

Identifying Clusters of Concepts in a Low Cohesive Class
for Extract Class Refactoring Using Metrics

Supplemented Agglomerative Clustering Technique

A. Ananda Rao1 and K. Narendar Reddy2

 1 Professor of CSE and Principal, JNTUACE
Anantapur, Andhra Pradesh, India

2 Associate Professor, Dept. of CSE, CVR College of Engineering
Hyderabad, India

Abstract
Object oriented software with low cohesive classes can increase
maintenance cost. Low cohesive classes are likely to be
introduced into the software during initial design due to
deviation from design principles and during evolution due to
software deterioration. Low cohesive class performs operations
that should be done by two or more classes. The low cohesive
classes need to be identified and refactored using extract class
refactoring to improve the cohesion. In this regard, two aspects
are involved; the first one is to identify the low cohesive classes
and the second one is to identify the clusters of concepts in the
low cohesive classes for extract class refactoring. In this paper,
we propose metrics supplemented agglomerative clustering
technique for covering the above two aspects. The proposed
metrics are validated using Weyuker’s properties. The approach
is applied successfully on two examples and on a case study.

Keywords: Low Cohesive Class, Metrics, Agglomerative
Clustering Technique, Dendrogram, Extract Class Refactoring,
Jaccard Similarity Coefficient.

1. Introduction

The maintainability of object oriented software depends on
the quality of software. Software quality is likely to get
reduced due to deviation from design principles and due to
software deterioration during evolution. The reduction in
software quality can be attributed to the presence of bad
smells. Low cohesive class is one of the bad smells. Object
oriented software with low cohesive classes can increase
maintenance cost. Defects (bad smells) in software cause
the system to exhibit high complexity, improper behavior,
and poor maintainability [1]. It is necessary to detect and
correct the defects to make software maintainable. One of

the ways to make object oriented software systems
maintainable is refactoring. Techniques that reduce object
oriented software complexity by incrementally improving
the internal software quality without affecting the external
behavior come under refactoring [2]. In the context of
software under evolution, refactoring is used to improve
the software quality. The improvement in the software
quality is, in terms of, maintainability, complexity,
reusability, efficiency, and extensibility [3].

In the literature active research is being carried out with
respect to object oriented software refactoring.
Considering the importance of low cohesive classes and
refactoring, we have proposed an approach for identifying
low cohesive classes and clusters of concepts in low
cohesive classes for extract class refactoring. The low
cohesive class indicates the presence of god class or
divergent change bad smell. Divergent change bad smell is
present in object oriented software whenever a class needs
to be changed for different changes for different reasons in
other classes [4]. The changes are propagated to the
affected class due to rippling effects. The change
propagations depend on strength of coupling between
classes. Using strength of coupling between classes, our
metric DOCMA(AR) (dependency oriented complexity
metric for an artifact affected by ripples) can indicate the
class affected by divergent change bad smell [5]. This bad
smell indicates that the affected class has low cohesion and
is a large class. According to Demeyer [6] the god class is
low cohesive and memory consuming class. Object
oriented software with low cohesive classes can increase
maintenance cost. Low cohesive class performs operations
that should be done by two or more classes. One of the
design principles in object oriented approach is to design
the class with “single minded” function [12]. The violation

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 185

of this design principle results in large, complex, and low
cohesive classes. The low cohesive class cohesion can be
improved by splitting the class by extracting cohesive and
independent groups of members addressing different
functionalities using extract class refactoring [4]. A
concept is a cluster (group) of class members addressing a
single minded function. In this regard, two aspects are
involved; the first one is to identify the low cohesive class
and the second one is to identify clusters of concepts in
low cohesive class which need to be refactored using
extract class refactoring. In this paper, we propose an
approach which is based on metrics supplemented
hierarchical agglomerative clustering technique for
covering the above two aspects. In this paper,
“agglomerative clustering technique” means
“agglomerative clustering algorithm”.

Even though clustering techniques are mainly used in data
mining, they are being applied successfully in software
engineering. Clustering techniques can identify groups of
similar entities [7],[8]. Clustering methods have very good
potential to be used in software engineering [9] indicated
by its use in software remodularisation[10]. Clustering
techniques can identify groups of similar entities where in
each group is conceptually different and these groups may
address different functionalities.

