

Object-Oriented Software Methodologies: Roadmap to the
Future

Usman Ali Khan1, I. A. Al-Bidewi 2 and Kunal Gupta3

 1 Department of IS, FCIT, King Abdul Aziz University, Jeddah

Kingdom of Saudi Arabia

2 Department of IS, FCIT, King Abdul Aziz University, Jeddah
Kingdom of Saudi Arabia

3 Amity Institute of Information Technology, Amity University, Lucknow,
Uttar Pradesh, India

Abstract

Software Development Methodologies have survived a never
ending evolving era, ever since it first came in horizon. Amongst
the several methodologies, only Object–Oriented Methodology
has been able to see the dawn of the day. Object–Oriented
Methodology survived all the critics as well as the rapid changes
in the software development industry. But is it braced for the
future yet? The paper is oriented towards the existing Object–
Oriented Software Development Methodologies. A brief
discussion involving their origin and focus of the methodologies
is given followed by a review of UML. We discuss the various
approaches taken up by various methodologies. The discussion
facilitates for the key notes for the survival of Object Oriented
Methodologies.

Keywords: Object Oriented Methodology, Software Crisis,
UML, Integrated Methodology, Agile Methodologies.

1. Introduction

The Software Crisis was identified four decades ago.
Various methodologies and models came forward to
address the issue, but almost all perished and became
extinct as they were unable to transform according to the
much necessary change. Object Oriented Methodology
emerged as a revolution some two decades ago. It
displayed its versatile nature and adopted to encounter the
rapidly changing Software Industry. Object Oriented
Methodology evolved from Semi- Structured, Partly
Object oriented to the Unified Model to the Integrated and
Agile Methodology. Its true that Object Oriented
Methodology have survived the harsh wrath of change, but
on the other hand, it has been unable to provide the
complete solution for the Software Crisis.
Software Crisis is real and it still exists. One reason may
be because the way people have treated the methodologies,
to use them for their own purpose. Some treat them as a

mean, others as ends. A majority have been treating them
as products, which makes them easier to sell. But on the
downside, if methodologies are treated as products, they
seem to clutter. They start having advertisement like
descriptions, obscuring wrappings, which is inefficient
while explaining its underlying process.
A much better way of viewing the Methodologies would
have been to view them with the perspective of process,
rather than with the perspective of modeling languages, as
it can provide help to the user of the methodologies by
providing them more information with respect of their
context. The description of such a methodology might
include the details of activities performed in sub process,
and the order in which they are performed; as well as the
concise description of the underlying modeling language
used in sub process definition.
The discussion that follows will make a comparative study
of the object-oriented software methodologies, along with
other methodologies and then provides a detailed overview
of process pattern, and process meta models, and the future
of next generation methodologies.

2. Methodologies – Framework for the Development of
the Modern Era Software:
The Software Development Methodologies have been
viewed as the means for organizing the various methods of
software development in a timely and orderly execution
manner. Informally, Software Development Methodology
has been termed as a collection of phases, procedures,
rules, techniques, tools, documentation, management, and
training that can be utilized for the development of a
system. It basically comprises of a set of modeling
conventions, comprising of a modeling language, and a
process, which can provide guidance as to the order of the
activities, and offers criteria for monitoring and measuring
a project’s activities. The modeling language aids in

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 392

modeling the different aspects of the system, and the
process determines what activities should be carried out in
order to develop the system.

3. Object Oriented Methodologies: A brief insight
By 1990’s, there were various methodologies in the
Software Industry to design software products; but each
and every one of them exhibited several limitations. In
order to overcome these limitations, Object–oriented
Methodologies were developed. Object–oriented
methodologies for software development were specifically
aimed at viewing, modeling and implementing the system
as a collection of interacting objects, using the specialized
modeling languages, activities and techniques needed to
address the specific issues of the object-oriented paradigm.
Several Object–oriented Software Development were
developed in the evolution of the Object–oriented
Paradigms. A brief overview of some of them is given
below:

3.1 First and Second Generations of Object-Oriented
Software Methodologies:

The first software development methodologies termed as
object-oriented were in fact hybrid: partly structured and
partly object-oriented. The analysis phase was typically
done using structured analysis (SA) techniques, producing
data flow diagrams, entity relationship diagrams, and state
transition diagrams, whereas the design phase was mainly
concerned with mapping analysis results to an object-
oriented blueprint of the software. These methodologies
were hence categorized as transformative. The second
generation of object-oriented methodologies evolved from
the first generation and appeared between 1992 and 1996.
First and second-generation methodologies are collectively
referred to as seminal methodologies, in that they
pioneered the unexplored field of pure object-oriented
analysis and design, and in doing so laid the groundwork
for further evolution.

