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Abstract 
Essentially, motive behind using control system is to generate 
suitable control signal for yielding desired response of a 
physical process. Control of synchronous generator has always 
remained very critical in power system operation and control. 
For certain well known reasons power generators are normally 
operated well below their steady state stability limit. This raises 
demand for efficient and fast controllers. Artificial intelligence 
has been reported to give revolutionary outcomes in the field of 
control engineering. Artificial Neural Network (ANN), a branch 
of artificial intelligence has been used for nonlinear and 
adaptive control, utilizing its inherent observability. The overall 
performance of neurocontroller is dependent upon input features 
too. Selecting optimum features to train a neurocontroller 
optimally is very critical. Both quality and size of data are of 
equal importance for better performance. In this work filter 
technique is employed to select independent factors for ANN 
training. 

Keywords: neural network, mlp, feature selection, regression 
analysis, generator excitation 

1. Introduction 

In recent years it has been recognized to impart more 
flexible control systems, it is necessary to incorporate 
other elements, such as course of thoughts, reasoning and 
heuristics into algorithmic techniques of conventional 
adaptive and optimal control theory. For proper designing 
of adaptive controller flexibility is main characteristic to 
incorporate and Artificial Neural Network (ANN) offers 
highly flexible structure. The use of an ANN with its 
learning ability avoids complex mathematical analysis in 
solving control problems when plant dynamics are 
unpredictably complex and highly non-linear [1]. This is a 
distinctive advantage over the traditional non-linear control 
methods.  
ANNs are parallel distributed processing systems capable 
of synthesizing a complex and highly nonlinear mapping 
from input feature space to output space [2]. The parallel  

processing element distribution not only gives higher 
degree of tolerance but also the capability of fast 
information processing. Another important feature of ANN 
is learning and adaptation. A well trained ANN has the 
ability to generalize training pattern. In addition to their 
ability to produce high quality results for large, noisy or 
incomplete data sets, ANNs have been found effective in 
identifying patterns and other underlying data structures in 
multidimensional data [3].  

Importance of input variables is evident as the input vector 
needs to capture all characteristics of complex functions. 
Features, variables, attributes, parameters are used 
alternatively for input vectors given to ANN. Feature 
selection is a problem of selecting the subset of features 
that is needed to describe the target concept in a give data 
set, indeed [4-6]. Keeping this in mind, one can say that it 
is not necessary that best individual feature correspond to 
best set of feature.  Therefore, for best subset of features 
researcher better undergo all possible combinations of 
features available in feature set for optimum efficiency.  

Feature selection is fundamental because it allows us to 
reduce the various effects causing information overlapping, 
noise induction, highly complex computation, cost of 
computation, memory requirement, time to compute and 
inter variable correlation [7]. Alternatively, too few 
features may carry very low content information and too 
many may cause irrelevant features, complex mapping and 
data over fitting  [3]. However, it should be pointed out 
that a larger number of training data should always be 
favored as opposed to smaller number. Hence, it is issue of 
harmonizing irrelevant data and information.      

There are two techniques employed for feature selection. 
One is filter-based approaches employing statistical tests 
for feature selection. Another is called wrappers methods 
exploit the knowledge of the specific structure of the 
learning algorithm and cannot be separated from it [8]. In 
the absence of valid and reliable evaluation, there currently 
exists no consensus on which methodology should be 
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applied under which data condition [9]. Wrapper technique 
based feature selection is computationally very expensive 
[7] and this is big flaw behind not being used so 
frequently. In comparison filters based feature selection 
methodology is most frequently used for efficient feature 
evaluation [9]. In this research work forward selection 
based on statistical methods is used to select optimum sub 
set of features.  

Since the discovery of Multi Layer Perceptrons’ (MLP) 
nonlinear problem solving ability, there has been an 
explosive growth in application of ANN into control 
problems. MLP is most commonly used ANN topology 
and type is a type of feed-forward network. MLPs are 
finding more applications because of their simplicity and 
requirement of lesser features to approximate any function 
up to same degree of certainty. It contains one or more 
hidden layers. The number of nodes in the hidden layers 
defines the complexity and the power of the neural 
network model to describe underlying relationship and 
structure inherent in training data [3]. ANNs have a 
specific nonlinear function associated with every number 
of hidden layer size. However, it cannot be interpreted 
because of poor interpretability of ANN. Generally, one 
hidden layer with sigmoidal activation function is used 
with sufficient accuracy to approximate any nonlinear 
function. A key challenging aspect of the MLP-ANN is the 
optimization of network training protocols that include 
network architecture and training stopping criterion [10]. 

