
 

 

A framework for dynamic indexing from hidden web 
 
 

Hasan Mahmud1, Moumie Soulemane2, Mohammad Rafiuzzaman3 

 
1 Department of Computer Science and Information Technology, Islamic University of Technology, 

Board Bazar, Gazipur-1704, Bangladesh. 
 
 

2 Department of Computer Science and Information Technology, Islamic University of Technology, 
Board Bazar, Gazipur-1704, Bangladesh. 

 
 

3 Department of Computer Science and Information Technology, Islamic University of Technology, 
Board Bazar, Gazipur-1704, Bangladesh. 

 
 
 

Abstract 
The proliferation of dynamic websites operating on databases 
requires generating web pages on-the-fly which is too 
sophisticated for most of the search engines to index. In an 
attempt to crawl the contents of dynamic web pages, we’ve tried 
to come up with a simple approach to index these huge amounts 
of dynamic contents hidden behind the search forms. Our key 
contribution in this paper is the design and implementation of a 
simple framework to index the dynamic web pages and the use of 
Hadoop MapReduce framework to update and maintain the 
index. In our approach, from an initial URL, our crawler 
downloads both the static and dynamic web pages, detects form 
interfaces, adaptively selects keywords to generate most 
promising search results, automatically fill-up search form 
interfaces, submits the dynamic URL and processes the result 
until some conditions are satisfied.   
Keywords: Dynamic web pages, crawler, hidden web, index, 
hadoop. 
. 
1. Introduction 

Web mining is an application of data mining which aims 
to discover useful information or knowledge from the web 
hyperlink structure, page content and usage log. Based on 
the primary kind of data used in the mining process, web 
mining tasks are categorized into four main types: (1) Web 
usage mining, (2) Web structure mining, (3) Web user 
profile mining and (4) Web content mining [7, 14].  In the 
past few years, there was a rapid expansion of activities in 
the web content mining area. This is not surprising 
because of the phenomenal growth of the web contents and 
significant economic benefits of such mining.  Given the 
enormous size of the web, the indexed web contains at 
least 13.85 billion pages [9]. Many users today prefer to 

access web sites through search engines.  A number of 
recent studies have noted that a tremendous amount of 
content on the web is dynamic. According to [8] Google, 
the largest search database on the planet, currently has 
around eight billion web pages which are already indexed. 
That's a lot of information. But it's nothing compared to 
what else is out there. Google can only index the visible 
web, or searchable web which refers to the set of web 
pages reachable purely by following hypertext links. But 
the invisible web or deep web [4, 5, 16, 17, 21], “hidden” 
behind search forms is estimated to be 500 times bigger 
than the searchable web. However, a little of this 
tremendous amount of high quality dynamic contents are 
being crawled or indexed and in particular, most of them 
are ignored. 
 
In this paper the focus is on the automatic indexing of 
dynamic web contents which are the part of deep web. It is 
same as web content mining as we’re extracting the words 
included in web pages. Here we’ve tried to come up with a 
simple approach to crawl the textual portion of dynamic 
contents hidden behind search forms with the following 
techniques: 

 
• Dynamic content extraction: Extraction of structured 

data, hidden behind the search forms of Web pages, 
such as search results. Extracting such data allows one 
to provide services, so search engines will be benefited 
if we index dynamic contents of the web pages as most 
of the time their crawlers avoid those pages. 
 

• Form detection: Web form with single general input 
text field is considered. A site like in [13] uses one 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 249



 

 

single generic text box for form submission. Forms with 
more than one binding inputs will be ignored. 

 
• Selection of searching keywords: Although the Web 

contains a huge amount of data, not always an optimized 
search result is generated for a given keyword. Here the 
method developed for selecting a candidate keyword for 
submitting a query will try to generate an optimized 
search result. 
 

• Detection of duplicate URLs: Sometimes two different 
words may generate same URL twice, which will 
decrease the efficiency if the same URL is crawled 
again and again. Detection of duplicate URLs and 
ignoring them is another try-out of this paper work. 

 
• Automatic processing: There is an automation process 

for crawling. That is recognizing suitable forms, 
generating keyword for searching, putting the word in 
the search bar and making or updating an index for the 
search results; all of these operations will be fully 
automatic without any human interaction. 

