

A Metric for Measuring Degree of Service Cohesion in

 Service Oriented Designs

Mohammad Daghaghzadeh1, Ahmad Baraani Dastjerdi2 and Hossein Daghaghzadeh3

 1 Department of Computer Engineering, Sheikhbahaee University of Isfahan, Isfahan, Iran

2 Department of Computer Engineering, University of Isfahan, Isfahan, Iran

3 Department of Computer, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran

Abstract

Service Orientation has gained momentum as a fundamental
design paradigm for developing distributed enterprise
applications. However, comprehensive and quantitative
metrics for estimating the appropriateness of the service
designs are still lacking. One of the quality attributes as to a
SOA is cohesion, which is a determining factor for many
other desirable features of the software including reusability,
agility and etc. The previous studies on the measuring the
degree of cohesion failed to comprehensively consider the
relationship among entities to evaluate service cohesion.
Therefore, this paper puts forward a new metric for
measuring the cohesiveness of service and whole design
based on design level information, especially the
information embedded in entity model. This metric takes
into account both Entity-Entity and Entity-Activity relations.
Furthermore, the metric conforms to mathematical
properties that cohesion metrics must have. The metric is
empirically evaluated in a case study.

Keywords: Service orientation, Cohesion, Software Metrics,
Service Identification

1. Introduction

Service-oriented architecture (SOA) is an information
technology (IT) architectural approach that supports the
creation of business processes from functional units
defined as services [1] [2]. It is actually an evolved
architectural concept from object-oriented and component-
based developments. SOA promises to provide more
agility for organizations adhering to SOA design principles
during the entire software development life cycle. In [3]
authors consolidated nine design principles which are
contract orientation, abstraction, autonomy, coupling,
statelessness, cohesion, discoverability, reusability and
composability.

However, SOA is still hype because there is no clear
method to identify and evaluate the building blocks of a
SOA, namely services, against SOA design principles.
Designers still have to identify services based on their
experience and intuition. Consequently, the designed
services barely conform to the principles so that SOA
still remains as an unreached promise land for the time
being [4].
Cohesion is a prominent attribute of software services and
is used as a major quality factor in service design.
Cohesion is the degree of functional relevance of activities
which are performed by a service to realize a business
process [1]. It shows how much an individual service is
instrumental in performing one single task [5]. High
cohesion brings about ease of understanding of the design
model and makes the system more agile. Furthermore, it is
conducive to reaching a service granularity at an almost
adequate level [2]. In [6] authors recognize seven types of
cohesion which are coincidental, logical, communicational,
external, sequential, implementation and conceptual
cohesions. A service has communicational cohesion if its
interface operations operate on the same data. As stated in
[5] a service with communicational cohesion is analyzable,
changeable, stable and testable. Here in this paper, we
examine communicational cohesion because of its
significant effect on the quality of software.
There are several works in the literature which have tried
to propose some metrics for evaluating and measuring the
compliance of the service design against some of the
design principles. Most of these studies, which are
examined in related work section, focus their attention on

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 83

common input and output parameters of service operations
in order to estimate the service cohesion. However, as
some of them indicate, the cohesion between entities
should be taken into account while measuring cohesion
between service operations. By regarding interrelation
among entities, reusability rises [7]. Therefore, in this
paper, we aim to put forward a metric for cohesion in
order to quantitatively measure the degree of cohesion
within each service and whole service design. The
introduced metric, considers the interrelation among
entities in entity model.

The rest of the paper is arranged as follows. First, previous
studies are discussed in section 2. Then, we present some
definitions on the main concepts in section 3. Afterward,
in section 4, the concept of entity cohesion is investigated.
Then, we elaborate our metric in section 5. Next, a case
study is conducted to show applicability of the introduced
metric in section 6. Later, we evaluate our metric against
indispensible mathematical properties that characterize the
quality attributes in section 7. In section 8, we empirically
validate our metric by investigating the correlation of our
metric with subjects’ ratings and two previously presented
metrics. In the end, we give the conclusion and the future
work.