Due to the nonlinear and highly dynamic nature of power 
system and complexity involved in realization of optimal 
and nonlinear controllers, artificial intelligence particularly 
ANNs are finding wide variety of applications in operation 
and control of power system [11-17]. There are thousands 
of papers published in this area but literature reviewed here 
is as per scope of this paper focusing on excitation of 
synchronous generator. Work proposed by [18] has used 
Functional Link Net (FLN) and technique researched in 
[19] has proposed a method equivalent to conventional self 
tuning adaptive control utilizing RBF feedforward 
network. Research proposed in [1] , [20] and [21] is based 
on indirect adaptive control, utilizing three layer MLP to 
realize model and neurocontroller. Adaptive Critic Design 
(ACD) based control utilizes Hamilton–Jacobi–Bellman 
equation based optimal control algorithm. Duel Heuristic 
Programming (DHP) based ACD has been shown to 
perform better [22]. Work proposed by [23] use MLP 
based critic control, whereas MLP and RBF based critic 
control comparison was carried out in [24]. RBF showed 
better performance for low magnitude disturbances. In [25] 
by using RBF based adaptive critic neurocontroller, it is 
showed that performance of neurocontroller is better even 
when conventional excitation system is equipped with 
power system stabilizers (PSS). 

In indirect adaptive based control, since link between 
current system state and the controller parameters are 
totally ignored [26] and the identified model has error of 
considerable percent [27], then may controller generate 
erroneous signal and lead to oscillatory response. Whereas 
in ACD, complicated control algorithm needs more 
computational time to calculate control signal [28] and 
response time is key to close loop control system 
performance specifically dynamic system such as power 
system. Additionally, reliability of ACD based control loop 
is also low. On the contrary, if not impossible at least it is 
time-consuming to train neurocontroller offline for every 
operating condition.  

Generalization means to capture trend in data instead of 
fitting every training data set. Alternatively, close inputs 
ought to generate close outputs. For better generalization 
early stopping criterion plays very important role. Apart 
from that, early stopping of ANN training saves training 
time. However, if criterion to stop training is not 
appropriately chosen that may lead to under trained 
network. In this research work, ANN training was stopped 
on the basis of the network’s performance on validation 
data set. This early stopping criterion is not used in the 
realm of power system control and operation. This is 
explained in the last section.    

As explained, a highly challenging task to train ANN for 
power system control and operation is selection of input 
features. Aforementioned literature review reveals that 
variables given in Table 1 were used for ANN training to 
control excitation of synchronous generator. The output of 
the excitation system is called excitation voltage (Vf) and 
it is a dependent parameter. Detailed explanation of 
excitation system’s impact on generator operation is given 
in next section.  
Table 1 Input feature used in ANN training 

∆VT is deviation of terminal voltage from reference voltage i.e. VREF-VT  

No proper procedure has been reported for selecting input 
features for generator excitation neurocontroller training. 
More input features may require many processing elements 
and hence more information processing time. On the other 
hand, multicollinearity between input features may inhibit 
a neurocontroller’s learning capability. In addition, un-
correlated input and output space make the mapping very 
complex. Furthermore, generator terminal voltage can be 
sensed by different combinations of Table 1 parameters 
and even with few additional factors. This analysis is first 

∆VT Terminal Voltage 
ω Rotor Speed 
P  Active Power 
Q  Reactive Power 
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of its own kind, to the authors best knowledge such 
analysis was not carried keeping statistical and engineering 
constraint both at a time.  

Statistical methods and ANN have been used for prediction 
and approximation, with ANN giving higher accuracy in 
high dimensional problems. In fact, the most commonly 
used ANN topology, called multilayer perceptron is 
nothing more than nonlinear regression. By using statistical 
methods optimum parameters can be found [29] for 
enhancing neuro controller learning capability while 
generator dynamics remain unaffected. Objective of this 
paper is to generate optimal set of training features and to 
compare performance of statistical regression and ANN.  
This paper is divided into three parts. The immediate 
section discusses the model considered for data generation. 
Second segment describes data analysis based on statistical 
methods and last part focuses on ANN output and 
comparison.  