This research work only encompasses dynamism in 
content, not dynamism in appearance or user interaction. 
For example, a page with static content, but containing 
client-side scripts and DHTML tags that dynamically 
modify the appearance and visibility of objects on the 
page, does not satisfy our definition as well as our 
objective. 
 
Section 2 of this paper contains some aspects of dynamic 
web pages including the existing techniques for dynamic 
web page indexing. Then the proposed approach is 
presented in Section 3, the framework in Section 4 and its 
delimitations are discussed in Section 5. The conclusion in 
Section 6 includes some directions for future work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Defining some aspects of dynamic web        

pages 

Considering the tremendous amount of high quality 
content “hidden” behind search forms and stored in large 
searchable electronic database, “Dynamic Web Page” has 
become a buzzword of current web mining technology. 
But before continuing our research on dynamic web pages, 
we’ve to know what a Dynamic Web Page is. A Dynamic 
Web Page is a template that displays specific information 
in response to queries. Its 'dynamism' lies in its resonance 
and interactivity, both in client-side scripting and server-
side scripting. Dynamic web pages can change every time 
they are loaded (without anyone having to make those 
changes) and they can change their content based on what 
user does, like clicking on some text or an image.  
 
Visitors find information in a dynamic site by using a 
search query. That query can either be typed into a search 
form by the visitor or already be coded into a link on the 
home page - making the link a pre-defined search of the 
site's catalog. In that later case, the portion of the link 
containing the search parameters is called a 'Query String' 
.This query is then used to retrieve information from the 
huge database which is hidden behind the search forms. 
This whole operation is depicted in Fig.1 below. 

 
2.1 Problems with dynamic pages  

All dynamic pages can be identified by the “?” symbol in 
the URLs, such as 
 

http://www.mysite.com/products.php?id=1&style=a 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: User interactions with search forms to retrieve 
information from hidden database 

User 7. Web query 
front-end 

8. Hidden 
Database 

2. Form page 

10. Response page 

3. View Form 

4. Form Fill-up 

11. View Result 

1. Download Form from 
Database 

6. Form 
Submission 

9. Download Response 

xxx 

 

5. Form page with user 
query 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 250



 

 

Search engines like Google can crawl and index dynamic 
pages which don’t have more than 2 parameters in the 
URL (the example above has two parameters separated by 
the “&” symbol). Even so, Google may not crawl dynamic 
pages for various reasons. Among them, the most common 
are: 
 
• Trap: A spider trap happens when a search engine's 

web crawler becomes snared in an infinite circle of a 
website's coding, which produce endless numbers of 
documents; web pages that are heavily flooded with 
characters, which may crash spiders programs. 

• Insufficient query information: Search engine spiders 
have a much tougher time with dynamic sites. Some get 
stuck because they can’t supply the information the site 
needs to generate the page. 

 
 Security and privacy issues: Many of these sites 

require user authentication and bypassing it 
automatically may cause violation of privacy or law. 
 

 Policy preferences: Some search engines deliberately 
avoid extensive indexing of these sites. 

 
 Costly: It needs expertise in contradiction to the static 

one that is simple and straight forward. 

Moreover, Google will not follow links that contain 
session IDs embedded in them as in [1]. 
 
2.2 Crawling dynamic pages 

A web crawler is a relatively simple automated program, 
or script that methodically scans or "crawls" through 
Internet pages to create an index of the data it's looking 
for. Alternative names for a web crawler include web 
spider, web robot, bot, crawler, and automatic indexer.  

 

 

 

 

 

 

 

 

When a search engine's web crawler visits a web page, it 
"reads" the visible text, the hyperlinks and the content of 
the various tags used in the site, such as keyword rich 
Meta tags. Using the information gathered from 
the crawler, a search engine will then determine what the 
site is about and index the information. In general, it starts 
with a list of URLs to visit, called the seeds. As the 
crawler visits these URLs, it identifies all the hyperlinks in 
the page and adds them to the list of URLs to visit, called 
the crawl-frontier. URLs from the frontier are recursively 
visited according to a set of policies. Web crawling is done 
on all text contained inside the hypertext content, tags, or 
text. The operation of a hidden web crawler is shown in 
Fig.2. 