3.2 The Unified Modeling Language (UML):
Grady Booch, Ivar Jacobson, and James Rumbaugh. All
three had developed their own methods, but collaborated
to combine them into the Unified Method, the OMG
announced plans for a standard OO notation, and in June
of 1996 UML version 0.9 was released. UML version 1.1
was adopted by the OMG in November of 1997. With
these initial UML releases, dozens of competing
methodologies were replaced by the language- and method
independent UML. Several factors contributed greatly to
the widespread adoption of UML. First, UML is language
independent. Second, it does not advocate nor require a
particular method. Third, it is readily accessible as UML
specifications are free for download and any company may

join the OMG. The Object Management Group (OMG) is
the body responsible for creating and maintaining the
language specifications. They define UML as, “a graphical
language for visualizing, specifying, constructing, and
documenting the artifacts of object oriented software
systems. The UML represents a collection of best
engineering practices that have proven successful in the
modeling of large and complex systems. The UML uses
mostly graphical notations to express the design of
software projects. Using the UML helps project teams
communicate, explore potential designs, and validate the
architectural design of the software. The primary goals in
the design of the UML were:
• To provide users with a ready-to-use, expressive
visual modeling language so they can develop and
exchange meaningful models. Provide extensibility and
specialization mechanisms to extend the core concepts.
• Be independent of particular programming languages
and development processes.
• Provide a formal basis for understanding the modeling
language. Encourage the growth of the Object Oriented
tools market.
• Support higher-level development concepts such as
collaborations, frameworks, patterns and components.

UML was developed as a language that can be utilized for
Modeling Object Oriented Systems and Applications, and
provide them with more clarity by making them readable,
and thus more understandable. This essentially means that
UML provides the ability to capture the characteristics of a
system by using notions. UML provides a wide array of
simple, easy to understand notions for documenting
systems based on the Object Oriented Design Principles.
These notions are called the diagrams of UML. These
diagrams provide the user with the means of visualizing
and manipulating model elements. The underlying premise
of UML is that no one diagram can capture the different
elements of a system in it’s entirely. The UML is just that.
It “unifies” the design principles of each of these
methodologies into a single standard language that can be
easily applied across the board for all Object Oriented
Systems. UML does not have any dependencies with
respect to any technologies or languages.

3.3 Integrated Methodologies: Third Generation:

Methodologies in this category are results of integrating
seminal methodologies and are characterized by their
process-centered attitude towards software development,
typically targeting a vast variety of applications.
Integrations have resulted in huge methodologies, difficult
to manage and enact. In trying to achieve manageability,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 393

some of them have gone to extreme measures to ensure
customizability (RUP), others have turned into generic
process frameworks that should be instantiated to yield a
process (OPEN), and yet others have resorted to process
patterns for customizability (Catalysis). It was frustration
with these methodologies that ultimately caused the agile
movement. Although unwieldy and complex, integrated
methodologies have a lot to offer in terms of process
components, patterns, and management and measurement
issues. Furthermore, some of them propose useful ideas on
seamless development, complexity management, and
modeling approaches.

3.4 Agile Methodologies:

Agile methodologies first appeared in 1995. The once
common perception that agile methodologies are nothing
but controlled code-and-fix approaches, with little or no
sign of a clear-cut process, is only true of a small—albeit
influential—minority of these methodologies, which are
essentially based on practices of program design, coding,
and testing that are believed to enhance software
development flexibility and productivity. Most agile
methodologies incorporate explicit processes, although
striving to keep them as lightweight as possible.

