

 Establishing Relationship between Complexity and
Faults for Object-Oriented Software Systems

Usha Chhillar1, Sucheta Bhasin2

1 Department of Computer Science, Kurukshetra University,

Kurukshetra, Haryana, India

2 Department of Computer Science, Kurukshetra University,
Kurukshetra, Haryana, India

Abstract
Controlling and minimizing software complexity is the
most important objective of each software development
paradigm because it affects all other software quality
attributes like reusability, reliability, testability,
maintainability etc. For this purpose, a number of software
complexity measures have been reported to quantify
different aspects of complexity. Complexity and fault
proneness are two prominent parameters for improving
quality of the software . The software industry is
continuously facing the challenges of growing complexity
of software and increased level of data on defects. To
control the complexity and faults is one of the major
challenges for researchers to predict different parameters
which are responsible for increasing complexity and fault
proneness. In this paper, faults prediction through
bebugging technique has been tried through an experiment
applied to C++ programs and compared the results with
various object-oriented complexity measures. The results
have been found encouraging. Relationship between faults
and complexity has also been established.

Keywords: Reusability, Reliability, Testability, Maintainability,
Fault Proneness, Faults Prediction, Bebugging.

1. Introduction

From time to time, various complexity metrics have been
designed in an attempt to measure the complexity of
software systems. Software complexity directly affects
maintenance activities like software reusability,
understandability, modifiability and testability. Estimates
suggest that about 50 to 70 % of annual software
expenditure involve maintenance of existing systems.
Predicting software complexity and faults can save
millions in maintenance [[11,,77,,99,,1100,,1188]].. Clearly, if
complexities could somehow be identified and measured,
then software developers could adjust development, testing
and maintenance procedures and effort accordingly. This

concern has motivated several researchers to define and
validate software complexity measures and establish
relationship between software complexity and faults [[11,, 22,,
33,, 55,, 77,, 1166,, 1199,, 2200,, 2211]].. It is accepted by both software
developers and researchers that complexity of software can
be controlled more effectively through object-oriented
approach than traditional function-oriented approach. It is
because that objected-oriented paradigm controls
complexity of a software system by supporting hierarchical
decomposition through both data and procedural
abstraction [[99]]. But, the complexity of software is an
essential attribute, not an accidental one [[66]]. Traditional
software complexity metrics are not appropriate for object-
oriented software systems due to their distinguish features
like class, inheritance, polymorphism, coupling, and
cohesion.

In this paper, faults prediction through bebugging
technique has been tried through an experiment applied to
C++ programs and compared the results with various
object-oriented complexity measures. The results have
been found encouraging. Relationship between faults and
complexity has also been established.

Rest of this paper is organized as follows: Section 2
presents overview of software complexity and existing
complexity measures. Faults prediction through bebugging
is explained in section 3. Section 4 describes experiment
design for faults prediction. Section 5 discusses the
experimental results. Finally, section 6 concludes the paper
with directions for future work.

2. Overview Of Software Complexity And
Existing Complexity Measures

2.1 Software Complexity

In literature, software complexity has been defined
differently by many researchers. Zuse [[1111]] defines

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 437

software complexity as the difficulty to maintain, change
and understand software. It deals with the psychological
complexity of programs. According to Henderson-Sellers
[[1122]] the cognitive complexity of software refers to those
characteristics of software that affect the level of resources
used by a person performing a given task on it. Basili [44]]
defines software complexity as a measure of the resources
expended by a system while interacting with a piece of
software to perform a given task. Here, interacting system
may be a machine or human being. Complexity is defined
in terms of execution time and storage required to perform
the computation when computer acts as an interacting
system. In case of human being (programmer) as an
interacting system, complexity is defined by the difficulty
of performing tasks such as coding, testing, debugging or
modifying the software. Bill Curtis [[1133]] has reported two
types of software complexity – Psychological and
Algorithmic. Psychological complexity affects the
performance of programmers trying to comprehend or
modify a class/module whereas algorithmic or
computational complexity characterizes the run-time
performance of an algorithm. Brooks [[66]] states that the
complexity of software is an essential attribute, not an
accidental one. Essential complexity arises from the nature
of the problem and how deep a skill set is needed to
understand a problem. Accidental complexity is the result
of poor attempts to solve the problem and may be
equivalent to what some are calling complication.
Implementing wrong design or selecting an inappropriate
data structure adds accidental complexity to a problem.