In practice common crawler algorithms must be extended 
to address the following issues like in [11]: 

• Speed: In real life if some HTTP request takes one 
second to complete, some will take much longer or fail 
to respond at all. Normally a simple crawler can fetch no 
more than 86,400 pages per day. At this rate, it would 
take 634 years to crawl 20 billion pages in a single 
computation manner. That’s why in practice, crawling is 
carried out using hundreds of distributed crawling 
machines. Now-a-days Hadoop MapReduce is used over 
these distributed systems to overcome the bottleneck of 
a single server computation with higher data processing 
speed.  
 

• Politeness: Unless care is taken, crawler parallelism 
introduces the risk that a single Web server will be 
bombarded with requests to such an extent that it 
becomes overloaded. That’s why crawler algorithms are 
designed to ensure that only one request to a server is 
made at a time. In order to serve this need a politeness 
delay is inserted between requests. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: Hidden web crawler 

 
 

 
1. Download Form from 

Database 

2. Form page 

8 Response page 

7. Download Response 9. Result Processing 

5. Web query 
front-end 

6. Hidden 
Database 

3. Analysis the Form 

4. Submit the Form Hidden 
web 

crawler 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 251



 

 

• Excluded content: Before fetching a page from a site, a 
crawler must fetch that site’s robots.txt file to determine 
whether the webmaster has specified to crawl some or 
the entire site. 
 

• Duplicate content: Identical content is frequently 
published at multiple URLs. But when the page includes 
its own URL, a visitor counter or a date; more 
sophisticated fingerprinting methods are needed. 
Crawlers can save considerable resources by 
recognizing and eliminating duplication as early as 
possible because unrecognized duplicates can contain 
relative links to whole families of other duplicate 
content. 

• Continuous crawling: Carrying out a full crawling with 
fixed intervals would imply slow response to important 
changes in the Web. For example, submitting the query 
“current time New York” to the GYM (Google, Yahoo, 
Microsoft) engines reveals that each of these engines 
crawls the www.timeanddate.com/worldclock site every 
couple of days. However, no matter how often the 
search engine crawls this site, the search result will 
always show the wrong time. That’s why continuous 
crawling without any certainty or limit is avoided in 
most of the current search engines 

2.3 Indexing dynamic pages  

Indexes are data structures permitting rapid identification 
of which crawled pages contain like particular words or 
phrases. To index a set of web documents with the words 
they contain, we need to have all documents available for 
processing in a local repository. Creating the index by 
accessing the documents directly on the Web is 
impractical for a number of reasons. Collecting “all” web 
documents can be done by browsing the Web 
systematically and exhaustively and storing all visited 
pages. This is done by a crawler and is used by search 
engines. A similar operation is depicted in Fig.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The purpose of storing an index is to optimize speed and 
performance in finding relevant documents for a search 
query. Without an index, the search engine would scan 
every document in the corpus, which would require 
considerable time and computing power. For example, 
while an index of 10,000 documents can be queried within 
milliseconds, a sequential scan of every word in 10,000 
large documents could take hours. The additional 
computer storage required to store the index, as well as the 
considerable increase in the time required for an update to 
take place, are traded off for the time saved during 
information retrieval. Search engine architectures vary in 
the way indexing is performed and in methods of index 
storage to meet the various design factors. Types of 
indices data structures include: 
 

A. Inverted indices 
B. Forward indices 

 
A. Inverted indices 

Many search engines incorporate an inverted index when 
evaluating a search query to quickly locate documents 
containing the words in a query and then rank these 
documents by relevance. Because the inverted index stores 
a list of the documents containing each word, the search 
engine can use direct access to find the documents 
associated with each word in the query in order to retrieve 
the matching documents quickly. TABLE 1 is a simplified 
illustration of an inverted index. 
 
B. Forward Index 

The forward index stores a list of words for each 
document. TABLE 2 is a simplified form of the forward 
index. 