2. Related Work

Cohesion is a software feature that has been attracting the
attention of many researchers working on different kinds
of software development systems including procedural,
object-oriented, component-oriented and service-oriented
systems. The metrics for previous systems do not work for
service oriented systems without adaptation because of the
unique characteristics of service orientation [5]. Therefore,
many authors have proposed cohesion metrics for the SOA
context by adapting previous metrics. In the context of
service oriented systems, there are several works that
either investigate cohesion along with other SOA quality
attributes or merely focus on proposing a new cohesion
metric. In [7], authors consider the number of activities in
a service along with shared data flows across such
activities. Although, they take into account the relative
complexity of each entity, they do not pay attention to the
relationships among entities. In [6] [9] [10], the proposed
metrics merely take into account number of shared
messages among operations. In fact, the number of shared
parameters of the service operations is divided by the total
number of parameters. One of these metrics is SIDC that
we use in this paper to evaluate our metric. In [7], a new
cohesion metric called CCM for communicational
cohesion is proposed. Authors consider the relationships
among entities by relating entities that are accessed by the

same operation. However, as they confess at the end of the
paper, strengths of relationships are not examined. In [11],
two quantitative metrics for cohesion and coupling is put
forward. Even though entity-entity relationships are
considered, this is done in an incorrect way. The
fundamental flaw in this work is the assumption that the
higher relationship cardinality between two entities
strengthens the cohesion between them. Moreover,
different kinds of relationships among entities are not
taken into account. Finally, the metric has not empirically
evaluated.

3. Basic Concepts

8B3.1. Service Portfolio Model
9BService portfolio model is a model that represents
architectural elements and their relationships in
establishing a service portfolio from business process
decomposition [8].

In this paper, we leverage UML 2.0 profile for software
services to model service portfolio which is presented in
Figure 1.

Fig. 1 Service portfolio model [8]

3.2. Entity Model

10BEntity model is a model that describes entities and their
relationships. Entities indicate main stable domain
abstractions of an enterprise. The entities are modeled in
terms of organizations’ proprietary rules and business
policies. This brings about entities that are interrelated
with each other [12]. Entity model can be described using
entity relationship diagrams. Here, we assume that the
reader is acquainted with notations used to draw an ER
diagram.

• Strong and weak entities
Entities which are dependent on other entities for their
existence are called weak entities and the relied entities are
called strong.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 84

• Degree of relationship
The number of entities which participate in a relationship
is called degree of relationship. The general form for
degree n is the n-ary relationship. A binary relationship is
of degree two and a ternary relationship is of degree three.

• Relationship cardinality ratio

Determines the cardinal number of entities to which
another entity can be connected through a relationship.
The primary types of cardinality ratio for relationships are:
one-to-one, one-to-many, and many-to-many.

• Relationship participation

Relationship participation states whether whole or part of
an entity occurrence is associated to another entity. There
are three types of relationship participation: mandatory-
mandatory, mandatory-optional and optional-optional. In
addition, there are some other types of relationship added
to basic ER model which are aggregation, generalization
and exclusive binary.

4. Entity Cohesion
There are several works in the literature which investigate
the problem of entity clustering and Cohesion
[13][14][15][16]. Generally, they carry out the grouping
based on some prioritized grouping operations. According
to [14] there are four kinds of relationship groupings
which are: Dominance grouping, abstraction grouping,
constraint grouping and relationship grouping. These
operations should be done consecutively. In [14], authors
define a precedence order of grouping operations based on
the concept of cohesion borrowed from the software
engineering field. They postulate that the level of cohesion
between a strong and weak entity, and a dominance and
dominated entity, are the highest level. The second level is
the cohesion between a supertype and its subtype. Even
though, they have not considered aggregation relationships
between two entities, based on [13] it can be inferred that
aggregation relationships bring about the same level of
cohesion. They consider the cohesion between two entities
that participate in a constraint relationship at the next
level. At the fourth level, unary relationships have the
highest cohesion, binary one-to-one next, then binary one-
to-many, and finally binary many-to-many. Ternary and
higher degrees of relationships are at the fifth level. At the
end, there is no cohesion between entities that do not
participate in any kind of relationship. Although, they
posit the precedence order, they do not propose any figures
as to the degree of cohesion. In [15], authors propose some

weight numbers corresponding to each level. They use the
concept of distance to do so. The distance between a weak
entity and a regular entity is considered one. Furthermore,
the distance between a supertype entity and each of its
subtype entities is equal to 10. This distance is 100 for
participating exclusive entities. For a binary relationship,
the distance is deemed 1000. In the end, for ternary (or
more) relationships, the distance is 10000.

Based on the mentioned studies, we propose the following
distances for each kind of relationship (Table 1).

Table 1: Distances for relationship types

Relationship Type Distance
Strong- Weak 1
Generalization 10
Aggregation 10

Exclusive Binary 100

For binary relationships which are not categorized under
the above relationships we have the following distances
(Table 2).