The contributions of the proposed approach are the
following:

- Metrics are proposed to supplement the agglomerative
 clustering technique (ACT) to handle the situations
 where some small clusters are formed.
- Identification of low cohesive classes.
- Identification of clusters of concepts in a low cohesive
 class using the approach which is based on metrics
 supplemented agglomerative clustering technique.

The organization of the paper is as follows. Section 2
presents the related work. Section 3 presents approach to
clustering. The results of experimental cases are presented
and discussed in section 4. The conclusions have been
placed in section 5.

2. Related Work

The low cohesive classes can be caused by god class or
divergent change bad smells. Lot of research has been
done in identifying god classes. The main contributions are
from [11], [1], [6]. According to Deymer [6] the god class
is low cohesive and memory consuming class. Any change
to the system may lead to this class. According to Trifu
and Marinescu [11] god classes are “large, non-cohesive

classes that have access to many foreign data” and they
proposed a metrics-based method to identify. Tahvildari
and Kontogiannis [1] proposed quality design heuristics
and use a diagnosis algorithm based on coupling,
complexity, and cohesion to identify design problems
(flaws).

Lot of work has been done with respect to remodularising
or partitioning or clustering large software modules. Some
of them are [13], [14], [15]. In all of the above works
remodularisation of software modules in a higher level
(like package or file level) is proposed. We need
clustering at class level.

Some of the works which focuses on software clustering at
class level are: Simon et al. [16] suggested visualization
techniques to identify extract class opportunities.
Visualizing large classes can be difficult and make it
difficult to identify clear clusters. De Lucia et al. [17]
propose a methodology that uses structural and semantic
metrics for identifying extract class refactoring
opportunities. The semantic cohesion metric is based on
the names of classes and entities which can be developer
dependent hence, may change the results. In a recent work,
Joshi and Joshi [18] uses concept lattice for identifying
extract class refactoring opportunities. It is identified by
the authors that for large systems the lattices can become
very complex for the designer to identify problematic cases
by inspecting the lattice visually. An algorithm [26] is
proposed by the authors to find clusters based on similarity
matrix. It is likely to consume more time to identify the
clusters and it is threshold value dependant.

In most recent work, Marios Fokaefs et al [19] apply the
agglomerative clustering algorithm for several threshold
values (ranging from 0.1 to 0.9) and present all possible
results to the user. Algorithm also identifies clusters of
cohesive entities ranked according to their impact on the
design of the whole system and presented to the designer.
In contrary to [19], instead of presenting results at different
thresholds, we compute clusters at particular threshold and
supplement with metrics to merge small clusters with other
clusters. In our approach, we supplement the
agglomerative clustering technique (ACT) with metrics
which can handle situations where ACT alone cannot give
acceptable clusters in some situations. Our approach is not
much dependent on the threshold value if it is not chosen
either near 0 or near to 1. Our approach reduces much
human intervention.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 186

3. Proposed Approach

The aim of the proposed approach is to identify the low
cohesive classes and clusters of concepts in low cohesive
classes.

The proposed approach contains two steps:

Step 1:
Identify low cohesive classes using the metrics LCOM[22],
TCC[23], and DOCMA(AR) [5]. LCOM and TCC metrics
values can be used to identify the low cohesive class due to
god class bad smell. Whereas, DOCMA(AR) metric value
can be used to identify the low cohesive class due to
divergent change bad smell.

Step 2:
The metrics supplemented agglomerative clustering
technique is applied on low cohesive class which is found
in step 1. During step 2, the clusters of concepts which
need to be refactored are identified. During this step,
firstly, similarities between the class members are
calculated and then the agglomerative clustering algorithm
(technique) is applied to find the clusters at a specified
threshold. At the specified threshold there may be some
small clusters which need to be merged, this is done with
the help of proposed metrics. The agglomerative clustering
technique is explained in the following section 3.1.

3.1 Agglomerative Clustering Technique (ACT)

The agglomerative clustering algorithm [8] (which is a
hierarchical clustering algorithm) is used in this paper.
The Agglomerative Clustering Algorithm (Technique) is
given below:

Step 1: Assign each entity (class member) to a single
cluster.

Step 2: Repeat merging while the specified threshold value
is not reached.

- Merge two closest clusters according to the
considered merging criteria.