TABLE 1: Inverted index of words w.r.t. their URLs 
 

Inverted Index Word URL 

the URL 1, URL 3, URL 4, URL 5 
cow URL 2, URL 3, URL 4 

says URL 5 
moo URL 7 

        
Table 2: Forward index of words contained in URLs 

 
Forward  Index URL Words 

URL  1 the, cow, says, moo 

URL 2 the, cat, and, the, hat 

URL 3 the, dish, ran, away, with, the, fork 

 
Fig.3: Crawler used in search engines  

Web 

Crawler 

Inverted 
index 

 

Document 
Repository 

Link 
Repository 

 

URL 
Queue 

 

Query 
engine 

Indexer 

User 

Query 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 252



 

 

2.4 Existing techniques for dynamic web page 
indexing 
 

One of the deep web crawler architecture is proposed in 
[2] where a task-specific, human-assisted approach is used 
for crawling the hidden web. There are two basic problems 
related to deep web search,  
 
• Firstly the volume of the hidden web is very large and 
 
• Secondly there is a need of such type of crawlers which 

can handle search interfaces efficiently, which are 
designed mainly for humans.  

 
In this paper a model of task specific human assisted web 
crawler is designed and realized in HiWE (hidden web 
exposure).  The HiWE prototype built at Stanford which 
crawl the dynamic pages is designed to automatically 
process, analyze, and submit forms, using an internal 
model of forms and form submissions. HiWE uses a 
layout-based information extraction technique to process 
and extract useful information. The advantages of HiWE 
architecture is that its application/task specific approach 
allows the crawler to concentrate on relevant pages only 
and with the human assisted approach automatic form 
filling can be done. Limitations of this architecture are that 
it is not precise with response to partially filled forms and 
it is not able to identify and respond to simple dependency 
between form elements. Recently [5] studied the problem 
of automating the retrieval of data hidden behind simple 
search interfaces that accept keyword-based queries but 
did not focus on the detection of search interfaces. 

A technical analysis of some of the important deep web 
search interface detection techniques is done to find out 
their relative strengths and limitations with reference to 
current development in the field of deep web information 
retrieval technology [3] .We found this analysis crucial for 
the detection of the search interface and it can be a good 
starting ground for anyone interested in this field. 
Reference [4] proposed some ways to select keywords for 
query such random, generic-frequency and adaptive.  
Meanwhile other usual approach to dynamic indexing is to 
remove query strings from dynamic URL’s, adding 
dynamic links to static pages, making dynamic links look 
like static using mod_rewrite available in web server like 
apache. We also have some paid inclusion programs ,these 
programs, are premium services for indexing dynamic 
sites include those of AltaVista, Inktomi and FAST, to 
name a few . Also there are Deep web search tools 
enhance deep Web searching, including BrightPlanet, 
Intelliseek's Invisible Web, ProFusion, Quigo, Search.com, 
and Vivisimo. Irregularities highlighted in the existing 
techniques have leaded us to the proposal of the following 
approach.  

 
3. Proposed approach 

In order to index the dynamic contents hidden behind the 
search forms, we’ve come up with an approach which 
contains the following steps: 
 
3.1 Web pages collection 
3.2 Form interface recognition 
3.3 Keyword selection 
3.4 Query submission 
3.5 Result Processing 
3.6 Updating the index 

 
3.1 Web pages collection 

This part is essentially a static crawling, given the initial 
URL, the crawler recursively fetches all pages that are 
linked by it (don't make it recursive, unless you are using 
functional languages; just use a queue of URLs to be 
fetched). Test it on the set of web pages created at the 
beginning. If a page is linked many times, it must be 
downloaded once. Static crawling is depicted in Fig.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

Fig.4:  Static Crawling 
 

web 

init 

get next 
URL 

get 
pages 

extract 
URLs Web 

pages 

initial 
URLs 

to visit 
URLs 

visited 
URLs 

<form action="MAILTO:someone@example.com" method="post" 
enctype="text/plain"> 
Name:<br /><input type="text" name="name" value="your name" /><br /> 
E-mail:<br /><input type="text" name="mail" value="your email" /><br /> 
Comment:<br /><input type="text" name="comment" value="your comment" 
size="50" /> 
<br /><br /> 
<select name="cars"> 
<option value="volvo">Volvo</option><option value="saab">Saab</option> 
<option value="fiat">Fiat</option><option 
value="audi">Audi</option></select> 
<br /><br /><br /><br /><br /><br /> 
<input type="submit" value="Send"><input type="reset" value="Reset"> 
</form> 
 
