total trip travel time. The goal is to 
find an optimal trip that has the total satisfaction factor as 
higher as possible, while the travel time remains as low as 
possible. In order to realize this, we have used an 

evaluation/fitness function that consists of two 
components: 
 

𝐸𝐸𝑣𝑣𝑀𝑀𝑓𝑓𝑑𝑑𝑀𝑀𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑑𝑑𝑛𝑛𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 = 
𝑓𝑓1 ∗ [ 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑𝑛𝑛𝑝𝑝𝑑𝑑𝐵𝐵 ] + 

𝑓𝑓2 ∗ [𝑝𝑝𝑑𝑑𝑀𝑀𝑣𝑣𝑣𝑣𝑓𝑓 𝑝𝑝𝑖𝑖𝐵𝐵𝑣𝑣𝑛𝑛𝑝𝑝𝑑𝑑𝐵𝐵 ] 
  

Parameters 𝑓𝑓1  and 𝑓𝑓2  represent the weight coefficients 
for the particular components of the evaluation function. 
In order to have a proportional effect in to the evaluation 
function, when the value of individual components 
changes, we have used the normalized values of both 
components: 
 

𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑𝑛𝑛𝑝𝑝𝑑𝑑𝐵𝐵 = 

100 ∗
𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑓𝑓 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑

𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖𝐵𝐵𝑀𝑀𝑓𝑓 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑
 

 
Where: 
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑓𝑓 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑 = ∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛

𝑖𝑖=1   
   
𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖𝐵𝐵𝑀𝑀𝑓𝑓 𝑖𝑖𝑀𝑀𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑀𝑀𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑 = 100 ∗ MNP  

SDT  
∗ [TDWB ]

    
 
𝑆𝑆𝑆𝑆𝑖𝑖–Satisfaction factor of POI with index i,  
n – Number of POIs included into the trip, 
MNP – Maximal Number of POIs that are aimed to be 
visited per day 
SDT – Standard Duration of a Tour  
TDWB – Trip Duration Without Breaks 
 
Based on the practical experience, we consider that the 
maximal desired number of POIs to be visited during one 
day tour is 20, while the duration of the tour of one day is 
usually 8 hours. In order to have a realistic view for the 
maximal satisfaction factor, we have considered only the 
time when the tourist is supposed to be active in his trip 
(TDWB), by omitting the breaks that the tourist may take 
(e.g. such as sleeping at the hotel at night). 
 
Since we use the approach of maximizing the value of 
evaluation function, mathematically, we would need to 
maximize the values of both its components. While for the 
satisfaction factor component this is right, for the travel 
time component it should be the opposite aim. Hence, in 
order to facilitate the maximization of both components 
and aim in minimizing the travel time, we try to maximize 
the complementary value of travel time, which in fact will 
minimize the travel time, by using: 
 

𝑝𝑝𝑑𝑑𝑀𝑀𝑣𝑣𝑣𝑣𝑓𝑓 𝑝𝑝𝑖𝑖𝐵𝐵𝑣𝑣𝑛𝑛𝑝𝑝𝑑𝑑𝐵𝐵 = 100 ∗ (1 −
𝑝𝑝𝑑𝑑𝑀𝑀𝑣𝑣𝑣𝑣𝑓𝑓 𝑝𝑝𝑖𝑖𝐵𝐵𝑣𝑣

TDWB 
) 
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5. Experimental results 
The algorithm is tested by utilizing 10 different instances 
of tourist profiles. In addition, we have used 40 instances 
of POIs of the city of Vienna. As a starting/ending point of 
each tour of the trip we have used a hotel in the same city. 
Travel distances between POIs are expressed in the unit of 
minute. 
All calculations are made by using a PC with an Intel Core 
2 processor with 2.0 GHz and the RAM memory of 2.55 
GB. 
 
In the following experiments, if not differently stated, we 
have used a trip with execution details as shown in table 2. 

 
Table 2: Default data for experiments 

Parameter  Value 
Trip duration Two tours, five hours 

each 
Trip Budget 200 euro 
Tour start time 11:00 
Tour end time 16:00 
Weight of satisfaction factor 70% 
Weight of travel time 30% 
Execution time of the algorithm 5 minutes 

 

Our experiments aim in obtaining the optimal values for 
the entry parameters of the algorithm, such as: finding the 
optimal taboo list size, margin of aspiration criteria, 
frequency of applying the operator for search 
diversification etc. If not differently stated, the algorithm 
is executed 10 times for each instance, and then, the 
average values of the results of particular executions are 
taken.  