Table 2: Distances for binary relationships

 Participation

Cardinality ratios

M-M M-O O-O

1-1 1 10 100
1-N 5 50 500
M-N 10 100 1000

In addition, for n-ary relationships (n>2), we multiply each
distance in Table 2 by 10𝑛𝑛−2 .
According to proposed distances, we define the distance
between two distinctive entities as the number of edges in
the shortest path between them.

where 𝑒𝑒𝑝𝑝 is the number of edges in a path between 𝐸𝐸1and
𝐸𝐸2and p is the number of existing paths between 𝐸𝐸1and 𝐸𝐸2.
In addition, 𝑑𝑑𝑖𝑖 is relationship distance which comes either
from Table 1 or Table 2. Moreover, for the purpose of
this paper, we deem that the distance between identical
entities is one. We can measure the degree of cohesion
between 𝐸𝐸1and 𝐸𝐸2by Formula 2,

 Cohesion (𝐸𝐸1,𝐸𝐸2) = 1
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝑒𝑒 �𝐸𝐸1,𝐸𝐸2�

 (2)

(1)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 85

For every entity model, the table in which the distance
among all entities is specified can be constructed. In this
context, we call such a table Distance Table.

5. The proposed service cohesion metric

In this section, we put forward a new metric for service
and whole service design cohesion. Our metric takes into
account relationships among entities as well as
relationships among activities and entities. Moreover, in
this metric, the number of activities in a service affects the
degree of cohesion. The reason being is that adding
operations to a service lessens its cohesion since the
aggregated service does not focus on the semantic of one
single task any longer [5].

To calculate cohesion between two activities in a service,
we firstly build a complete bipartite graph with business
entities on which each activity operates. Each edge with
endpoints A and B has weight w coming from row A and
column B in the distance table. Then, we take a greedy
approach in order to match between the entities that each
activity deals with. The summary of the approach can be
seen in the pseudo code presented in Figure 2.

Void MatchingAlgorithm (𝐵𝐵𝐸𝐸1,𝐵𝐵𝐸𝐸2,DT, R)
{
Input: 𝐵𝐵𝐸𝐸1,𝐵𝐵𝐸𝐸2 are the sets of business entities on which
each activity operates and DT is the distance table for the
corresponding entity model.
Output: R is a set that keeps the selected edges.
Build a complete bipartite graph G from 𝐵𝐵𝐸𝐸1𝐷𝐷𝑛𝑛𝑑𝑑 𝐵𝐵𝐸𝐸2;
Give each edge of graph G weight w that comes from
corresponding row and column in DT;
R=∅;
S=∅;
While (|S| < |BER1R|+|BER2R|)
{
Select an edge e from G that has the minimum weight;
If no edge with e’s endpoints is present in R and it does
not make a circle with other edges in R then
 {
Add the new edge e to set R;
Add e’s endpoints to set S;
}
}
}

Fig. 2 The algorithm for matching between the entities on which two
activities work

To estimate cohesion between two activities, we must
obtain average of cohesion among matched entities on
which activities work. Therefore, cohesion between two
activities i and j called Activity Cohesion (AC) is
calculated as follows:

 AC (i, j) =
∑ 1

Weight (R (i))
|R |
i=1

|R|
 (3)

Now, we can calculate Service Cohesion (SC) for each
service k by Formula 4,
 ∑ ∑ 𝐴𝐴𝐴𝐴 (i,j)

𝐷𝐷 (𝐷𝐷−1)
2

𝐷𝐷
𝑗𝑗=1,𝑖𝑖>𝑗𝑗

𝐷𝐷
𝑖𝑖=1 a>1

SCRkR = (4)
 1 a=1,

where a is the number of the activities in k’th service .

In the end, Service Design Cohesion (SDC) is computed
by Formula 5,

) 5(SDC= ∑ SC k
𝐷𝐷
𝑘𝑘=1
𝐷𝐷

 ,

where s is the number of identified services in service
portfolio.

2B6. Case study

In this section, we utilize a real-world business scenario to
show the application of the proposed metric and evaluate
its usefulness. In this scenario, the goods request process
of a mine company is studied.

Every employee in each part of the company can compose
a request and fill it out with his needed goods. Then, he
sends the request to his boss. Afterward, the bus examines
the request to see if the goods are really necessary and the
amounts of requested goods do not exceed the determined
share of the part. The boss may also add some other goods
to the request or edit it. Next, the boss signs the request
and sends it to the CEO or his deputy. He checks whether
the request conforms to the company’s high level policies
and regulations. After some probable negotiations and
editing, he either signs and then sends the request for
store’s boss or rejects the request. Store’s boss examines
the request to make sure that the request does not disturb
the balance of the store’s stocks.