 Fig.5: HTML form tag markup for sample Form input controls 

 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 253



 

 

<form action=http://www.iut.com/department 
method=”get”> 
<input name=keyword type=text/> 
Input name=searching type=submit value=search/> 
</form> 

Fig.7 HTML form tag markup for a considerable sample form 

 
 

Fig.8: Dynamic URL on querysubmission 

 

<form  action=http://www.iut.com/department  
method=“get”> 
<input name=“yourword” type=“text”/> 
<input name=searching type=submit value=search/> 
</form> 
 

URL:http://www.iut.com/department?yourword=anything&searching=s
earch 

 

On Submit 
 

3.2 Form interface recognition 
 

Recognizing a web form and its fields is a key point of this 
approach. A standard HTML web form consists of form 
tags [6], a start tag <form> and an end tag </form> within 
which the form fields reside. Forms can have several 
‘input controls’, each defined by an <input> tag and some 
values considered as domain for those input controls. Input 
controls can be of a number of types, the prominent ones 
‘text boxes’, ‘check boxes’, ‘selection lists’ and ‘buttons’ 
(submit, reset, normal or radio).Each of the field is having 
attributes like label, name and values. The form tag also 
has attributes like ‘method’ i.e.: ‘get’ and ‘post’ and 
‘action’ which identify the server that will perform the 
query processing in response to the form submission. 

In this study, we focus on the forms with one input control 
binding to a generic text box. Forms with multiple input 
controls will be ignored. Fig.6 shows such a form with 
several input controls and Fig.5 shows the piece of HTML 
markup that was used to generate this form. Whenever our 
crawler will encounter forms like this they will be 
discarded from the crawling operation.   
 
But if the crawler encounters a form tag like depicted in 
Fig.7 it will consider the form as eligible for crawling and 
will proceed with its operation. A general search form with 
single input, often on the top-right of the web page is used 
in this approach.    

 
Further, as per the HTML specification, forms using post 
method for form submission are used whenever 
submission of the form results in state changes or side 
effects (e.g. for shopping carts, travel reservation and 
login). For these reasons we restrict our attention to those 
forms which are using get method to submit the form as 
they tend to produce contents suitable for indexing.  
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 
 

 
 
3.3 Keyword selection 

The selection of the most appropriate and relevant value 
for the input field that can maximize the search is 
challenging, even though the generic text field generally 
can accept any keyword. How should a crawler select the 
queries to issue, given that the goal is to download the 
maximum number of unique documents from a textual 
database? Finding the answer for this question is another 
approach that we’ve tried to cover here.  
 
In order to solve this question we could select our initial 
keyword from a dictionary and use it for query 
submission. But generating a dictionary and searching a 
keyword within it will be both time and space consuming. 
Since we want to cover all possible languages, we can’t 
start with from a dictionary of terms. After all an English 
dictionary will never contain a word which can be used as 
a keyword for query submission in a Chinese search form. 
In this case our approach suggests the following aspects: 

 
• Initial value: At the very first, keywords are selected 

from the static content of the web page having the 
search form interface.  

 
• Adaptive: After the generation of the 1st set of results, 

promising keywords are selected from the successfully 
retrieved pages. Here keywords for query submission in 
a search form are selected adaptively from itself. 

 
• Multilingualism: By selecting the searching keywords 

from the web page instead of a predefined location like 
dictionary or repository our approach also supports 
multilingualism. 

 
 
 

 
 
 
 
 
 
 
 
 Fig.6: Simple labeled form with several control inputs 

 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 254



 

 

• Limit: At most max submissions per form will take 
place to prevent the crawler from falling in a trap 
(infinite loop). Where max is a given number 
representing the maximum number of queries. 

The priority in keyword selection is calculated based on 
the term frequency Ftf in our approach as it determines the 
importance of a word in a set of documents. The term 
frequency Ftf is a measure of how often a word is found in 
a collection of documents. Suppose a word ‘Wi’ occurs 
‘np’ times within a web page ‘P’ and there are total of Np 
words (including the repeated ones) on that page. Then the 
term frequency, 

 
Ftf = np/ Np.      (1) 

 
But if we fail to obtain a convenient keyword in that given 
page, the choice is taken in the repository or at last in the 
worst case from the dictionary. The selected keywords 
destined to the query should be compared against the stop 
words list as these words used to be more frequent.  