Tests with various versions of initial solutions 
We have tested the algorithm with three different kinds of 
versions of initial solutions: 
 

1. Random initial solution – where POIs are 
randomly entered into the trip itinerary, as much 
as there is room in it. 

2. Initial solution with POIs sorted in ascending 
order – where POIs are entered into the trip based 
on the value of satisfaction factor. The POIs that 
have lower satisfaction factor are prioritized for 
earlier insertion into the trip itinerary.  

3. Initial solution with POIs sorted in descending 
order –in this case, as well as in the previous 
case, the POIs are entered into the trip based on 
the value of satisfaction factor. Conversely, in 
this case the POIs that have higher satisfaction 
factor have higher chance for earlier insertion into 
the trip itinerary. 

 
By using instance 8, the algorithm is executed 10 times for 
each three different initial solutions. Respective results of 
the execution of the algorithm for each different initial 
solution are compared, and then the maximal value from 
one of the three initial solutions is recorded.  The number 
of maximums shown in figure 2, indicate that random 
initial solution performs better than the other two initial 
solutions, because it has been better in seven executions 
compared to the other initial solutions. On the other hand, 
the ordered lists versions (both in ascending and 
descending order) have never resulted better than the other 
ones. In three executions, at least two of the three different 
initial solutions have produced the same evaluation of the 
produced solution. 
 

Variance of the algorithm result for different 
executions 
Instance 8 is executed 10 times and the variance between 
different executions is shown in the following figure. 
 

 
Fig.  3 Variance of the algorithm performance for different executions 
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It can be stated that for almost all executions, the best 
solution is found for approximately 40 seconds (except 
execution 1), and the solution with average evaluation is 
found for approximately 10 seconds. 

Selection of taboo list size 
In this experiment, all instances are executed 10 times with 
taboo list sizes 3, 6 and 9. Afterwards, the average values 
of individual executions of instances are calculated. Then 
the average values for individual taboo list sizes for all 
instances are taken. The results are shown in the below 
table.  
 
Table 3 : Comparison of taboo list size 

Taboo 
list 
size Minimum Maximum Average 

Standard 
deviation  

3 31,376 31,599 31,444 0,072 

6 31,680 31,947 31,769 0,084 

9 31,392 31,510 31,430 0,041 
 
Furthermore, we have also counted the number of 
instances for which a particular taboo list size produces 
better results (cf. figure 4). 

 
Fig.  4 Selection of taboo list size 

 
From table 3 and figure 4, it can be conclude that taboo list 
size of 6 produces better results. In general, the solutions 
obtained by using the taboo list size of 6, are better for 
average 0.3 points than the solutions gained by two other 
taboo list sizes used in the experiment. 

Diversification of search process 
The diversification process ensures that the algorithm 
continues to search for the global optimal solution. This 
process is applied every N iterations. The experiment 
shows that applying the search diversification process 
yields to better results. Furthermore, if we apply it more 
often, we would gain better results. 
  
             

Best trip versus trip with maximum POIs 
The algorithm under discussion works in two different 
kinds of modes. The first one tries to find the highest 
evaluating trip, while the second one, aims in finding the 
best evaluating trip that has maximum number of POIs. 
The working mode of the algorithm is specified by the 
user. 
The following figure, expresses a comparison between the 
two algorithm regimes in terms of execution time, number 
of POIs and evaluation. 

 
As seen in the figure, the overall trip score and number of 
POIs do not have a significant increase in the second mode 
(Best trip with maximum POIs) compared to the first 
mode (Best trip). Conversely, it only increases the average 
execution time for around 28 seconds.  

Comparison of algorithm results for different tourist 
instances  
In figure 7, we show the variation of trip score for 
different tourist instances. It can be noticed that for all 
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instances, for the period of around 10 seconds, we gain 
solutions that evaluate near to final solutions. During this 
10 second period, almost all instances are improved for 
about three points compared to their initial solution. After 
this period, no significant improvements are made (in most 
cases the improvement is less than one point). Hence, it 
can be concluded that further execution of the algorithm 
does not bring to significant improvement. Conversely, it 
will only have the negative impact of increasing the 
execution time of the algorithm.   