4. Object oriented Methodologies: The big leap on to
the next generation

Object Oriented Methodologies have come a long way,
and is still standing tall. In order to take big strides in the
future, Object oriented Methodologies should incorporate
the following within their structure:

• The advocates of Object oriented Methodology
assumes that software should be developed
according to a mental model of the actual or
imagined objects it represent, i.e. it should focus
on the real world. It should however provide for
the uninterrupted exposition of logic in a more
easy representation, more of a ordinary human
language. This would lead to even poorly
thought-out designs and decisions to be more
subtle and obvious. The resultant model would
bridge the gap between intuitive and formal
models.

• Object-Oriented Methodology still provides a
way or method of solving a problem. If it is to
stay for longer duration, it needs to evolve itself
as a technology which can address various issues
in the modern era software development.

• In several cases, Object-Oriented methodologies
have proved to be less fruitful as compared to
Procedural Language. Amongst them are
Economy of Execution, Economy of Small Scale
Development, and Economy of Compilation.
Object Oriented Methodology should scale
themselves up for such shortcomings. A
Significant difference in productivity between
OOP and procedural development has to be
achieved in the next era of Object Orientation.

• Object Oriented Technology has been poor in
modeling time in a coherent manner. With the
growing advent of real-time systems, it is
imperative that Object-Orientation should evolve
to model time and real time objects in a more
decisive manner and thus aiding in the accurate
design of real time systems.

• By its very nature, Object Orientation is anti-
modular and anti-parallel. Which in the current
scenario is a serious issue. With the growing
popularity of parallel systems, it is of essence
that Object Orientation should incorporate
features which support parallel computing and
applications.

• Currently, Object Orientation is unable to provide
for interface specifications that are rich enough
to cover all the phases of the design cycle. In
component based development especially, non
functional characteristics can be incorporated as
a part of interface specification to overcome this
limitation.

• Object Orientation provides for standardizing
notations, which is often not sufficient to achieve
effective methods and unambiguous
communication amongst designers. With the
advent of Opinion mining and profiling, these
modeling notations maybe freely reinterpreted,
which in turn weakens the value of notation as an
effective communication vehicle and designing
tool. This implies that a model written in one
formalism could be ill formed in another
formalism.

• It becomes difficult for Object Orientation to
combine Heterogeneous system and depict their
composite behavior. Object oriented
methodology has to provide for embedding the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 394

detailed models in question into a framework that
can understand the model being composed.

• Object oriented should target towards being a
model driven, context management, aspect
oriented, service driven architecture. And should
take the role of whichever is required at
respective place.

• Although Object oriented Storage technology is
being used in Cloud Computing, but the
methodology is not sufficient for providing an
impact structure for Web enabled Context aware
systems and services. The main issue comes in
the handling and distribution of context
information efficiently. Furthermore, challenges
like aggregation of context information in a
structured format, discovery and selection of
appropriate context services are key area, where
Object oriented paradigm has to evolve and
adopt in order to provide for a better framework
and design for such system.

5. Conclusion:

The above review has resulted in a number of conclusions,
which can be elaborated as follows. UML was developed
in an attempt to standardize and integrate the
methodologies into a single, comprehensible unit. Yet
some of the limitations were still at large. The complexity
and inconsistency was still there, which gave rise for the
development of some agile and lightweight methodologies
which actually followed a different path from modeling.
But even they were not entirely successful and we
witnessed the comeback of the old methodologies as well
as new developments in methodologies emerged which did
not adhere to UML conventions. The evolution suggested
that in order to develop new methodologies and
technologies, not only the capabilities of the old
methodologies should be considered; but also the fact that
they have to be developed with a more systematic
approach in mind. Despite of the entire enhancement in the
development of methodologies, a number of problem areas
have been observed. The new integrated methodologies are
more complex, to be efficiently being brought into the
practice. They have lack of scalability, and lack of a
specific, unambiguous process. Object Oriented
Methodologies have evolved over a period of time, and
despite of all the limitations they are still considered to be
the pioneer when it comes to software development.
Ongoing researches are aimed to further bring around an
improved version, which can provide for compactness,
extensibility, consistency, visible rationality, and

traceability to requirement. Considering the motivations
and the special circumstances surrounding methodologies
mergers and development, engineering a methodology
through integration can be one of the most appealing one.
Disciplined Engineering and a systematic approach is
desired for the extraction of prosperous potential of
Object-Oriented Software Development.

