
Graph Colouring Algorithm for Validating Labelled
2D Line Drawing Objects

M.Z. Matondang1, A.A.Samah2 H.Haron3 and H.A.Majid4

1 Faculty of Computer and Information Systems, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor Bahru, Malaysia

2 Faculty of Computer and Information Systems, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor Bahru, Malaysia

3 Faculty of Computer and Information Systems, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor Bahru, Malaysia

4 Faculty of Computer and Information Systems, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor Bahru, Malaysia

Abstract: Line labelling has been used to
determine whether a two-dimensional (2D) line
drawing object is a possible or impossible
representation of a three-dimensional (3D) solid
object. However, the results are not sufficiently
robust because the existing line labelling methods
do not have any validation method to verify their
own result. In this research paper, the concept of
graph colouring is applied to a validation technique
for a labelled 2D line drawing. As a result, a graph
colouring algorithm for validating labelled 2D line
drawings is presented. A high-level programming
language, MATLAB R2009a, and two primitive 2D
line drawing classes, prism and pyramid are used to
show how the algorithms can be implemented. The
proposed algorithm also shows that the minimum
number of colours needed to colour the labelled 2D
line drawing object is equal to 3 for prisms and

1n − for pyramids, where n is the number of
vertices (junctions) in the pyramid objects.

Keywords: Graph colouring, line labelling, line
drawing, validation.

1. Introduction
Discussions on three-dimensional (3D) solid object
reconstruction from two-dimensional (2D) single
views reveal that there are several steps that need to
be accomplished to transform a 2D drawing into a
3D view [1-3]. As the input of a reconstruction
process, a 2D drawing could be a regular or an
irregular line drawing. However, when the input is
an irregular form or a sketch, then the input should
be converted into a regular 2D line drawing first,
before proceeding to the interpretation of the

drawing. However, it is assumed that the
interpretation of a 2D single view into a 3D view is
always an easy task. Generally, people assume that
the interpretation of a drawing or an image as an
object does not need conscious thought. Moreover,
human vision itself appears effortless. For this
reason, the validation of the drawing is rarely
considered with regard to an object’s
transformation, especially when moving from a 2D
view into a 3D view. Some mistakes arise because
the drawing could be an impossible drawing or a
possible drawing that cannot be represented as a
common object, such as a matchbox. In other
words, the validity of the 2D drawing (whether it
represents an object or not) is important to know. A
validation process filters a 2D drawing for a 3D
reconstruction process, accepting the possible
drawings and rejecting the impossible drawings. In
this research paper, this validation process will be
the main focus of the discussion.
Several previous studies show that line labelling
has been used when representing 2D line drawings
and in reconstructing 3D objects [4-8]. These
studies have combined line labelling with
geometric models to reconstruct 3D objects from
2D line drawings. Line labelling is also useful for
identifying impossible objects and for validating
2D line drawings. The many line labelling
scenarios used before provide motivation to use
line labelling in the validation of 2D line drawings
in the present research. However, in this research
paper, the concept of graph colouring is applied to
colour labelled 2D line drawings. The objective of
the colouring process is the validation of the label
of the 2D line drawing. We need to increase the
speed of the validation process for 2D line

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 1

drawings, to determine whether a 2D line drawing
contains a possible or an impossible 3D object. In
addition, the colour labelling process is needed
because the line labelling algorithm does not have
any validation technique for its own result [9,10].
Readers interested in a detailed discussion about
the line labelling algorithm are referred to [6-8,11].
The next section presents a discussion about the
concept of graph colouring and some related issues.