2. Power System Modeling 

Power system is spread over very wide region from one 
end of country to another end and sometime from one 
continent to another, comprising of generation, 
transmission and distribution sections. The primary 
element of generation section is synchronous generator 
also termed as alternator. Synchronous generator consists 
of stator called armature and rotor also known as field. 
Field is responsible for keeping air gap magnetic flux 
constant leads to constant terminal voltage. The key to 
proper operation of synchronous generator is maintenance 
of synchronism between rotating armature flux and 
revolving field flux. The strength of synchronism largely 
depends upon the strength of air gap magnetic flux and 
alternatively dependent upon excitation system 
performance. Synchronism can be jolted by faults induced 
anywhere in a power system, but the extreme disturbance 
is fault introduced at terminals of a generator. Fault 
deteriorates the strength of magnetic flux as explained by 
armature reaction phenomenon and so has the effect on 
synchronism. The mechanical angle between rotor 
magnetic field and armature magnetic flux of a generator is 
known as the load angle or power angle, δ.  

The ability of power system to regain a state of operating 
equilibrium after being subjected to a physical disturbance 
or fault is called power system stability. In addition, 
neither a unit at generating station nor a portion of power 
system should lose synchronism with respect to the 
generating station or the power system [30]. Power system 
stability enhancement has captured growing attention of 
researchers in recent times after occurrence of major 
blackouts [31].The excitation system’s output is based on 

the difference (∆V) between reference voltage and terminal 
voltage. The fault causes a decrease in air gap flux density, 
depending upon the direct and quadrature axis sub-
transient and transient time constant. Moreover duration of 
fault, and decrease in terminal voltage have great influence 
on air gap flux density reduction. This leads to increase in 
∆V, so the output of generator excitation will shoot up to 
compensate error. Stability may be enhanced by rapidly 
increasing excitation current [32]. ANN requires quite 
considerable time to tune weights but it is fast and accurate 
once tuned properly. In this research work besides 
variables given in Table 1, the effect of one more new 
variable, deviation of quadratic voltage from reference 
voltage i.e. ∆Vq = Vref – Vq was analyzed on excitation 
voltage (Vf). Terminal voltage is the vector sum of direct 
and quadratic voltage components. Quadratic voltage was 
preferred over direct voltage because of higher correlation 
constant. The reference value for quadratic voltage is 
achieved by putting one instead of terminal voltage in 
equation combining direct, quadratic and terminal voltage. 

Power system stability enhancement is referred to reducing 
risk of losing stability by inserting additional signals into 
the system to smooth out the system dynamics. During 
steady state excitation system should be driven by only 
voltage difference. Contrastingly, during transient state 
rotor swings ∆V undergoes oscillations caused by change 
in rotor angle. It is compulsory to add additional 
information to neurocontroller for damping out 
oscillations. Rotor speed, active power or both are usually 
used variables for generating stabilizing signals [11, 33, 
34]. In this research work one more parameter load angle 
(δ) is also included for analyzing learning performance 
based on its correlation with excitation voltage and active 
power. Selection of load angle will not affect negatively 
the generator dynamics because active power and load 
angle are proportional as evident from equation 
                               *

*sinf T

S

E V
P

X
δ=                        (1) 

where P is active power, Ef is internal generated voltage, 
VT is terminal voltage, XS is synchronous reactance of 
generator and δ is load angle. Single machine infinite bus 
system (SMIB) power system model is considered for 
generating data, as shown in Figure 1. This model 
simulates a generator connected with the rest of power 
system.  
 
 
 
 
 

 
Figure 1 A single machine-infinite bus system 

Simulation of the model was carried out on 
Matlab/Simulink Toolbox with generator rating 13.8KV, 

Generator 

Bus Infinite Bus 

Load 

  Lines 
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150MVA, 50Hz at load (0.09+j0.056) Ω. The generator 
parameters and excitation system parameters are given in 
Table 2 and 3 respectively. A three phase to ground fault 
was simulated to analyze system transient stability. Figure 
2 and 3 show terminal voltage and load angle behavior 
after simulation of 120ms fault at generator terminals. Both 
figures depict stable behavior of the generator. This 
implies data were collected from a stable system. 

Table 2 SYNCHRONOUS GENERATOR PARAMETERS 
Xd   =   1.83 Xq      

= 1.7 RStator     =  0.003 
X’d   =    .24 X’q     

=   0.43 Inertia   = 3.6 
X’’d   =    .20 X’’q   = 0.26 Hz          = 50 
T’d    =    0.3s T’’d   =  0.04s T’’q        = 0.031s 

Table 3 EXCITATION PARAMETERS 

 

The field of statistics deals with the collection, 
presentation, analysis and use of data to make decisions. 
Statistical methods are used to assist for describing and 
appreciating variability. Variability means the successive 
observations of a system or phenomenon do not always 
produce exactly the same result. Hence statistical thinking 
gives us a useful way to incorporate variability into 
decision making process. 