 
3.4 Query submission 

After selecting the keyword, there is another challenge in 
submitting the query in the search form automatically, i.e. 
without any human interaction. Whenever a keyword for a 
query submission will be selected it’d automatically be 
submitted in the search form to generate more search 
results. The action would be something similar depicted in 
Fig.8. 
 
In this way, whenever a form is submitted a dynamic URL 
is generated and sent to the database. How many time the 
query should be submitted and when should it stop? Of 
course it shall stop when max numbers of queries have 
been submitted. 

 
3.5 Result processing  

When our crawler submits a form for processing, different 
results are possible.  
 
1) The returned page will contain all the data behind the 

form. 
 
2) The returned page may contain data, but not showing all 

the data for the query in a single page. Instead, there 
may be a “next” button leading to another page of data, 
such as the. In this case, the system will automatically 
gather all the data on all “next” pages (actually not all, 
up to a certain limit to avoid a Trap) into a single query 
result.  

 

3) The query might return data, but only part of the data 
behind the form because the query is just one of many 
possible combinations of the form fields. In this case the 
only returned portion will be processed.   

 
4) The query may return a page that not only contains data, 

but also contains the original form. Here whatever the 
result is generated we’ll gather information as much as 
possible. 

 
5) The query may return a page that has another different 

form to fill in. For this case we’ll start with the resultant 
form from the beginning. 

 
6) Some other error cases might involve a server being 

down, an unexpected failure of a network connection, or 
some other HTTP errors. 

 
7) The query may go and return the same form requesting 

for required field to be filled or to be filled with 
consistent data. Usually this kind of form contains 
JavaScript. 

 
8) Successive queries may return redundant result, it is 

therefore important for similarity detection be verified 
amount successive queries. After all this, the result 
should be crawled and indexed. 
 

3.6 Updating the index 

After the processing the result an initial index will be 
created. But as this is a continuous process more and more 
pages will be crawled to extract more words and will be 
added to the index in times. As a result a continuous 
updating of the index is required here which will 
eventually exceed the capacity of a normal single storage 
device. That’s why multiple storage device is needed and 
in order to do this we’ve used “Hadoop-MapReduce” to do 
the job. Hadoop is an Apache software foundation project 
as in [20]. It’s a scalable, fault-tolerant system for data 
storage and processing and a framework for running 
applications on large clusters. Hadoop includes: 
 
• HDFS - a distributed file system and  
• Map/Reduce - offline computing engine. 

 
HDFS splits user data across servers in a cluster. It uses 
replication to ensure that even multiple node failures will 
not cause data loss. HDFS breaks incoming files into 
blocks and stores them redundantly across the cluster. In 
this approach we’re using this splitting and reducing 
technique to handle the huge amount of index. 
 
 
 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 255



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

End 

Crawl the static contents of 
the web page and extract the 

words 

Calculate the term frequency 
Ftf of the extracted words 

Set the value of i to zero 

Extract words from the 
downloaded web pages 

Create indexes and 
continuously update 
them using hadoop 

 
 

Start Get initial URL 

Is there a single 
input text field 

form?                      

Set Limit to zero 

Yes 

No 

Download web pages 

No 

Make Q empty 

No 

Sort the words of Q in 
descending order w.r.t their 

Ftf value and remove any 
duplicate occurrence 

Contents 
similar to 
previous 
pages? 

 

Take the top most word Wi 
from Q and keep a track of it 

Increment i 

Increment Limit 

Limit >= max? 

Assign Wi to the 
field name and 
generate the 

D_URL 

Similar to 
previous 
D_URL? 