2. Graph Colouring
In graph theory, a graph has a different meaning
compared to statistical topics that utilise bar, circle
and line graphs as representations of mathematical
equations. Here, a graph is a model that consists of
vertices and edges. Primarily, graphs illustrate real
life problems and situations, such as social
acquaintances, sports schedules, transportation
routes, and computer networks [12].
By definition, a graph (,)G V E= is a
mathematical model consisting of a finite set of
vertices { }1 2, , , nV v v v= , which are
represented by points, and a finite set of edges

{ }1 2, , , mE e e e= , which are represented by
line segments, where n and m are integers. Here,
two vertices connected by an edge are said to be
adjacent, and an edge is said to be incident to the
vertices it connects. The degree (deg) of a vertex is
the number of adjacent vertices. In this research
paper, we discuss a special case in graph theory that
is called graph colouring. Graph colouring is a
special case of graph labelling, where colour is
used as the label, so that there are no two adjacent
vertices, edges, or faces that are assigned the same
colour. If we are given a graph (,)G V E , then the
chromatic number ()G kχ = is defined as the
minimum numbers of colours needed to colour

(,)G V E . Assume that (,)G V E is a graph and

for which * (,)G V C= is a mapping function

:f v c→ with c C∈ a finite set of colours, such

that if 1 2()v v E∈ , then 1 2() ()f v f v≠ . This

statement implies that adjacent vertices are not
assigned the same colour [12].
There are three types of graph colouring, known as
vertex, edge, and face colouring. In this research
paper, the discussion is focused on edge colouring.
The edge colouring of a graph, (,)G V E , is a
colour assignment for each edge in (,)G V E , such

that for each two adjacent edges je and ke to a

vertex iv , those edges do not share the same
colour. For a detailed discussion of graph colouring
properties, readers can refer to [13] as an
authoritative reference on graph colouring.

Some related literature and previous studies show
that graph colouring is used to solve problems that
may involve conflicts or items that need to be
separated [12]. Several applications previously
performed include separating chemicals during lab
work, separating animals in a zoo, scheduling
classes or exams, and (the most common
application) colouring maps to separate distinct
countries. Iturriaga-Velazquez [14] shows that the
original problem involving the four-colour problem
is the question of whether four colours are
sufficient to colour the countries on a world map,
never assigning the same colour to two countries
with a common boundary. However, over time,
graph colouring has been applied to many various
fields of research. Marx [15] explained the
applications of graph colouring to scheduling
problems in his paper, while Gaceb et al. [16]
carried out physical layout segmentation for postal
sorting systems using a graph colouring
application. Redl [17] used the graph colouring
approach for university timetabling at the
University of Houston, and Dobrolowski et al. [18]
developed the Koala Graph Coloring Library,
which is an open graph colouring library for real
world applications. However, this research goes
beyond previous studies and applications because
we attempt to use the concept of graph colouring to
develop an algorithm for the validation of labelled
2D line drawings. The proposed algorithm
expedites the validation of 2D line drawings (to
classify them as possible versus impossible
objects), which is accomplished by a line labelling
algorithm. This method is expected to provide
better validation compared to the previous work of
Matondang et al. [10], which is the only line
labelling algorithm used to perform such a
validation. The line labelling algorithm itself
cannot be used as the validation technique to
validate its own labelled 2D line drawing; in other
words, the line labelling algorithm is not
sufficiently robust for the labelling process to
determine whether the line drawing is valid or
invalid, representing a solid versus an impossible
object, respectively. Therefore, the combination of
both the line labelling algorithm and the graph
colouring application can be useful to speed up and
enhance the validation of a 2D line drawing. The
graph colouring algorithm has been successful in
many fields, which provides motivation to adapt it
to the validation of 2D line drawings. The next
section presents the proposed algorithm.

3. The Proposed Algorithm
This section presents the proposed algorithm for
validating labelled 2D line drawings based on the
the concept of graph colouring. Our expected
output is a valid, labelled 2D line drawing object
with a different colour on each edge. Table 1 shows
the algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 2

Table 1: The proposed algorithm
Edge (line) colouring for labelled 2D line drawing
object

- Step 1: input the number of vertices
(junctions) in the labelled 2D line drawing
given (object given).
%%start the edge labelling.

- Step 2: input every horizontal edge.
- Step 3: input every vertical edge.

%%evaluate the greatest degree *deg in
the object given.