Statistical analysis was carried out using Minitab software. 
In statistical modeling data generation play an important 
role in model acceptance. In this work aforesaid model 
simulation include ±10% change in Vref, self clearing and 
not self clearing three phase to ground fault at generator 
terminals and transmission line tripping and addition as the 
types of disturbances. Data were sampled at 200Hz 
sampling frequency. Then fifty random samples were taken 
for further analysis. Care was taken that the sample should 
be a true representation of whole population space 

2. Data Analysis 

Since power system requires high degree of reliability, 
hence fewer inputs are preferred to use. The efficiency of 
control signal is increased by using time delayed values as 
power system is dynamic system. This is the main reason 
why this analysis did not use stepwise regression analysis 
and only relied on linear regression. The statistical 
modeling process involved three steps [35]: (i) correlation 

analysis, (ii) regression analysis, and (iii) model 
assessment [36]. These steps are discussed below. 

(a) Correlation is the process for determining the 
strength of relation between dependent and independent 
variables. Table 4 shows Pearson correlation between 
various independent parameters and the dependent factor, 
excitation voltage (Vf). The table also shows significance, 
called probability value (P-value). Pearson correlation was 
chosen because the data is scaled type, i.e. value varies 
from -∞ to +∞.  
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Figure 2 Terminal voltage after 120ms fault at generator terminals 
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Figure 3 Load angle (δ) transition after fault 
Table 4. Statistical Correlation Test Output 

Independent 
Variables 

Correlation 
coefficient 

Significance 
P-Value 

∆VT 0.587 0.000 

ω -0.06 0.486 

P 0.648 0.000 

Q 0.635 0.000 

∆Vq 0.759 0.000 

Correlation is between Excitation Voltage (Vf) and parameters given. 
 
For 95% confidence level, the significance of less than 
0.05 considered statistically meaningful. The table 
suggests strongest correlation between quadratic voltage 
(Vq) and excitation voltage (Vf), followed by active (P) 
and reactive power (Q). The results suggest no relationship 

Ka        = 2.50 Ta               = 0.001s 

Ke        = 1.5 Te              = 0.3s 

Kf        = 1 Tf              = 0.003s 
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between rotor speed and excitation voltage and this 
parameter is currently being used as auxiliary stabilizing 
signal. Keeping in view correlation results rotor speed is 
eliminated from further analysis.  

(b) Regression Analysis gives the prediction of dependent 
variable based on independent factors of an empirical 
model. The regression equation is given as below [37], 

                           
1

n

i
o i iβ β ε

=

ϒ = + Χ +∑                         (2) 

where β are constants and X is the independent variable 
and Y is the dependent variable. The random error term ε  
is assumed to have zero mean, constant variance σ2 and 
normally distributed [38].  

The accuracy of regression model is determined by 
coefficient of multiple determination i.e. R2. Higher R2 
value indicates good prediction accuracy of model. 
Nevertheless, using only R2 is not always a good indicator 
of model adequacy. Seeing that R2 increases with addition 
of another regressor variable irrespective of whether 
additional variable is statistical significant or not. The 
adjusted coefficient of multiple determination i.e. R2(Adj) 
is a better reflection of the model adequacy along with R2. 
R2(Adj) will increase only when additional factor is 
statistically significant. Lower standard deviation (S) is 
also conceived an indicator for better performance of the 
model. The low S means data set tends to be very close to 
mean and assumed mean in regression definition is zero. 

Table 5 gives the regression analysis results of the models 
without having stabilizing signal. Model 1contains ∆Vq 
and model 2 comprises of ∆VT. Coefficient of multiple 
determination (R2) of model 1 is higher than model 2. 
Therefore, it can be concluded that ∆Vq has higher 
prediction accuracy than ∆VT. Hence it is expected, neuro 
controller trained on model 1 may give less error than 
model 2. Value of R2(Adj) is higher for model 1 than 
model 2. Since in this analysis each model contains only 
one element R2(Adj) does not serve its purpose here. 
However, this value is given here to compare in next step 
when stabilization signals are added and compared in 
different combinations.  