Step 3: Display the outcome of the algorithm as a
hierarchy of clusters (Dendrogram).

The algorithm requires a threshold value for the similarity
metric as a cut-off value. The clusters which are output
from the algorithm are at the threshold (cut-off) value. The
output hierarchy of the clusters is usually represented by a
dendrogram. It has tree like structure. The leaves of the
tree represent the individual (single) entities. During the
merging process intermediate nodes are formed, they are

actual clusters to be output based on cut-off value. The
root is the final cluster which contains all the entities. The
tree height can be represented using distance metric value
or similarity metric value. We used similarity metric value
in this paper.

In Hierarchical agglomerative clustering algorithm
different linkage methods are available.

1. Single linkage 2. Complete linkage
3. Average linkage 4. Weighted linkage

According to Anquetil and Lethbridge [20] single linkage
gives less coupled clusters, complete linkage favors more
cohesive clusters, and average linkage gives clusters
somewhere in-between the above two. In this paper we
have used complete linkage method. The similarity metric
we used is the Jaccard similarity metric. Anquetil and
Lethbridge [20] indicate in their paper that jaccard
distance metric produces good results in software
remodularisation. To define the Jaccard similarity metric
[24] between two class members we employ the notion of
property set of class member. The property set for a
method (PSet_mi) is, the method itself and the methods
and fields used (accessed/called) by that method. The
property set for a field (PSet_fi) is, the field itself and the
methods using (accessing) it. These property sets are
similar to dependency sets used by Simon et al[16].
Similarity Matrix: Similarity matrix (m x m) is
constructed using the computed values of the above
similarity based metrics. Where, m is number of members
of the class. Class member means it can be a class method
or field (variable).

The Jaccard index, also known as the Jaccard similarity
coefficient (originally coined coefficient de communauté
by Paul Jaccard [24]), is used for comparing the similarity
and diversity of entities (sample sets).

Based on defined property sets we calculate the Jaccard
similarity metric between two class members A and B as
follows:

BA
BA

B)JSimM(A,
∪

∩
=

Similarity between two entities depends on the properties
which are shared [25].

3.2 Proposed Metrics to Supplement Agglomerative
Clustering Technique

The clusters identified at cut-off value may give clusters
with very few members (may be single member clusters),

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 187

hence we need to merge them with other clusters. For this
purpose we have proposed some metrics. The metrics are
given below.
CIM_V - Cluster Identification Metric for Variable =
ratio of number of methods within the cluster that
reference the variable under consideration to the total
number of methods in the cluster
CIMVR_M - Cluster Identification Metric for Method
(Based on Variable References) = ratio of number of
variables within the cluster referred by the method to the
total number of variables in the cluster.
CIMC_M - Cluster Identification Metric for Method
(Based on Method Calls) = ratio of number of methods
within the cluster called by method under consideration to
the total number of methods in the cluster
CIMI_M - Cluster Identification Metric for Method
(Based on Method Invocations) = ratio of number of
methods within the cluster that invoked method under
consideration to the total number of methods in the cluster.

Contexts for applying the proposed metrics:

The contexts in which the proposed metrics can be applied
are given in Figures 1, 2, 3, 4, and 5. The cluster to be
merged with other cluster is indicated by C1.

The contexts are:
Context 1: Only one variable (field) in C1 (Figure 1).
Context 2: Only one method in C1 (Figure 2).
Context 3: Only variables (two or more variables).
Context 4: Only methods (two or more methods)
Context 5: Methods and variables. (At least one method
and one variable)

The proposed metrics can be applied for all the five
contexts. In all the contexts (Figures 1 to 5) proposed
metrics can be used in merging the element(s) from cluster
1 (C1) with cluster 2 (C2) or cluster 3 (C3) or cluster n
(Cn).

3.2.1 Validation using Weyuker’s Properties

The proposed metrics are validated using the Weyuker’s
properties [21]. The validation results are given in
Table 1.

Only eight properties are considered for validation. The
seventh property is not considered for validation. Seventh

 . . .

Cn C2

m1,m3,a3,a4

m2,m6,m7,
m9,a1,a5, a6

m4,m5,m8,
a2,a7, a8

C1

Fig. 5 Context5 for applying proposed
metrics

 . . .