- Step 4: determine the greatest degree *deg
for each vertex (junction) in the object
given.
%%assume h, n as an integer number

for h=1:numberofvertex;
 n = 1;
 for i=1:numberofedge;
 if labeledge(i,1) == V(h,1);
 Degree(h,1) = n;
 n = n + 1;
 elseif labeledge(i,2) == V(h,1);
 Degree(h,1) = n;
 n = n + 1;
 end
 end
end

- Step 5: colouring process
Assume m is an integer number

L = zeros(numberofedge,1);
c = 0; %%assume c as the starting point
for the iteration
w = 1; %%assume w as the starting point
for the vertex addressing in S
for m=1:maxdegree
 c = c + 1;
 S = zeros(numberofvertex,1);

for j=1:numberofedge
 if L(j,1)==0
 if labeledge(j,1)~=S &
labeledge(j,2)~=S
 L(j,1)=c;

 S(w,1)=labeledge(j,1);
 w = w + 1;
 S(w,1)=labeledge(j,2);
 w = w + 1;
 elseif labeledge(j,1)==S
;
 L(j,1)=0;
 else labeledge(j,2)==S ;
 L(j,1)=0;
 end
 end

end
 end

4. Experimental Results
In this section, we present results that show how
the proposed algorithm has been implemented in
two classes of 2D line drawing objects, namely the
prism and pyramid. The results show the validation
of the 2D line drawing using both the line labelling
and the proposed graph colouring algorithm.
However, assumptions have been made to simplify
the implementation. The assumptions are as
follows: First, the tested 2D line drawings are
assumed to be an engineering sketch in the form of
a 2D line drawing that represents a solid model.
Second, the 2D line drawing is assumed to
represent a valid solid model when all unwanted
points or lines have been removed, and there are no
unconnected points or lines. Third, the solid model
is assumed to be a 2D line drawing with all of the
informative lines shown. Fourth, there is only one
hidden point in the backside of the solid model.
These assumptions make the proposed algorithm
more logical, or otherwise the engineering sketch is
not seen as a solid model because the projection is
parallel to the other faces of the object. In this case,
it is impossible to interpret, reconstruct and
represent the sketch as a solid model, and hence,
the analysis of the accuracy of the results will
become simpler.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 3

Table 2: The experimental result

2D line drawing Labelled 2D line drawing using
line labelling algorithm

Valid-labelled of 2D line
drawing with different colours
at each edge

Role Model

Cube

• Red (R), Orange (O), Yellow
(Y)

• Label and colour
(1,2) red
(2,3) orange
(4,5) red
(5,6) orange
(6,7) red
(7,4) orange
(1,4) yellow
(2,5) yellow
(3,6) yellow
• Number of visible vertices

= 7
• Number of visible edges =

8
• Number of colours needed

k = 3

L-block

• Red (R), Orange (O), Yellow
(Y)

• Label and colour
(1,2) red
(2,3) orange
(4,5) red
(5,6) orange
(6,7) red
(7,4) orange
(8,9) red
(9,10) orange
(10,11) red
(11,8) orange
(1,4) yellow
(2,5) yellow
(8,7) yellow
(9,6) yellow
(3,10) yellow
• Number of visible vertices

= 11
• Number of visible edges =

15
• Number of colours needed

k = 3

Stairs

• Red (R), Orange (O), Yellow
(Y)

• Label and colour
(1,2) red
(2,3) orange
(7,4) red
(6,5) red
(4,5) orange
(6,7) orange
(8,9) red
(9,10) orange
(10,11) red
(11,8) orange
(12,13) red
(13,14) orange
(14,15) red
(15,12) orange
(15,1) yellow
(11,22) yellow
(8,7) yellow
(10,13) yellow
(9,6) yellow
(2,4) yellow
(3,5) yellow
• Number of visible vertices

= 15
• Number of visible edges =

21
• Number of colours needed

k = 3

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 4

pentahedral-prism

• Red (R), Orange (O), Yellow
(Y)