 
Fig.  7 Execution of the algorithm for different tourist instances 

 

Comparison of different implementation of Swap 
operator 

The basic implementation of Swap operator swaps each 
POI that is on the trip itinerary with each POI outside the 
trip itinerary. We have called this as “Large Swap”, since 
the solution neighborhood is created with all possible 
combinations enabled by Swap operator. In addition, by 
using Min/Max Conflicts method, we have implemented 
the Swap operator in its “Small Swap” mode, where only 
three POIs of the current trip itinerary that have the largest 
travel time (travelling time from previous POI to the 
current POI) are considered for swapping with the POIs 
out of the trip itinerary. The third version of the Swap 
operator is implemented by using the Hill climbing 
method. 
 

In figure 8, we have shown the execution of instance no. 8 
with the three different versions of Swap operator. The 
instance no. 8 is executed 10 times with each different 
implementation of Swap operator, and the average values 
of 10 executions are presented in the figure. 

 
Fig. 8 Performance of the algorithm for different implementation of Swap 

operator 
 
Figure 8 shows that the “Large Swap” version yields to 
better results, while the “Small Swap” version and the Hill 
Climbing method evaluate nearly to the same value. The 
Hill Climbing method performs faster than the other two 
versions (best solution is found in around 5 seconds), but 
quality of the solutions found by this method is worse. In 
addition, “Large swap” version is quicker (best solution 
found in approximately 210 seconds) than the “Small 
swap” version (best solution found in about 260 seconds).  
 

Comparison of different implementation of Swap 
operator for various number of tours 

In table 4, we show results gained by executing the 
algorithm (using instance No. 8) with different Swap 
operator implementation and different trip lengths. 
 
For small number of tours (one or two tours), the “Large 
Swap” mode performs better than the other two 
implementations of Swap operator. It is noticeable that for 
a short duration of the trip (one or two tours), the “Large 
Swap” version takes only about 10 seconds more than the  
“Small Swap” version. On the other hand, for larger trips 
(three or more tours) the “Small Swap” version is quicker 
for about 50 seconds. Furthermore, when the trip consists 
of five tours, the “Small Swap” version is faster for around 
130 seconds than the “Large Swap” version. Considering 
these results, sometimes it may be more appropriate to 
sacrifice a little bit in the quality of the found solution (by 
using the “Small Swap” version), in order generate the trip 
plan faster. The Hill Climbing method does not take so 
much time to find the final solution (in average 86 
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seconds), but the quality of the found solutions and the 
small number of POIs on those solutions, makes this 
method as not successful as the other two methods. 
 

Table 4: Performance of the algorithm for different trip lengths 

 
Large Swap Small Swap Hill Climbing 

N
um

ber of 
tours 

Trip score 

N
um

ber of 
visits 

Tim
e [S] 

Trip score 

N
um

ber of 
visits 

Tim
e [S] 

Trip score 

N
um

ber of 
visits 

Tim
e [S] 

1 37,4 4 53,6 37,35 4 52 35,15 2,6 40,2 

2 35,7 8 87,9 35,41 7,9 67,9 35,47 6,7 80,7 

3 34,5 11,8 
127,
8 33,86 11,4 81,7 34,07 10 97 

4 33,4 15,5 
168,
1 32,76 14,3 73,3 32,86 13,2 

105,
6 

5 32,0 18,1 
226,
2 31,70 17,4 96,3 31,82 15,7 

109,
1 

 
Av-
era-
ge 34,63 11,48 

132, 
7 34,22 11,00 74,2 33,88 9,64 86,5 

6. Discussions  

In this paper we presented an algorithm that is used for 
planning the touristic trip, by considering a number of soft 
and hard constraints. The hard constraints consist of 
opening and closing hours of POIs, the trip budget and 
duration. The solutions generated by the algorithm are 
evaluated by using a fitness function that considers the 
overall trip satisfaction factor and tourist travel time 
throughout the entire trip, which in fact represent the soft 
constraints for the algorithm. The calculation of personal 
satisfaction factors for the POIs is done by using a simple 
algorithm introduced by [15]. The algorithm is created by 
using the taboo search metaheuristic, where four different 
kinds of initial solutions are tested. The exploration of 
search space is done by using the operators of Insertion, 
Swapping and Deletion. In order to test the performance of 
the algorithm, the Swap operator is implemented in three 
different formats. First two implementations are done by 
using the small and large Swap approach, respectively, 
while the third one is done by using the Hill Climbing 
method. In each iteration of the algorithm, the Insert 
operator tries to insert a POI in one of the available tours. 
The Delete operator is applied in occasional iterations, so 
would let the algorithm to escape from getting stack in an 
endless loop.  
 