Cn C2

m2,m3,m5

m1,m6,m7,
a1,a3, a4

m4,m8,m9,
a2,a5, a6

C1

Fig. 4 Context4 for applying
proposed metrics

 . . .

Cn C2

a2,a3,a4

m1,m3,m4,
m5,a1,a6, a7

m2,m6,m7,
m8,a5, a8,a9

C1

Fig. 3 Context3 for applying
proposed metrics

 . . .

Cn C2

m3

m1,m4,
m5,a1,a2, a4

m2,m6,m7,
m8,a3, a5,a6

C1

Fig. 2 Context2 for applying
proposed metrics

 . . .

Cn C2

a1

m1,m2,
m5,a3, a4,a7

m4, m3, m6,
m7,a2,a5, a6

C1

Fig. 1 Context1 for applying
proposed metrics

Table 1: Validation results

 P1 P2 P3 P4 P5 P6 P7 P8 P9

CIM_V Y Y Y Y Y Y NA Y Y
CIMVR_

M Y Y Y Y Y Y NA Y Y

CIMC_M Y Y Y Y Y Y NA Y Y

CIMI_M Y Y Y Y Y Y NA Y Y

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 188

property specifies that the permutation of elements within
measured entity can change the metric value. This property
is not suitable for OO systems, since the order of methods
declaration inside a class does not change the order in
which they are executed. Cherniavsky and Smith [27]
suggest that this property is not appropriate for OOD
metrics.

For contexts 1, 2, and 3 all the proposed metrics satisfied
all the eight properties which are applicable to object
oriented systems. In case of context 4 the metrics CIMC_M
and CIMI_M did not satisfy the properties 5 and 9. In case
of context 5, all the metrics did not satisfy properties 5 and
9. However, at least, 6 properties are satisfied out of 8
properties in all the contexts. The validation results
indicate the suitability of metrics for the purpose for which
they are proposed.

4. Experimental Results

Example 1:

The directed graph for the members of the class considered
in this example is given in Figure 6. In the graph, the nodes
represent methods and variables (fields) and the edges
indicate that a dependency exists between two class
members.

The class has six methods and four variables (fields).

The methods are: A1, A2, A3, A4, A5, A6
The variables are: av1, av2, av3, av4

The Jaccard similarity metric is used for finding the
similarity between the class members. Similarity matrix for
the members of the class given in example 1 is shown in
Table 2. The hierarchical agglomerative clustering
algorithm is applied on the similarity matrix (Table 2).
Figure 7 shows the dendrogram produced by the algorithm.

 A1 A2 A3 A4 A5 A6 av1 av2 av3 av4

A1 1
A2 0.5 1
A3 0.6 0.6 1
A4 0.4 0.4 0.5 1
A5 0 0 0 0 1
A6 0 0 0 0.14 0.4 1
av1 0.5 0.33 0.67 0.5 0 0.12 1
av2 0.17 0.4 0.5 0.33 0 0.14 0.5 1
av3 0 0 0 0 0.5 0.75 0 0 1
av4 0 0 0 0 0.67 0.2 0 0 0.25 1

Table 2: Similarity matrix for the class members shown in Figure 6

A4
A1

A2 av2

av1

A3

A5

av3

A6

av4

Fig. 6 Directed graph for the members of class in
example 1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 189

Clusters Identification at a given threshold value:

Consider the threshold value of 0.2. At this threshold, three
clusters are produced, they are:
G1= {A5, A6, av3, av4}
G2= {av2}
G3= {A1, A2, A3, A4, av1}

Since G2 contain only one member (variable member) it
needs to be merged with other cluster. This represents
context 1 (Figure 1). For this purpose, CIM_V metric is
computed.

CIM_V (av2, G1) = 0/2=0,
CIM_V (av2, G3) = ¾ = 0.75
Since CIM_V (av2) is more with respect to G3 when
compared to G1, hence G2 (av2) is merged with G3.

After merging two clusters are formed. They are:
G1= { A5, A6, av3, av4},
G3= { A1, A2, A3, A4, av1, av2}

Example 2:

The directed graph for the members of the class considered
in this example is given in Figure 8.