Software complexity can not be defined by a single
definition because it is multidimensional attribute of
software. So, different researchers/users have different
view on software complexity. Therefore, no standard
definition exits for the same in literature. However,
knowledge about software complexity is useful in many
ways. It is indicator of development, testing, and
maintenance efforts, defect rate, fault prone modules and
reliability. Complex software/module is difficult to
develop, test, debug, maintain and has higher fault rate.

2.2 Software Complexity Measures

Software complexity can not be removed completely but
can be controlled only. But, for effective controlling of
complexity, we need software complexity metrics to
measure it. From time to time, many researchers have
proposed various metrics for evaluating, predicting and
controlling software complexity. Halstead’s software
science metrics, McCabe’s cyclomatic number and
Kafura’s & Henry’s fan-in, fan-out are the best known
early reported complexity metrics for traditional function-
oriented approach [16,17,18]. But these metrics do not

consider object oriented features of software for measuring
the complexity of software. So traditional software
complexity metrics are not suitable for measuring
complexity of object oriented software.

Various researchers have proposed many object oriented
metrics to compute complexity of object oriented software.
Chidamber and Kemerer [[11]] proposed a suite of six
metrics : Number Of Children (NOC) - number of
immediate derived classes, Depth Of Inheritance Tree
(DIT) - maximum path length from root to node in
inheritance tree, Weighted Methods per Class (WMC) -
sum of all methods of a class, Coupling Between Objects
(CBO) - number of classes to which a class is coupled,
Lack Of Cohesion in Methods (LCOM) - measures the
dissimilarity of methods in a class and Response For a
Class (RFC) - number of methods of a class to be executed
in response to a message received by an object of that class.
These metrics measure complexity of object-oriented
software by using design of classes. WMC measures the
complexity of a class as a sum of complexity of individual
methods. Higher values of NOC and DIT are indicator of
higher complexity due to involvement of many methods.
CBO value for a class is the indicator of total number of
other classes to which it is coupled. Mishra [[1144]] proposed
a metric for computing the complexity of a class at method
level by considering internal structure of method. Fothi et
al [[88]] designed a metric which computes complexity of a
class on the basis of complexity of control structures, data
and relationship between data and control structures. A
metric which calculates overall complexity of design
hierarchy was proposed by Mishra [[1144]]. It computes
complexity by considering inherited methods only and
does not take into account internal characteristics of
methods.

3. Faults Prediction Through Bebugging

The process of finding and rectifying faults in a program is
called debugging. Bebugging is the reverse of debugging.
In bebugging , a fixed number of artificial bugs are
introduced in a source program. The complete detail of
these artificial bugs is kept for identifying and removing
the same from the source program after the experiment. By
applying bebugging method, we may predict how many
faults are still present in the source code and thus in a
software system. Suppose P is the
source program in which we want to predict the number of
faults present through bebugging method.

Let
 I = Number of artificial faults introduced in
program P.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 438

 T = Total number of faults find out by the
reviewer or a tester in program P.
 R = Number of faults find out from I.
 (T-R) = New additional faults find out
 Total number of predicted faults (PF) in the program P :

IRRTPF ×−=)/)((

The bebugging method is generally used by Zoologist for
estimating the number of fish in a tank.

For example, take a sample of 100 fish from a pond. Mark
them and put them back into the pond for mixing them
with the total population of the tank. Again take the sample
of 100 fish and find how many marked fish are in this
sample. Let marked fish are 10. According to the
bebugging method, there are 900 fish in the pond. In this
method , we assume that the original sample was random
and remixing of fish was homogenous.

Similarly, if we insert 5 bugs in a program and reviewer
reports total 9 faults through bebugging process. Let out
of these 9 bugs, 3 bugs are out of 5 bugs inserted by us.
 Then
 I = 5, T = 9, R = 3, T-R = 6.
 PF = ((T-R) /R)*I = 10
It means predicted number of faults present in the program
are 10.