We analyzed the enterprise and modeled the as-is business
process. Then, we obtained the to-be business processes
and entity model. Entity model is shown in Figure 3.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 86

Fig 3.Entity model for good request case study

The distances among all entities are determined
based on distances in Table 1 and Table 2 and can be
seen in Table 3.

Table 3: The distance table for the good request case study

We identified two services based on business process
models and entity model, namely Request Processing,
Goods Processing.

In the following table it is shown that each activity in
Request Processing service operates on which business
entities.

Table 4: Activities in Request Processing service and related entities

To evaluate the cohesion between CheckInbox and
ReadRequest activities we should build the graph shown in
Figure 4.

Fig. 4 The bipartite graph for CheckInbox and ReadRequest activities

According to algorithm in Figure 2 the bolded edges are
chosen. Now we can calculate the cohesion between the
activities as follows:

AC (4, 1) =
1

50+1+1+1+1
5

5
= 0.644

In Table 5, the cohesion among all the activities in the
service is shown.

Table 5: Cohesion among all the activities in Request Processing service

So, SC for Request Processing is calculated as follows:

SC=
0.25+1+1+0.2555 +0.1+0.25+0.25+0.664+
0.0257 +1+0.2555 +0.1+0.2555 +0.1+0.029

15
= 0.369

Cohesion of Goods Processing service is computed as we
did it for Request Processing. So, cohesion of the service
design is SDC= 0.369+0.644

2
= 0.506

7. Analytical Validation
In this section, we validate our metric through proving that
it satisfies essential properties of a cohesion measure. We
exploit properties based software engineering
measurement framework [17] to validate our metric.

• Non-negativity and Normalization
AC is always between zero and one. The reason being is
that all the weights of the edges, which are the distances
between entities, are always between one and infinity.
Consequently, 1

Weight (R(i))
 is always between one and zero

so that the average is always between zero and one. As a
corollary to this, SC which is the average cohesion of all
pairs of activities in a service is between zero and one.
Hence, SDC which is the average cohesion of all services
embedded in a service design is always between zero and
one.

• Null and Maximum Values

AC becomes zero when there is no relationship among the
business entities that the activities operate on.
Furthermore, AC becomes one at its maximum when all
operated entities are either the same or participate in
strong-weak relationships. Also, minimum of SC is zero
when degrees of cohesion among all pairs of activities in a

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 87

service are zero. Maximum of SC is one when either the
cohesion among all pairs of activities in service is one or
the service merely contains one activity. In addition,
minimum of SDC is zero when the cohesion of all services
in service design is zero. Maximum of SDC is one when
the cohesion figures of all existing services in the design
are one.

• Monotonicity

Our metric passes this criterion because adding a shared
business entity as a cohesive interaction to the group of
business entities on which activities work will not bring
about decrease in the degree of cohesion between the
activities. Addition of a cohesive interaction will add one
edge with the weight of one to set R. Therefore, this will
increase numerator and denominator of AC by 1, which
does not decrease output of AC (𝐷𝐷 ≥ 0, 𝑏𝑏 > 0 , 𝐷𝐷 ≤ 𝑏𝑏 →
𝐷𝐷+1
𝑏𝑏+1

≥ 𝐷𝐷
𝑏𝑏

).

• Cohesive module

Merging two services with non-related activities will result
in a service with less degree of cohesion. The reason being
is that this action will increase number of zeros in the
numerator as it increases the value of 𝐷𝐷 (𝐷𝐷−1)

2
 in the

denominator.

8. Empirical Validation
In this section, we validate our metric by analyzing the
data gathered from a group of 15 experts in SOA. The
experts were students of master program in Sheikhbahaee
University who had passed advanced software engineering
course that SOA was one of its syllabuses. We asked the
subjects to rate the cohesions of the services by a
numerical scale between 0 and 1. The objects rated by the
subjects are services embedded into two service portfolios
constructed regarding the case study represented in section
6 (Case study 1) and the one presented in [18] (Case Study
2) as well as their corresponding entity models. The
subjects had given guidelines as to how to do the
experiment. Each subject did the experiment by himself, at
home, and could use unlimited time to rate the cohesion of
the given services. Our objective is to establish if any
correlation exists between cohesion figures calculated by
our metric and subjects’ ratings. The Spearman Rank-
Difference Correlation Coefficient, rS, was employed to
establish the correlation of the data collected in the
experiment because the data acquired in the experiment is
distribution free. The Spearman rS is a non-parametric
statistic employed to find out the relationship between two
variables expressed as ranks [19].The correlation
coefficient is used to determine how much a variable is

able to predict the value of another variable. In our
experiment the null hypothesis was as follows:

H0: “there is no correlation between the SC metric and the
subjects’ rating of service cohesions”.