• Label and colour
(1,2) red
(2,3) orange
(3,4) red
(5,6) red
(6,7) orange
(7,8) red
(8,9) orange
(9,5) yellow
(6,2) yellow
(1,5) orange
(3,7) yellow
(4,8) yellow
• Number of visible vertices

= 9
• Number of visible edges =

12
• Number of colours needed

k = 3

hexahedral-prism

• Red (R), Orange (O), Yellow
(Y)

• Label and colour
(1,2) red
(2,3) orange
(3,4) red
(4,5) orange
(11,6) red
(7,8) red
(6,7) orange
(9,8) orange
(9,10) red
(10,11) orange
(1,6) yellow
(3,8) yellow
(4,9) yellow
(5,10) yellow
(2,7) yellow
• Number of visible vertices

= 11
• Number of visible edges =

15
• Numbers of colour needed

k = 3

trihedral-pyramid

• Red (R), Orange (O), Yellow
(Y)

• Label and colour
(4,1) red
(4,2) orange
(4,3) yellow
(1,2) yellow
(2,3) red
(3,1) orange
• Number of visible vertices

= 4
• Number of visible edges =

5
• Number of colours needed

k = 3

kwartahedral-pyramid

• Red (R), Orange (O), Yellow
(Y) Green (G)

• Label and colour
(5,1) red
(5,2) orange
(5,3) yellow
(5,4) green
(2,3) red
(3,4) orange
(4,1) yellow
(1,2) green
• Number of visible vertices

= 5
• Number of visible edges =

7
• Number of colours needed

k = 4

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 5

pentahedral-pyramid

• Red (R), Orange (O), Yellow
(Y) Green (G), Blue (B)

• Label and colour
(6,1) red
(6,2) orange
(6,3) yellow
(6,4) green
(6,5) blue
(2,3) red
(3,4) orange
(4,5) red
(5,1) orange
(1,2) yellow
• Number of visible vertices

= 6
• Number of visible edges =

9
• Number of colours needed

k = 5

hexahedral-pyramid

• Red (R), Orange (O), Yellow
(Y) Green (G), Blue (B),
Violet (V)

• Label and colour
(7,2) red
(7,3) orange
(7,4) yellow
(7,1) green
(7,5) blue
(7,6) violet
(1,2) orange
(2,3) yellow
(3,4) red
(4,5) orange
(5,6) red
(6,1) yellow
• Number of visible vertices

= 7
• Number of visible edges =

11
• Number of colours needed

k = 6

Based on the results shown in Table 2 and the
assumptions that we made for implementing the
proposed algorithm, we found the number of
colours needed for a 2D line drawing’s
classification as a prism or a pyramid. For the
prism class with n vertices (junctions), there are n –
3 vertices with deg = 3 and 3 vertices with deg = 2.
The number of colours needed to colour the prism
is equal to the maximum number of the degree
*deg and is valid only for prisms where the number
of vertices is equal to 6n ≥ .
For the pyramid class with n vertices (junctions),
there are n – 1 vertices with deg = 3 and only one
vertex with deg = 1n − . The number of colours
needed to colour the pyramid is equal to 1n − and
is valid only for pyramids where the number of
vertices is equal to 4n ≥ .

5. Conclusions and Future Work
Line labelling has been used to determine whether
a two-dimensional (2D) line drawing represents a
possible or an impossible three-dimensional (3D)
solid object. However, prior work is not sufficiently
robust because the line labelling method does not
have any validation method for its own result. In
this research paper, a graph colouring method is
applied as the validation technique for a labelled
2D line drawing object. As a result, the graph
colouring algorithm for validating a labelled 2D

line drawing objects is presented. A high-level
programming language, MATLAB R2009a, and
two primitive 2D line drawing classes, prism and
pyramid, are used to show how the proposed
algorithm is implemented. Based on the
experimental results, it is shown that for the prism
class with n vertices (junctions), there are n – 3
vertices with deg = 3 and three vertices with deg =
2. The number of colours needed to colour the
prism is equal to the maximum number of deg and
is valid only for prisms having 6n ≥ vertices.
Meanwhile, for the pyramid class with n vertices
(junctions), there are n – 1 vertices with deg = 3
and one vertex with deg = 1n − . The number of
colours needed to colour the pyramid is equal to

1n − and is valid only for pyramids for which the
number of vertices is equal to 4n ≥ .
A suggestion for future research is to attempt to
extend the algorithm for a more complex and
general 2D line drawing that is not limited to
objects in the prism and pyramid classes.