The class has seven methods and two variables (fields).
The methods are: A1, A2, A3, A4, A5, A6, A7
The variables are: av1, av2

The similarity matrix is constructed using Jaccard
similarity metric values for the class members and the
hierarchical agglomerative clustering algorithm is applied
on the similarity matrix. The clusters formed at 0.5
threshold value are:

G1= {A1, A4, A3}
G2= {av1}
G3= {A2}
G4= {A5, A6, A7}

A1 A4 A3

A2 av1

A5

A7

av2

A6

Fig. 8 Directed graph for the members of class in
example 2

Fig. 7 Dendrogram showing the clusters

A6 av3 A5 av4 A3 av1 A4 A1 A2 av2

0

0.17

0.2

0.33

0.5

0.67

0.75

1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 190

G5= {av2}

Since single member clusters are there, they need to be
merged. Merging G2 or G5 with other cluster represents
context 1. Whereas, merging G3 with other cluster
represents context 2 (Figure 2).

For context 1 the metric CIM_V is computed.

CIM_V (av1, G1) = 2/3=0.66
CIM_V (av1, G4) = 0/3=0

Since CIM_V metric value for av1 (G2) with respect to
G1 is more when compared to G4, hence G2 is merged
with G1. Similarly, av2 (G5) is merged with G4.

Since merging G3 (A2) with other cluster represents
context 2, the metrics CIMVR_M, CIMC_M, and
CIMI_M are computed.

CIMVR_M (A2, G1) = 1/1 = 1
CIMVR_M (A2, G4) = 1/1 = 1
CIMC_M (A2, G1) = 0/3 = 0
CIMC_M (A2, G4) = 0/3 = 0
CIMI_M (A2, G1) = 0/3 =0
CIMI_M (A2, G4) = 0/3 = 0

Since same metrics values indicate A2 (G3) can be placed
either in G1 or G4.
The formed clusters after merging are:
G1= {A1, A4, A3, av1, A2}
G4= {A5, A6, A7, av2}

In situations where a member has equal similarity with two
groups, (for example, in the above case) coupling with
respect to other classes need to be computed before
merging.

Case Study : Bank Application

Bank application developed by students as part of their
academic project is given as case study. The novice
designer has a tendency to deviate from the design
principles and may end up designing low cohesive classes.
The bank application is developed in java. It contains the
following classes:
CustomerAccount, Bank, ATMCard, Locker,
DemandDraft, FixedDeposit, Employee, Manager, Report,
Salary, DatabaseProxy. The proposed approach is applied
on this case study to find low cohesive classes and clusters
of concepts in low cohesive classes. The approach contains
two steps.

 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

V
11

M1 1 .5 .5 .43 .43 .1 0 0 .1 0 0 .17 .2 .33 .25 .22 0 0 0 0 0 0
M2 1 .7 .67 .25 .1 0 0 .1 0 0 .27 .33 0 .25 .38 0 0 0 0 0 0
M3 1 .67 .5 .1 0 0 .1 0 0 .27 .33 0 .25 .38 0 0 0 0 0 0
M4 1 .33 .13 0 0 .13 0 0 .2 .25 0 0 .29 0 0 0 0 0 0
M5 1 .13 0 0 .13 0 0 .33 .43 0 .14 .13 0 0 0 0 0 0
M6 1 .5 .5 .11 0 0 .18 0 0 0 0 .29 .29 .29 0 0 0
M7 1 .6 0 0 0 0 0 0 0 0 33 .33 .33 0 0 0
M8 1 0 0 0 0 0 0 0 0 .33 .4 .33 0 0 0
M9 1 .5 .5 .18 0 0 0 0 0 0 0 .29 .29 .29

M10 1 .6 0 0 0 0 0 0 0 0 .33 .33 .33
M11 1 0 0 0 0 0 0 0 0 .33 .33 .33

V1 1 .56 .11 .33 .44 .1 0 0 .1 0 0
V2 1 .14 .43 .57 0 0 0 0 0 0
V3 1 .2 .17 0 0 0 0 0 0
V4 1 .5 0 0 0 0 0 0
V5 1 0 0 0 0 0 0
V6 1 .6 .6 0 0 0
V7 1 .6 0 0 0
V8 1 0 0 0
V9 1 .6 .6

V10 1 .6
V11 1

Table 3: Similarity matrix for the members of class “CustomerAccount”