Nonetheless, only high gain excitation system can produce 
low frequency oscillations which ultimately lead to 
unstable system. Therefore, auxiliary stabilizing signals 
addition to excitation system is essential for stability 
enhancement [39]. The following explanation considers the 
models comprising of additional signals. Table 6 describe 
the regression output of models containing active power 
(P) and reactive power (Q) as stabilizing input feature in 
combination  to voltage deviation signals.  

After contemplating Table 6 it can be concluded that not 
only the additional signals stabilize the system but also 

increase prediction accuracy. With additional signal 
addition R2(Adj) is also increased, which is another 
evidence to believe higher prediction accuracy of Table 6 
models.  However, authors are reluctant to select P and Q 
as stabilizing parameter owing to higher VIF factor. 
Variance Inflation Factor (VIF) predicts correlation among 
predictors. From statistical analysis perspective VIF value 
up to 10 is considered normal. Nevertheless, lesser VIF 
value means better performance, since ANNs output is 
highly sensitive to VIF value. In addition, active power and 
reactive power being electrical signals have lower response 
time. These quantities are very sensitive to noise in 
comparison to mechanical signals conceived here onward.  
Table 5 Regression output of Models without Stabilizing Signals 

Table 6 Performance index for Regression of Models with Stabilizing 
Signals 

 Model 3 Model 4 Model 5 Model 6  

Constant 2.718 7.140 4.490 3.953 
∆Vq(Coefficient) 22.441 - 17.982 - 

Significance 0.000 - 0.000 - 
VIF 5.6 - 6.9 - 

∆VT(Coefficient
) - 9.653 - 19.620 

Significance - 0.251 - 0.021 

VIF - 9.8 - 8.3 

P (Coefficient) - 8.151 3.525 - 

Significance - 0.001 0.071 - 
VIF - 6.4 7.8 - 

Q (Coefficient) 22.441 - - 17.879 

Significance 0.493 - - 0.03 
VIF 5.7 - - 4.9 

S 0.985 1.108 0.955 1.1839 
R2 75.5 69.0 77.2 64.7 

R2(Adj) 73.9 67.0 75.5 62.3 

Table 7 also shows regression analysis output but with 
different stabilizing signal in combination to voltage. 
Higher prediction accuracy and low VIF value prophecy 
better performance of Table 7 models than Table 6 models. 
Models 7 and 8 consisting of load angle (δ) in 
combinations of terminal voltage (Vt) and quadratic 
voltage (Vq). R2 of model containing quadratic voltage is 

 Model 1 Model 2 

Constant 1.879 -0.214 

∆Vq(coefficient) 24.944 - 
Significance 0.000 - 

∆VT(coefficient) - -35.617 
Significance - 0.000 

S 0.95 1.233 
R2 73.3 59.8 

R2(Adj) 70.2 56.1 
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higher than model comprising terminal voltage and value 
of R2(Adj) is also higher. The S of model 8 is lower than 
model 7 too, shown in Table 7. However, VIF value of 
model 7 and model 8 is almost equal. It can be deduced 
from Table 7 figures, set of input parameters containing 
quadratic voltage has higher prediction accuracy than set 
consisting of terminal voltage. Hence it is anticipated, 
neurocontroller trained on model 8 may give less error 
than model 7.  
TABLE 7 Performance index for Regression of Models with Stabilizing 
Signals 

 Model 7 Model 8 

Constant -1.825 -9.230 

∆Vq(Coefficient) - 29.697 

Significance - 0.000 

VIF - 2.4 

∆VT(Coefficient) 36.522 - 

Significance 0.000 - 

VIF 2.9 - 

δ(Coefficient) 0.0419 0.2995 

Significance 0.744 0.005 

VIF 1.6 1.5 
S 1.2451 0.9073 

R2 60.9% 79.2% 

R2(Adj) 58.3% 77.9% 

(c) Model Assessment step is carried out after regression 
model is developed. Acceptability and reliability of model 
are carried out in this step.  Fitting a regression model 
requires few assumptions, meeting them tells credibility of 
the model. It is assumed while fitting data that the residuals 
are randomly distributed and lie within ±2. The residuals 
of a regression model are given by  

                          e = ydes-yest                                                                                   
(3) 

where e is the error, ydes is the desired output and yest is the 
estimated output. Analysis of residuals is helpful in 
checking assumption that the errors are approximately 
normally distributed with constant variance. For 95% 
confidence interval more  than or equal to 95% residuals of 
model ought to lie within ±2 range [36]. 