4. Experiment Design

In this experiment, the main objective is to predict number
of faults in a program by using the bebugging method
described in the previous section and also to analyze the
effect of faults on the complexity. It is intuitive that a
programmer finds lesser number of faults in a complex
program than a simple program in a given time period.

For this purpose, an experiment was conducted at the end
of the academic session by involving 15 MCA fourth
semester students on scheduled date and time. For this
purpose, 10 programs written in C++ language were used.
In each of these programs, five logical and syntax errors
are inserted knowingly called artificial bugs. The purpose
of the experiment was explained well to the students before
conducting the experiment and they were asked to find out
logical and syntax errors as many as they can. The
experiment was conducted in 10 continuous sessions of 10
minutes duration each. After each session, the sheets of
the program specified for the session were collected from
the students . In this way 10 different programs were given
to the students in 10 different sessions. One sample
program has been given in table 2.

5. Experimental Results

For all the 10 programs used in the experiment, the number
of predicted faults (PF) were calculated by using above
mentioned bebugging technique for each of the 15 students
(S1-S15) and results are tabulated in table 1. One sample
program has been given in table 2. Type and description of
errors inserted in sample program are described in table 3.
We have also calculated three Chidamber and Kemerer’s
(CK) metrics – WMC, NOC, DIT, McCabe’s complexity
measure V(G),, lliinneess ooff ccooddee ((LLOOCC)) mmeettrriicc aanndd ccoommppoossiittee
wweeiigghhtteedd ccoommpplleexxiittyy mmeettrriicc ((CCWWTT)) for the programs
studied here and results are shown in table 4 [1,5,15,17,18].

We also analyzed the relationship between complexity and
predicted number of faults through bebugging method. For
this purpose, we have drawn bar graphs among complexity
metrics and faults described in table 4. These bar graphs
have been given in figures 1-6. The bar graphs clearly
show that fault rate is directly proportional to complexity
i.e. more complexity implies more possibility of faults and
hence less quality . However, the results of program no 9
and 10 vary because in these two programs coupling is the
dominating factor . Due to more coupling, number of faults
are more where as the value of complexity measures WMC,
NOC, DIT,V(G) and LOC are less for these two programs.
From this it is clear that coupling plays major role for
increasing the complexity and reducing the quality of
programs/software. So, it should be controlled to minimum
to develop a good quality software.

Table 1: Students wise Experimental Predicted Faults (PF)
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
S1 0 0 3.3 0 3.3 0 10 3.3 25 0
S2 1.5 3.3 0 1.5 0 7.5 5 0 10 1.25
S3 1.7 0 2.5 1.7 1.7 0 0 0 5 0
S4 0.5 2.5 0 0.5 0 2.5 0 0 1.5 2.5
S5 2.5 2.5 0.5 0 0.5 2.5 0 5 5 20
S6 0 0 5 0 0 2.5 2.5 0 5 7.5
S7 0.5 0 2.5 0 0 0 0 0 2.5 1.25
S8 1.7 1.0 0.1 1.7 0 1.25 0 0 1.25 1.7
S9 20 1.5 1.5 0 0.5 2.5 20 5 5 6.5
S10 0 0.5 0.5 0 0.5 10 0 5 5 3.3
S11 5 0 1.5 0 6.5 0 10 6.5 10 1.7
S12 0 1.7 3.3 0 0 15 2.5 0 0 2.5
S13 0 2.5 1.7 5 0 1.7 3.3 0 7.5 3.3
S14 0 2.5 2.5 0 0 0 0 0 1.5 5
S15 0 0 2.5 0 1.7 2.5 0 1.7 5 0
Total 33.4 18.0 27.4 10.4 14.7 47.95 53.3 26.5 89.25 56.50

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 439

Table 2: Sample program

Program : To find out the greatest number out of three number
using single inheritance
#include<iostream.h>