We control the probability that the null hypothesis would
be mistakenly rejected by two confidence levels: α1=0.005
and α2=0.05. Furthermore, the decision rules for rejecting
the null hypothesis are:
For α1: reject H0 if rS >= 0.689; for α2: reject H0 if rS >=
0.447. The correlation coefficient for each subject is
shown in Table 6.

Table 6: Spearman Rank Correlations regarding subjects’ rating

Subjects rs α1 α2
1 0.721 Reject H0 Reject H0
2 0.639 Reject H0 Reject H0
3 0.781 Reject H0 Reject H0
4 0.691 Reject H0 Reject H0
5 0.785 Reject H0 Reject H0
6 0.873 Reject H0 Reject H0
7 0.912 Reject H0 Reject H0
8 0.711 Accept H0 Reject H0
9 0.587 Accept H0 Reject H0

10 0.935 Reject H0 Reject H0
11 0.693 Accept H0 Reject H0
12 0.831 Reject H0 Reject H0
13 0.659 Accept H0 Reject H0
14 0.401 Accept H0 Accept H0

Based on the data in Table 2, we reject H0 for 78 percent of
the subjects with regard to α1 and for 92 percent of the
subjects considering α2.

In addition, we calculated the correlation of our metric
with SIDC and CCM metrics in two formerly introduced
case studies. In Table 7, it is seen that our metric has high
correlation with these two metrics.

Table 7: Spearman Rank Correlations regarding the case studies

 CCM SIDC
Case Study 1 0.89 0.87
Case Study 2 0.92 0.94

9. Discussion
Despite the fact that our figures for service cohesion is
close to the figures of SIDC, our metric shows its
usefulness in the process of service identification. Even
though the difference between figures is not too much, it
has significant effect on the shape of service portfolio

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 88

because an automatic service identification approach is
carried out by contrasting these figures rather than by
figures themselves. Accordingly, a little difference
between two figures determines whether we add an
activity to a specific service or not. To demonstrate our
contention, we use an example. In the case study presented
in section 6, if we did not consider the relationship
between Request and RejectedRequest entities, an
identification method would consider a separate service for
activity RejectRequest despite the fact that these activities
are cohesive. Hence, our metric is a rational measure for
service cohesion and is effective in service identification.

10. Conclusion and future work
Comprehensive and quantitative metrics for estimating
the appropriateness of service designs are still lacking.
High cohesion is a determining factor for many other
desirable features of software including reusability, agility
and etc. Previous studies on measuring the degree of
cohesion have failed to thoroughly consider relationship
among entities to evaluate service cohesion. In this paper,
we put forward a new metric for measuring the
cohesiveness of the service and whole design. This metric
takes into account both Entity-Entity and Entity-Activity
relations. The metric is empirically evaluated in a case
study and its correlation with experts’ ratings and other
metrics were investigated and examined. Furthermore, the
metric conforms to mathematical properties that cohesion
metrics must have. In the future, we intend to extend this
metric in the way to embrace other kinds of cohesions as
well. In addition, we are going to use this metric in a
method for service identification. Furthermore, it is
probable that the figures as to the distance between
entities need to be adapted. Finally, we will conduct other
case studies in different areas to show the applicability of
the metric.

References
[1] A. Erradi, N. Kulkarni and P. Maheshwari, “Service Design

Process for Reusable Services: Financial Services Case
Study”, In 5th International Conference on Service Oriented
Computing (ICSOC’07), 2007, Vol. 4749, pp. 606-617.

[2] M.P. Papazoglou and W.-J. van den Heuvel, “Service-
Oriented Design and Development Methodology”, In
International Journal of Web Engineering and Technology,
Vol. 2, No. 4, 2006, pp.412-442.

[3] T. Kohlborn, “A Consolidated Approach for Service
Analysis”, MS. thesis, Chair of Interorganisational Systems ,
, Westfalische-Wilhelms Universitat Munster, Münster
,Germany, 2008.

[4] C. Llorente, “Model-Driven SOA with Oslo”, The
Architecture Journal, No. 21, pp. 10-15, 2009.