Algorithm performance test is done by conducting a 
number of experiments, which are mainly realized to 
obtain the optimal values of the entry parameters of the 
algorithm. The experiment with the initial solution shows 
that random initial solutions perform slightly better than 
the other ones. In addition, it is obvious that the variance 

between the results of different executions of the algorithm 
is less than one. The optimal number of iterations for 
which a solution would remain taboo is six. In general, 
solutions gained when using the taboo list size of six, 
score for 0.3 points more than when the taboo list size is 
three or nine.  
 
It is evident that the utilization of search diversification 
process yields to better results. In the conduced 
experiments, we notice an average improvement of 0.3 
points when diversification is applied. Furthermore, 
experimental results show that the more often we apply the 
diversification, the better results we gain. The penalty 
coefficient of 0.8 has a slight advantage in comparison to 
the other tested values.  
 
Depending on the working mode of the algorithm, finding 
the best trip or the best trip with maximal POIs, will take 
approximately an average time of 40 or 60 seconds, 
respectively. The quality of found solutions in both 
regimes is nearly the same.  
 
In terms of quality, the experiments with different 
implementation of Swap operator show that the “Large 
Swap” version outperforms the other two versions. The 
“Large Swap” version scores better than the “Small Swap” 
version and the Hill climbing method for 0.7 and 0.8 
points, respectively. The Hill climbing method is able to 
find the final solutions in about 5 seconds, whereas the 
“Large and Small Swap” need much more time, which 
may be up to 200 or 250 seconds, respectively.  
 
The experiments with different trip lengths show that for a 
trip of one or two tours, it may be more appropriate to use 
the “Large Swap” mode, since the quality of the solutions 
is better, whereas the execution time remains nearly the 
same to that of “Small Swap” mode. In addition, for larger 
number of tours (3 or more), it may be acceptable to 
sacrifice a little bit the quality of solutions, so that we 
could gain the final solution quicker by using the “Small 
Swap” mode.   
  
Finally, based on the experimental results, the algorithm is 
able to produce a personal trip itinerary in margins of tens 
of seconds. Further, in order to meet specific requirements, 
the algorithm can be configured by using nine different 
parameters. The presented results indicate that for a 
reasonable time of execution, the algorithm generates a 
near to optimal trip plan. 

7. Conclusions and future work 

The main contribution of this paper is the introduction of 
an algorithm for touristic trip planning that is comparable 
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to the well known problem of Team Orienteering Problem 
with Time Windows (TOPTW). In general, the trip 
planning can be done in an average time of 70 seconds. 
The solution evaluation is made by using a fitness function 
that consists of two separate components, where one of 
them considers the overall trip satisfaction factor and the 
other one the total traveling time. A such fitness function 
makes the trip plan more personal for the tourist and the 
algorithm suitable for use in personal trip planning 
systems. The algorithm performance is tested by using 40 
instances of POIs of the city of Vienna and 10 different 
tourist profiles. The future work includes testing the 
algorithm with larger test instances. Additionally, testing 
the algorithm with test dates known in the literature will 
make it comparable to the existing similar algorithms. It 
may also be important to design new and more specific 
test instances, for example concerning the number of 
possible visits, number of tours, and the length of the time 
windows of POIs etc.  
 
The relative long time to finding the optimal solution that 
mainly comes as the result of the process of verifying the 
legality of proposed solutions, may be a focus of research 
of work in the future. Furthermore, adding new planning 
constraints such as, context factors (weather, unexpected 
events, traffic jams, weekends etc.) could lead to more 
personalized trip plans.  
  
In the real life, it often happens that a group of tourists go 
for a joint touristic trip. Hence, introduction of an 
algorithm that is able to plan a trip for group of tourists 
may be desired. The consideration of personal interests of 
individual tourists would be preferable. It would be ideal, 
if the algorithm could create a master trip (for the whole 
group) that in some portions of it could be spread into 
some sub trips, so that it would match interests of sub 
groups of tourist, who may have different preferences for 
specific POIs. The evaluation of the trip would need to be 
a general one, for the whole group of tourists, by 
considering a number of soft and hard constraints 
concerning the touristic trip. 
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