#include<conio.h>
01 Class Abc
02 {
03 protected:
04 int a ,b ,c;
05 public:
06 void input();
07 void output();
08 };
09 void Abc:: input()
10 {
11 cout<< enter the value ;
12 cin >>a>>b
13 }
14 void Abc:: output()
15 {
16 cout<<” a =”<<a;
17 cout<< “b=”<<b;
18 cout<<”c=”<<c;
19 }
20 class xyz : private Abc
21 {
22 public:
23 void greatest();
24 };
25 void greatest :: greatest()
26 {
27 input();
28 if (a>b)
29 if(a>c)
30 {
31 cout<<”a is the greatest number” ;
32 }
33 else{
34 cout<<” c is the greatest number” ;
35 }
36 }
37 else
38 if(b>c)
39 {
40 cout <<” b is the greatest number” ;
41 }
42 else;
43 {
44 cout <<” c is the greatest number”;
45 }
46 void main()
47 {
48 xyz a;
49 clrscr();
50 a.output();
51 a.greatest();
52 getch();
53 }

Table 3: Description of errors in sample program

LINE NO ERROR TYPE ERROR DESCRIPTION
11 Syntax Undefined symbol ‘enter’ due

to” ” is missing in cout
statement

12 Logical Always c is the greatest
number because the value of c
is not read.

28 Syntax Declaration terminated
incorrectly due to ‘{‘ brace
missing.

42 Syntax else is terminated with ‘;’.
51 Syntax abc::out not accessible due to

abc class is inherited in
private mode

Table 4: Values of complexity measures and errors
P.No LOC VG WMC NOC DIT CWT Errors

P1 20 4 1.5 0.5 0.5 153 33.4
P2 16 2 1 0.67 0.33 112 18.0
P3 24 4 1.6 0.67 1 285 27.4
P4 11 2 1 0.5 0.5 69 10.4
P5 16 2 1.5 0.5 0.5 70 14.9
P6 35 6 1 0.67 0.33 303 47.95
P7 39 10 1.3 1 1 645 53.3
P8 24 4 1.6 0.67 1 285 26.5
P9 12 1 1 0.67 0.67 59 84.75

P10 17 1 2 0 0 71 56.50

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10

E
rr

o
rs

LOC

Relationship between LOC and Errors

LOC
Errors

Fig. 1: Relationship between LOC and Errors

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 440

0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8 9 10 11

E
rr

o
rs

CWT

Relationship between CWT and Errors

CWT
Errors

Fig. 2: Relationship between CWT and Errors

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10

E
rr

o
rs

VG

Relationship between VG and Errors

VG

Errors

Fig. 3: Relationship between VG and Errors

Relationship between NOC and Errors

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

NOC

E
rr

o
rs NOC

Errors

Fig. 4: Relationship between NOC and Errors

Relationship between DIT and Errors

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

DIT

E
rr

o
rs DIT

Errors

Fig. 5: Relationship between DIT and Errors

Relationship between WMC and Errors

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

WMC

E
rr

o
rs WMC

Errors

Fig. 6: Relationship between WMC and Errors

6. Conclusions And Directions For Future
Work

In this paper, faults prediction through bebugging
technique has been implemented through an experiment
applied to C++ programs and compared the results with
various object-oriented complexity measures. The results
have been found encouraging. Relationship between faults
and complexity has also been established. Making early
decisions about complexity of a object-oriented system
may help a lot to software developers in reducing design,
testing and maintenance efforts and can improve its quality
and reliability as well. The results appear to be logical and
fit the intuitive understanding – if more complexity, then
more possibility of faults. However, application of
conclusions to real life situations needs further study.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 441

So, further empirical research is required using data from
industrial projects to validate these findings and to derive
more useful and generalized results. Using data from
industry implemented projects will provide a basis to
examine the relationship between complexity and faults
and we can comment on quality of software in a better
way.