 M1 – open(), M2 – deposit((), M3 – withdraw(), M4 – display(), M5 – close(), M6 – addCust(), M7 – updateAddr(), M8 – displayAddr(),
 M9 – apprLoan(), M10- repay(), M11-closeloan(), V1 – CustName, V2 – AcNo, V3 – AcType , V4 – Amount, V5 – Balance,
 V6 – CustId, V7 – PermAddr , V8 – CommnAddr, V9 – LoanNo, V10- LoanType, V11- LoanAmnt

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 191

Step 1:
During this step LCOM and TCC metrics are computed for
the different classes. The CustomerAccount class has
LCOM metric value of 5 and TCC metric value of 0.49.
The high LCOM value and low TCC value indicate that
the CustomerAccount is a low cohesive class.

Step 2:
The similarity matrix is constructed using Jaccard
similarity metric values for the class members of the class
“CustomerAccount” and it is shown in Table 3. The
hierarchical agglomerative clustering algorithm is applied
on the similarity matrix given in Table 3.

 The clusters identified at the threshold value of 0.2 are:

G1 = M1, M2, M3, M4, M5
G2 = V1, V2, V4, V5
G3 = V3
G4 = M6, M7, M8, V6, V7, V8
 G5 = M9, M10, M11, V9, V10, V11

Since G3 contains single variable and G2 contains only
variables, they need to be merged with other groups. They
represent contexts 1 and 3 respectively. Hence the metric
CIM_V is computed to find the clusters with which G2,
G3 can be merged.

Finding the cluster for G3(V3) merging:

CIM_V (V3) with respect to G1 = 1/5 = 0.2
CIM_V (V3) with respect to G4 = 0
CIM_V (V3) with respect to G5 = 0
Since CIM_V (V3) is high with respect to G1, hence V3
(G3) is merged with G1.

Finding the cluster for G2 merging:

CIM_V (V1) with respect to G1 = 5/5 = 1

CIM_V (V1) with respect to G4 = 1/3 =0.33
CIM_V (V1) with respect to G5 = 1/ 3 =0.33

CIM_V (V1) with respect to G1 is high when compared to
G4 and G5 and CIM_V (V2, V4, V5) with respect to G1
is more when compared to G4 and G5, hence merge G2
with G1. After merging three clusters are formed, they are:

G1 = M1, M2, M3, M4, M5, V1, V2, V4, V5, V3
G4 = M6, M7, M8, V6, V7, V8
G5 = M9, M10, M11, V9, V10, V11

4.1 Observations

The LCOM [22] and TCC [23] are computed for the
classes considered in the examples and case study before
and after refactoring and presented in Table 4. The high
LCOM and low TCC values indicate low cohesive classes,
whereas low LCOM and high TCC values indicate high
cohesive classes. The values in Table 4 indicate the
improvement in cohesion due to refactoring in two
experimental examples and in one case study.

The high value of LCOM and low value of TCC for the
CustomerAccount class of bank application indicate the
low cohesive class. The Agglomerative Clustering
Technique identified three clusters of concepts for
CustomerAccount class. These three clusters are refactored
into three classes by using extract class refactoring. The
extracted classes are: Account, Customer, and Loan. The 0
(zero) LCOM value and TCC value of 1 for Account
(cluster1), Customer (cluster2), and Loan (cluster3)
indicate high cohesive classes. Hence our approach could
identify the low cohesive class, and the clusters to be
refactored. The increase in cohesion after refactoring,
indicate the effectiveness of the approach in identifying
proper clusters for refactoring.

 Before
Refactoring

 After Refactoring
 Cluster1 Cluster2 Cluster3

 LCOM TCC

LCOM TCC

LCOM TCC

LCOM TCC

Example 1 7 .47 0 1 0 1 - -
Example 2 9 .43 0 .5 0 1 - -
Case Study 5 .49 0 1 0 1 0 1

Table 4. LCOM and TCC values before and after refactoring

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 192

The proposed approach is useful because of the following
reasons:

- It handles the situation where Agglomerative
clustering technique (ACT) alone cannot identify
proper clusters. Presenting to the user clusters at
different thresholds may not solve the problem. In
some situations, clusters at any threshold other
than maximum (which leads to a single cluster)
may contain clusters with single members or
small clusters with one member or clusters with
only variables. In that situation ACT does not
guide us how to merge those small clusters.
Hence, proposed metrics will help in those
situations.