References
[1] Aoyama, M. (1998a, April 19 - 25). Agile software
process and its experience. Paper presented at the
International Conference on Software Engineering, Kyoto
Japan.
[2] Aoyama, M. (1998b). Web-based agile software
development. IEEE Software, 15(6), 56-65.
[3] Bloomberg, J. (1999, October). Software
Methodologies on Internet
Time. Developer.com. Retrieved March 11, 2001, from
the World Wide Web : http://
softwaredev.earthweb.com/java/sdjjavaee/article/0,
,12396_616711,00.html.
[4] Bloomberg, J. (2001, January). Using the RUP for
Enterprise e-business Transformation. WaveBend
Solutions. Retrieved April 7, 2001, from the World Wide
Web: http://www.therationaledge.com/content/jan_01/f_ru
pent_jb.html.
[5] Coad, P. (1999). Feature-Driven Development. Object
International. Retrieved April 8, 2001, from the World
Wide Web: http://www.togethersoft.com/jmcu/
chapter6.PDF.
[6] Cockburn, A. (2000, July/August). Selecting a project's
methodology. IEEE Software, 17(4), 64-71.
[7] Cockburn, A. (2000, September). Balancing Lightness
with Sufficiency. American Programmer. Retrieved March
11, 2001, from the World Wide
Web:http://www.crystalmethodologies.org/articles/blws/ba
lancinglightnesswithsufficiency.html.
[8] Cockburn, A. (2001). Just-In-Time Methodology
Construction. Humans and Technology. Retrieved March
11, 2001, from the World Wide
Web:http://www.crystalmethodologies.org/articles/jmc/just
intimemethodologyconstruction.html.
[9] Cutter. (2000, October). Light Methodologies Best for
E-business Projects. Cutter Consortium. Retrieved March
11, 2001, from the World Wide
Web:http://cutter.com/consortium/research/2000/crb00100
3.html.
[10] DOJ (2000, March). The Department of Justice
Systems Development Life Cycle Guidance
Document. United States Department of Justice. Retrieved
April 1, 2001, from the World Wide
Web: http://www.usdoj.gov/jmd/irm/lifecycle/table.htm.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 395

[11] LexiBot (2001). Our Technology - Results: The
LexiBot Expression. BrightPlanet. Retrieved April 1,
2001, from the World Wide
Web:http://www.brightplanet.com/technology/results2.asp.
[12] Lindvall, M., & Rus, I. (2000, July/August). Process
diversity in software development. IEEE Software, 17(4),
14-18.
[13] Ubiquitous Cloud: Managing Service Resources for
Adaptive Ubiquitous Computing
Koichi Egami, Shinsuke Matsumoto and Masahide
Nakamura
[14] 1st IEEE PerCom Workshop on Pervasive
Communities and Service Clouds
[15] Component-Based Design for the Future
Edward A. Lee and Alberto L. Sangiovanni-Vincentelli
IEEE

Dr. Usman Ali Khan is an Associate Professor at IS
Department, Faculty of Computing and Information
Technology, King Abdul Aziz University, Jeddah, Saudi
Arabia. He has done his Ph.D. IT (Object Oriented
Software Design) in 2007. He is in the field of teaching
and research since 1995. He has published fourteen
research papers at national and international forums. He is
teaching Software Engineering domain courses at graduate
and undergraduate level from more than thirteen years.

Dr. Ibrahim A. Al-Bedewi is a Dean and Associate
Professor at IS Department, Faculty of Computing and
Information Technology, King Abdul Aziz University,
Jeddah, Saudi Arabia. He has done his Ph.D. CS in 2000.
He is in the field of teaching, research and administration
since 2000. He has published many research papers at
national and international forums.

Kunal Gupta is a Lecturer in Department of Information
Technology, Amity University, India. He has done his
M.Tech(IT) and MCA from India and is currently pursuing
his PhD. He has published four International Papers. His
teaching domain is Software Programming Languages. He
has been in academics for more than seven years.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 396