 

Submit the D_URL 

Yes 

Yes No 

Store the words with their 
term frequency Ftf value to the 
queue Q and append any new 

word  
 

Stop 

Crawl the 
resultant 

URLs 

Ignore the duplicate 
URL and crawl rest of 

the URLs 
 

Yes 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 256



 

 

 
 
 

Table 3: legend of the framework 
 

 
4. General  Framework 

According to Fig.9, the web crawler starts with an initial 
URL to download the page. After that the downloaded 
web page is crawled and is checked to see if it contains a 
single input text field for query submission or not. If not, it 
will simply be crawled and the words and URLs are 
indexed. If yes, the limit and variable ‘i’ is used 
respectively to count the number of submissions and 
searching keywords. After that this web page containing 
the form is crawled and the term frequency Ftf of words 
extracted from it are calculated and stored in a queue Q. 
Words in the queue are sorted in descending order of their 
Ftf and the duplicates are removed. The top most word 
from Q is submitted to the form through a dynamic URL. 
This process is repeated till the limit reaches the maximum 
limit max when Q is emptied and the crawler stops. 
Contents of web pages retrieved are detected to see if they 
are similar to previous ones and the duplicates are deleted, 
duplicates URLs can be filter as in [18]. These new web 
pages are then crawled again, sent to the index for 
updating and term frequency is calculated and submitted 
as previously until a certain amount of web pages are 
downloaded. More details can be observed from the Fig.9 
and TABLE 3. 
 
5. Delimitations of our approach 

In our approach we are not concerned with the following 
aspects: 

 
1) Dealing with the form unless it is in the standard 

format: If the code is not properly written in a suitable 
form, our parser will not be able to conveniently extract 
information from the web page containing that form. 
Therefore the presence of the form may not be detected. 
 

2) Handling form that doesn’t support passing 
parameters via URL: As in [12] the get method append 
its parameters to the action in the URLs in the form of a 
dynamic URLs format that are often clearly visible (e.g. 
http://jobs.com/find?src=bd&s=go). In contrast the post 
method parameters are sent in the body of the HTTP 
request and its URL is just simple making it difficult for 
us to deal with it (e.g., http://jobs.com/find ). 

 
3) Forms with multiple elements: Because we’re 

focusing in only single input form, any form other than 
this kind will not be considered for submission. 

 
4) Forms that span across several pages: This is the case 

where the same form is extended over multiple 
continuous pages.  

 
5) Forms with JavaScript embedded: Usually input 

fields of this type of form have a lot of restriction such 
the type of input, the format, the length, the syntax. 
Because we are not going to handle all these, we just 
prefer to ignore them and discard the form.     
 

6) Forms that a single input is not a text field: The 
single input under consideration must be a text field type  

 
7) Forms with personal information indication such as 

username, password, E-mail will not be considered for 
privacy raison. 

 
6. Conclusion 

In this paper we have studied how to use a hidden web 
crawler as an approach to dynamic web indexing. We have 
proposed a complete and automated framework that may 
be quite effective in practice, leading to an efficient and 
higher coverage. We have tried to make our design as 
simple with fewer complexities as possible. Towards the 
achievement of our goal, we’ve already developed a 
prototype for dynamic web page indexing using java, and 
the website used is [13]. Our future work will include a 
complete implementation, evaluation and analysis of this 
approach. We’ll also try to compare the performance in 
both java platform and Hadoop MapReduce.  

 
References 
 
[1] Dan Sisson. Google SEO secrets, the complete guide, 

pp.26–28, 2006. 
[2] S. Raghavan, H. Garcia-Molina. Crawling the Hidden Web, 

in: Proc. of the 27th Int. Conf. on Very Large Databases 
(VLDB 2001), September 2001. 

[3] Dilip Kumar Sharmal, A.k.Sharma2.Analysis of techniques 
for detection of web search interfaces, 2YMCA University of 
Science and Technology, Faridabad, Haryana, 

Notations Meaning 

Q Contains crawled words 
Ftf Term frequency 

max Maximum number of 
submission=10 

Wi ith word 
Limit Current number of submission 

i Word index 
D_URL Dynamic URL 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 257



 

 

India,http://www.csi-india.org/web/csi/studentskorner-
december10, accessed on June, 2011. 

[4] A.Ntoulas, Petros Zerfos, Junghoo Cho, Downloading 
Textual Hidden Web Content through Keyword Queries, 
JCDL '05. Proceedings of the 5th ACM/IEEE-CS Joint 
Conference, 2005. 