- In our approach, we need to specify one
threshold value somewhere in between 0 and 1,
which is neither near to 0 nor near to 1. Merge
small clusters with the help of proposed metrics.
The rules (in what situations the groups should be
merged) can be specified to the tool, which guide
the merging process using the proposed metrics.
Hence, they reduce the human intervention to
study the clusters at different thresholds and
decide.

- When a single member is tried to be merged, if
metrics values are equal with respect to two or
more clusters, it can be merged by considering
coupling with respect to other classes.

5. Conclusions

In this paper, we proposed an approach for identifying low
cohesive classes and clusters of concepts in low cohesive
classes potential for extract class refactoring. Proposed
approach consists of two steps. In step 1, low cohesive
classes are identified. In step 2, the clusters of concepts in
low cohesive classes are identified for extract class
refactoring. The proposed approach is based on metrics
supplemented agglomerative clustering technique.
Agglomerative Clustering Technique is based on the
Jaccard similarity metric values between class members.
Metrics which are used to supplement agglomerative
clustering technique are newly proposed. The metrics are
validated using Weyuker’s properties. The approach is
applied on two examples and on academic software
developed by students. In the two examples and case study
our approach could find low cohesive classes and clusters
of concepts to be refactored. The low cohesive class
identified by our approach in the bank application has high
LCOM and low TCC value. High LCOM and low TCC
values indicate low cohesive class. The clusters identified
by our approach are refactored using extract class
refactoring. After refactoring the LCOM metric value is

decreased whereas TCC metric value is increased. These
values indicate increase in cohesion due to refactoring the
clusters of concepts into new classes. The increase in
cohesion after refactoring, indicate the effectiveness of the
approach in identifying proper clusters for refactoring.
Hence, our approach could effectively identify low
cohesive classes and clusters of concepts to be refactored.

References
[1] L. Tahvildari and K. Kontogiannis. “A Metric-Based
 Approach to Enhance Design Quality Through Meta-Pattern

Transformations” In Proceedings of the 7th European
Conference on Software Maintenance and Reengineering,
March 26-28, 2003, pp. 183–192.

[2] W .F. Opdyke, “Refactoring : A Program Restructuring Aid in
Designing Object-Oriented Application Frameworks”, PhD
thesis, Univ. of Illinois at Urbana Champaign, 1992.

[3] Tom Mens and Tom Tourwe. “A Survey of Software
Refactoring”, IEEE Transactions on Software Engineering.
Volume 30, Number 2, 2004, pp 126-139.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring Improving the Design of Existing Code, Boston,
MA, AddisonWesley, 1999.

[5] K.Narendar Reddy and A.Ananda Rao, “Dependency Oriented
Complexity Metrics to Detect Rippling Related Design
Defects”, ACM SIGSOFT Software Engineering Notes,
Volume 34, Number 4, July 2009.

[6] S. Demeyer, S. Ducasse, and O. M. Nierstrasz, Object-
Oriented Reengineering Patterns, Morgan Kaufman
Publishers, 2002.

[7] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining, Addison-Wesley, 2005.

[8] Jiawei Han and M. Kamber, Data Mining Concepts and
Techniques, Morgan Kaufmann Publishers, 2005.

[9] V. Tzerpos and R. C. Holt, “Software Botryology: Automatic
Clustering of Software Systems”, In Proceedings of the
International Workshop on Large-Scale Software
Composition, 1998.

[10] T. A.Wiggerts, “Using Clustering Algorithms in Legacy
Systems Remodularization”, In WCRE ’97: Proceedings of
the 4th Working Conference on Reverse Engineering, 1997.

[11] A. Trifu and R. Marinescu, “ Diagnosing Design Problems
in Object Oriented Systems”, In Proceedings of the 12th
Working Conference on Reverse Engineering, 2005.

[12] Roger S. Pressman, Software Engineering A Practitioner’s
Approach, Sixth Edition, McGraw-Hill Int’l Edition, 2005.