References
[1] Chidamber, S. R., Kemerer, C.F. A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering,
1994, pp. 476-492.
[2] Mark, L, Jeff, K. Object Oriented Software Metrics, Prentice
Hall Publishing, .1994
[3] Basili, V.R., Biand, L., Melo, W.L. A validation of object-
oriented design metrics as quality indicators, Technical report,
Uni. of Maryland, Deptt. of computer science, MD, USA., 1995
[4] Basili, V. Qualitative Software Complexity Models: A
Summary, In Tutorial on Models and Methods for Software
Management and Engineering, IEEE Computer Society Press,
Los Alamitos, CA, 1980.
[5] Singh, R., Grover, P.S. A New Program Weighted
Complexity Metric, Proc. International conference on Software
Engg. (CONSEG’97), Chennai, India, 1997, pp. 33-39.
[6] Brooks, I. Object Oriented Metrics Collection and Evaluation
with Software Process, presented at OOPSLA’93 Workshop on
Processes and Metrics for Object Oriented software
development, Washington, DC, 1993.
[7] Harrison, W. Magel, K, Kluezny, R., dekock, A.: Applying
Software Complexity Metrics to Program Maintenance, IEEE
Computer, 15,1982, pp. 65-79.
[8] Fothi, A. Gaizler, J., Porkol, Z. The Structured Complexity of
Object-Oriented Programs, Mathematical and Computer
Modeling, 38, 2003, pp. 815-827.
[9] Da-wei, E. The Software complexity model and metrics for
object-oriented, IEEE International Workshop on Anti-
counterfeiting, Security, Identification, 2007, pp. 464-469.
[10] Brooks, F.P. The Mythical Man Month: Essays on Sofware
Engineering, Addison-Wesley, 1995.
[11] Zuse, H. Software Complexity Measures and Methods,
W.de Gruyter, New York, 1991.
[12] Sellers, B. H. Object-Oriented Metrics : Measures of
Complexity, Prentice Hall, New Jersey, 1996.
[13] Curtis, B. Measurement and Experimentation in Software
Engineering, Proc. IEEE conference, 68,9, 1980, pp. 1144-1157.
[14] Mishra, S. An Object Oriented Complexity Metric Based on
Cognitive Weights, Proc. 6th IEEE International Conference on
Cognitive Informatics (ICCI’07), 2007.
[15] Usha Chhillar, Sucheta Bhasin. A New Weighted
Composite Complexity Measure for Object-Oriented Systems,
International Journal of Information and Communication
Technology Research, 1 (3), 2011.
[16] Elish, M.O., Rine, D. Indicators of Structural Stability of
Object-Oriented Designs: A Case Study, Proc. 29th Annual
IEEE/NASA Software Engineering Workshop(SEW’05), 2005.
[17] Halstead, M.H. Elements of Software Science, New York:
Elsevier North Holland, 1977.
[18] McCabe, T.J. A Complexity Measure, IEEE Trans. On
Software Engg., SE-2, 4, 1976, pp. 308-320.

[19] Aggarwal, K.K. Empirical Study of Object-Oriented
Metrics, Journal of Object Technology, 5, 2006, pp. 149-173.
[20] Usha Kumari, Sucheta Bhasin. Application of Object-
Oriented Metrics To C++ and Java : A Comparative Study, ACM
SIGSOFT Software Engineering Notes, 36 (2), 2011, pp. 1-6.
[21] Singh, R. Improving Quality through Faults Prediction,
International conference on Quality, Reliability and Information
Technology at the Turn of the Millennium, December 21-23,
2000, New Delhi.

Usha Chhillar is working as Head, Department of Computer
Science, A.I.J.H.M. PG college, Rohtak, Haryana, India.
Currently, she is persuing her Ph.D Degree from Department of
Computer Science and Applications, Kurukshetra University,
Kurukshetra, Haryana, India. She obtained her Master Degree in
Computer Science from Maharshi Dayanand University (MDU),
Rohtak and M.Phil (Computer Science) from Ch. Devi Lal
University (CDLU), Sirsa. She has total more than twelve years
teaching experience. Her research interests include Software
Engineering, Object-Oriented and Component-based Software
Metrics.

Dr. Sucheta Bhasin is working as Associate Professor,
Department of Computer Science and Applications, Kurukshetra
University, Kurukshetra, Haryana, India. She has total more than
23 years teaching and research experience in the University. She
has published more than 60 research papers in
International/National journals and conferences. She is life
member of International Forum for Interdisciplinary Mathematics
and Indian Society of Information Theory & Applications. Her
research areas include Networking, Software Metrics, Object-
Oriented and Component-based Software Metrics.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 442