[5] Luciano Barbosa, Juliano Freire, siphoning hidden-web data 
through keyword-based interfaces, Journal of Information 
and Data management, 2010. 

[6] http://www.w3schools.com/html/html_forms.asp, accessed 
on, June 2011 

[7] Wiley, Data Mining the Web Uncovering 
Patterns.(2007).DDU.[0471666556]. 

[8] Pradeep, Shubha Singh, Abhishek, NewNet- Crawling Deep 
Web, IJCSNS International Journal of Computer Science 
and Network Security, VOL.10 No.5, pp. 129-130, May 
2010. 

[9] http://www.worldwidewebsize.com/, accessed on June, 
2010. 

[10] J Bar-Ilan - Methods for comparing rankings of search 
engine results-2005,http://www.seo-jerusalem.com/googles-
best-kept-secret/,http://www.search-marketing.info/search-
algorithm/index.htm, accessed on June, 2010. 

[11] David Hawking, Web Search Engines-1, pp. 87-88, 2006. 
[12] Jayant Madhavan, David Ko, Luc jaKot, Vignesh 

Ganapathy, Alex Rasmussen, Alon Halevy. “Google's Deep-
Web Crawl”, Proceedings of the International Conference 
on Very Large Databases (VLDB), 2008. 

[13] http://www.dmoz.org/, accessed on June, 2010. 
[14] Brijendra Singh, Hemant Kumar Singh."Web Data Mining 

Research: A Survey", IEEE, 2010. 
[15] http://www.ncbi.nlm.nih.gov/pubmed, accessed on June, 

2010. 
[16] C.H.Chang, M.Kayed, M.R.Girgis, K.F.Shaalan,” A survey 

of web information extraction systems”. IEEE Transactions 
on Knowledge and Data Engineering 18(10), pp.1411–1428, 
2006. 

[17] P.Wu, J.R.Wen, H.Liu, W.Y.Ma,"Query selection 
techniques for efficient crawling of structured web sources". 
In: Proc. of ICDE, 2006. 

[18] Wang Hui-chang, Ruan,Shu-hua, Tang,Qi-jie."The 
Implementation of a Web Crawler URL Filter Algorithm 
Based on Caching”. Second International Workshop on 
Computer Science and Engineering, IEEE, 2009. 

[19] Jeffrey Dean, Sanjay Ghemawat ."MapReduce: Simplified 
Data Processing on Large Clusters". To appear in OSDI, 
2004 http://labs.google.com/papers/mapreduce.html. 

[20] http://hadoop.apache.org/, accessed on june, 2010. 
[21] King-Ip Lin, Hui Chen. "Automatic Information Discovery 

from the “Invisible Web”", Information Technology: 
Coding and Computing (ITCC’02), IEEE, 2002. 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Mohammad Rafiuzzaman is 
currently in the final year of bachelor 
degree in Computer Science and 
Information Technology (CIT) at the 
Islamic University of Technology. 
 

 
 
 
 
 

Moumie Soulemane did his Higher 
Diploma in Computer Science and 
Information Technology (CIT) with 
specialization in web technology from 
the Islamic University of Technology 
(IUT), Bangladesh in 2010. Currently 
he is the final year student for the 
B.Sc. degree in Computer Science 
and Information Technology (CIT) at 
the same university. 
 
 

 
 
 
 
 
 
 
 
 
 
 
He did his Master of Science degree in Computer Science 
(Specialization on NetCentric Informatics) from University of 
Trento (UniTN), Italy in 2009. He had received University Guild 
Grant Scholarship for the two years (2007-2009) Master’s study 
and also awarded with early degree scholarship. He has 5 
research papers published in different international journals. He is 
currently working as an Assistant Professor in the department of 
Computer Science and Information Technology (CIT), IUT, 
Bangladesh. His current research interests are on web mining, 
Human Computer Interaction, and Ubiquitous Computing. 
 
 
 
 
 

Hasan Mahmud has received his 
Bachelor degree in Computer 
Science and Information Technology 
(CIT) from Islamic University of 
Technology (IUT), Bangladesh in 
2004. After that he had joined as a 
faculty member in Computer Science 
and Engineering (CSE) department 
at Stamford University Bangladesh.  
 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 258