[13] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E.
 R.Gansner, “Using Automatic Clustering to Produce High-
 Level System Organizations of Source Code”, In
 Proceedings of the 6th International Workshop on Program
 Comprehension, 1998 ,pp. 45–52.
[14] D. Doval, S. Mancoridis, and B. S. Mitchell “Automatic

Clustering of Software Systems Using a Genetic
Algorithm”,. In Proceedings of the 5th International
Conference on Software Tools and Engineering Practice, 30
August - 2 September 1999.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 193

[15] K. Sartipi and K. Kontogiannis, “Component Clustering
Based on Maximal Association”, In Proceedings of the
IEEE Working Conference on Reverse Engineering,
October 2001.

[16] F. Simon, F. Steinbruckner, and C. Lewrentz, ”Metrics
Based Refactoring”, In Proceedings of the 5th European
Conference on Software Maintenance and Reengineering,
2011, pp.30–38.

[17] A. D. Lucia, R. Oliveto, and L. Vorraro, “Using Structural
and Semantic Metrics to Improve Class Cohesion”, In 24th
IEEE International Conference on Software Maintenance,
2008.

[18] P. Joshi and R. K. Joshi, “Concept Analysis for Class
Cohesion”, In European Conference on Software
Maintenance and Reengineering, March 24-27 2009, pp.
237–240.

[19] Marios Fokaefs, Nikolaos Tsantalis, and Alexander
Chatzigeorgiou,”Decomposing Object-Oriented Class
Modules Using an Agglomerative Clustering Technique”, In
Proc. ICSM, 2009, pp. 93-101.

[20] N. Anquetil and T. Lethbridge, “Experiments with
Clustering as a Software Remodularization Method”, In
WCRE ’99: Proceedings of the 6th Working Conference on
Reverse Engineering, 1999.

[21] E.J.Weyuker, “Evaluating Software Complexity Measures”,
IEEE Transactions on Software Engineering, Vol. 14, No.
9, 1988, pp. 1357-1365.

[22] S.R.Chidamber and C.F.Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on Software
Engineering, Vol. 20, No. 6, 1994, pp. 476-493.

[23] J.M.Bieman and B.K.Kang, “Cohesion and Reuse in an
Object-Oriented System”, In Proc. ACM Symp. Software
Reusability (SSR’94), 1995, pp. 259-262.

[24] Paul Jaccard . Étude comparative de la distribution florale
dans une portion des Alpes et des Jura. Bulletin de la

Société Vaudoise des Sciences Naturelles 37, 1901, pp.
547–579.

[25] Mario Bunge. Treatise on Basic Philosophy, Vol 3:
 Ontology I, The Furniture of the World, ordrecht_Holland,
D.Reidel Publishing Company, 1977.

[26] K.Narendar Reddy and A.Ananda Rao, “Poster paper:
Similarity Based Metrics for Performing Extract Class
Refactoring for the Class Affected by Ripples”, In ISEC(3rd
India Software Engg. Conference), Feb 25-27, 2010, Mysore,
India.

[27] J.C.Cherniavsky and C.H.Smith, “ On Weyuker’s Axioms for
 Software Complexity Measures”, IEEE Transactions on
 Software Engineering, Volume 17, 1991, pp 636-638.

Prof. Ananda Rao Akepogu received B.Sc.(M.P.C) degree from
Silver Jubilee Govt. College, SV University, Andhra Pradesh,
India. He received B.Tech. degree in Computer Science &
Engineering and M.Tech. degree in A.I & Robotics from University
of Hyderabad, India. He received Ph.D. from Indian Institute of
Technology, Madras, India. He is Professor of Computer Science
& Engineering and Principal of JNTUA College of Engineering,
Anantapur, India. Prof. Ananda Rao published more than fifty
research papers in international journals, conferences and
authored three books. His main research interests include
software engineering and data mining.

Narendar Reddy K is pursuing Ph.D. in Computer Science &
Engineering from JNTUA, Anantapur, India and he received his
M.Tech. in Computer Science & Engineering from the same
University. He received Bachelor’s degree in Computer Science &
Engineering (AMIE(CSE)) from Institution of Engineers, Calcutta,
India. Currently he is working as Associate Professor of Computer
Science & Engineering at CVR College of Engineering,
Hyderabad, India. His main research interests include Object
oriented software design, software metrics, refactoring, and
software testing. He is a member of IEEE, ACM, AMIE(I), and
IAENG.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 194