[5] G. Feuerlicht, “Service Aggregation Using Relational
Operations on Interface Parameters”, In 4th International

Conference on Service-Oriented Computing (ICSOC’06),
2006, Vol. 4652, pp. 407-424.

[6] M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion
Metrics for Predicting Maintainability of Service-Oriented
Software”, In Seventh International Conference on Quality
Software (QSIC 2007), 2007, pp. 328-335.

[7] A. Rostampour, A. Kazemi, F. Shams, A. Zamiri and P.
Jamshidi , “A Metric for Measuring the Degree of Entity-
Centric Service Cohesion”, IEEE International Conference
on Service-Oriented Computing and Applications
(SOCA’10), 2010, pp.1-5.

[8] Q. Ma, N. Zhou, Y. Zhu and H. Wang, “Evaluating Service
Identification with Design Metrics on Business Process
Decomposition”, In Proceedings of IEEE SCC'2009,2009,
pp.160-167.

[9] R. Sindhgatta, B. Sengupta and K. Ponnalagu, “Measuring
the Quality of Service Oriented Design”, In Proceedings of
the 7th International Joint Conference on Service-Oriented
Computing, 2009, pp. 485-499.

[10] B. Shim, S. Choue, K. Santae, and P. Sooyong, “A Design
Quality Model for Service-Oriented Architecture”, In 15th
Asia-Pacific Software Engineering Conference, 2008, pp.
403-410.

[11] F. Meng, D. Zhan and X. Xu, “Business Component
Identification of Enterprise Information System: A
hierarchical clustering method”, IEEE International
Conference on e-Business Engineering (ICEBE'05), 2005,
pp.473-480.

[12] T. Erl, “Service-Oriented Architecture (SOA): Concepts,
Technology, and Design”, US. : Prentice Hall, 2005.

[13] P.Jaeschke, A. Oberweis and W. Stucky, “Extending ER
Model Clustering by Relationship Clustering”, In
Proceedings of ER'1993, 1993, pp. 451-462.

[14] T. J. Teorey, G. Wei, D. L. Bolton and J. A. Koenig, “ER
Model Clustering as an Aid for User Communication and
Documentation in Database Design”, Communications of
the ACM , Vol. 32, No. 8, 1989, pp. 438-450.

[15] J. Akoka and I. Comyn-Wattiau, “Entity-Relationship and
Object-Oriented Model Automatic Clustering”, In Data &
Knowledge Engineering Journal, Vol. 20, No. 2 , 1996, pp.
87-117.

[16] M. Tavana, P. Joglekar and M. A. Redmond, “An
Automated Entity-Relationship Clustering Algorithm for
Conceptual Database Design”, Information Systems, Vol. 32,
No. 5, 2007, pp. 773-792.

[17] M. Perepletchikov, C. Ryan, and Z. Tari, “The Impact of
Service Cohesion on the Analyzability of Service-Oriented
Software”, IEEE Transactions on Services Computing, Vol.
3, No. 2, 2010, pp. 89-103.

[18] A . Albani, S. Overhage and D. Birkmeier, “Towards a
Systematic Method for Identifying Business Components”,
In the Proceedings of the 11th International Symposium on
Component-Based Software Engineering, 2008, pp. 262-277

[19] S. Siegel and J.N. john Castellan, “Nonparametric Statistics
for The Behavioral Sciences”, US. : McGraw Hill, 1988.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 89

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Ma:Qian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhu:Yanfeng.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Hao.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sengupta:Bikram.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Ponnalagu:Karthikeyan.html
http://www.informatik.uni-trier.de/~ley/db/conf/icsoc/icsoc2009.html#SindhgattaSP09
http://www.informatik.uni-trier.de/~ley/db/conf/icsoc/icsoc2009.html#SindhgattaSP09
http://www.informatik.uni-trier.de/~ley/db/conf/icsoc/icsoc2009.html#SindhgattaSP09
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhan:De=chen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/x/Xu:Xiaofei.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Oberweis:Andreas.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Stucky:Wolffried.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Teorey:Toby_J=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wei:Guangping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bolton:Deborah_L=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Koenig:John_A=.html
http://www.informatik.uni-trier.de/~ley/db/journals/cacm/cacm32.html#TeoreyWBK89
http://www.informatik.uni-trier.de/~ley/db/journals/cacm/cacm32.html#TeoreyWBK89
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Comyn=Wattiau:Isabelle.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Joglekar:Prafulla.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Redmond:Michael_A=.html