Performance analysis of models 3 to 6, using steps 
suggested in model assessment depicts pretty poor picture 
too. Therefore, their assessment is not shown here. Only 
assessment comparison of Table 7 models is described 
here.  

Model adequacy is analyzed by beholding the behavior of 
model residuals. Figure 4, 5, and 6 are related with 
residuals of model 8 whereas Figure 7, 8 and 9 are 
associated with residuals of model 7. Residual plots 
comparison, Figure 4 and 7, of both models exhibit that the 

residual distribution of both model is satisfactory. The 
points at (0.72,-4.5) and (1.29,-0.2) are not outliers, but 
these represent one of many different disturbances 
simulated during data generation phase.  More than 95% 
residuals of model 8 lie in the range of ±2, which indicates 
that the assumptions of randomly distributed residual is 
satisfied, as shown by Figure 5 and 6. Whereas less than 
95% of residuals of model 7 lie within range of ± 2, as 
indicated by Figure 8 and 9.   

The distribution of residuals along regression fit is 
shown in Figure 5 and 8 for model 8 and model 7, 
respectively. The comparison of both plots expose that 
distribution of model 8 residuals is approaching normality 
more than model 7 residuals.  
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Figure 8 Normal distribution of residual of Model 7 
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4. Artificial Neural Network 

In this section ANN output is discussed. In this research 
work MLP was chosen because of its simplicity and it is 
most usually used neural network [35]. A perceptron 
network with its adjustable hidden layer values is 
nonlinearly parameterized. MLP was trained using 
Levenberg-Marquardt Error Back Propagation. A highly 
challenging characteristic for a trained ANN is how well it 
performs when presented with new data i.e. generalization 

Advantages of generalization lie in adaptability, fault 
tolerance and model-free estimation by constructing input 
output mapping. As discussed in introduction, to avoid the 
over fitting problem, early training-terminating method 
called validation was employed. In this work, generated 
data were divided into three parts; training, validation and 
testing. The best MLP was selected based on one with the 
smallest test error. MLPs were trained on randomized data 
for enhancing learning capability. Basic work stages are 
shown in the flow chart Figure 10. The network growing 
technique was used to obtain an optimal MLP size. 
Network growing basically adds one hidden node at a time 
into an ANN. 

MLP was trained from one to thirty hidden layer neurons, 
results support the selected range. Each network with each 
number of hidden layer neuron was trained thirty times 
with random initial free parameters. MLP performance was 
analyzed based on mean square error (MSE) and mean 
absolute error (MAE). The MLP with the lowest errors out 
of thirty run was selected for further comparison. Value of 
error varies in a particular fashion. Initially error value was 
high but decreasing with increase of hidden layer size, 
after touching low it starts either increasing or floating. 
Out of these one to thirty hidden nodes, size of 
neurocontroller was chosen based on minimum MAE and 
MSE and it is given in Table 8. 
Table 8: ANN and Statistical Regression (SR) output comparison 

 Model 7 Model 8 

Features 
∆VT ∆Vq 

δ δ 

ANN 

MAE 0.277 0.245 
MSE 0.430 0.395 
HLN 23 12 
Time 0.024 0.016 

SR 
MAE 1.0937 0.8428 
MSE 15.4445 8.0913 

SR=Statistical Regression; HLN= Hidden Layer Neurons 

The ANN output is almost in proportion to statistical 
regression output. However the difference between errors 
of different sets is not in proportion to difference using 
statistical methods. This manifests ANN’s ability to 
efficiently map highly complex functions. Table 8 gives 
the comparison of ANN output and statistical regression 
results. It also shows the size of hidden layer at minimum 
error value.  

Model 8 has lower ANN error at lower hidden layer size of 
twelve neurons than model 7. Table 8 also depicts 
performance comparison of ANN, trained on both models, 
based on time. Model 8 has higher prediction accuracy on 
regression analysis and also has lesser error at lesser 
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processing time. The lower processing time is because of 
smaller hidden layer size.  
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Figure 10 Flow chart showing MLP training stages 

5. Conclusion 

With the help of statistical analysis it is, revealed that 
strong correlation between input and output space enhance 
learning capability of ANN not only in terms of error value 
but also requires lesser hidden layer size. Combination of 
quadratic voltage and load angle (δ) is a better set of input 
features for synchronous generator excitation system 
neurocontroller training. Comparison imparts that the 
performance of ANN is superior to statistical regression. 
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