6. Acknowledgement
The authors would like to thank the Universiti
Teknologi Malaysia (UTM) for UTM Short Term
grant (Vot-77228), and Research Management
Center (RMC) for the support in making this
project a success.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 6

References:
[1] M. Z. Matondang, H. Haron and S. Thalib,

“Three-dimensional visualization of two-
dimensional data: the mathematical modeling,”
Proc. of the 2nd IMT-GT Regional Conference on
Mathematics, Statistics and Applications, 13 - 15
June 2006, Penang, Malaysia, Computer Sciences
and Applications. Ed. by Yahya Abu Hassan,
Adli Mustafa and Zarita Zainuddin, Vol. 4.

[2] M. Z. Matondang, Solid Model Reconstruction
using Neural Network and the Mathematical
Model Representation, Master Thesis, Universiti
Teknologi Malaysia, 2009.

[3] S. Mardzuki, Labeling Algorithm For Validation
Of 2d Line Drawing, Master Thesis, Universiti
Teknologi Malaysia, 2011.

[4] T. Kanade, Recovery of the Three-Dimensional
Shape of an Object from a Single View, Artificial
Intelligence. 17 (1981) 409-460.

[5] I. J. Grimstead and R. R. Martin, Creating Solid
Model From Single 2D Sketches, Proceedings
Third Symp. On Solid Modeling Applications,
ACM SIGGRAPH. (1995) 233-337.

[6] I. J. Grimstead, Interactive Sketch Input of
Boundary Representation Solid Models, PhD
Thesis, Univ. of Cardiff, UK, 1997.

[7] P. A. C. Varley and R. R. Martin, Estimating
Depth from Line Drawing, In Edt. K.Lee and
Patrikalakis, Proc. 7th ACM Symposium on
Solid Modeling and Applications, SM’02. ACM
Press. (2002) 180-191.

[8] P. A. C. Varley, R. R. Martin and H, Suzuki,
Making the Most of using Depth Reasoning to
Label Line Drawings of Engineering Objects,
ACM Symposium on Solid Modeling and
Application, (2004) 13-32.

[9] S. Mardzuki, M. Z. Matondang, and H. Haron,
Computational Approach in Validating
Reconstructed Solid Model Based on
Approximate Depth Value, Proceeding the 5th
International Conference on Information
Technology and Applications (ICITA 2008),
CAIRNS-Queensland Australia. (2008) 687 –
694.

[10] M. Z. Matondang, S. Mardzuki and H. Haron,
Transformation of engineering sketch to valid
solid object, Proc. of Intl. Conf. of The 9th Asia
Pacific Industrial Engineering & Management
Systems (APIEMS 08) Conference and The 11th
Asia Pacific Regional Meeting of International
Foundation for Production Research, Bali –
Indonesia. (2008) 2707–2715.

[11] D. A. Huffman, Impossible Object as Nonsense
Sentences, Machine Intelligence, Newyork:
American Elsevier. 6 (1971) 295-323.

[12] L. A. Robinson, Graph Theory for the Middle
School, Master Thesis, Faculty of the Department
of Mathematics, East Tennessee State University.
UMI Number: 1436267. 2006.

[13] T. R. Jensen and B. Toft, Graph Coloring
Problems, Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley &
Sons Inc., New York. A Wiley Interscience
Publication, 1995.

[14] C. C. Iturriaga-Velazquez, Map Labeling
Problems, PhD Thesis, University of Waterloo,
Ontorio: Canada, 1999.

[15] D. Marx, Graph Coloring Problems and Their
Applications in Schedulling, Periodica of
Polytechnica Ser. El. Eng. 489 (2004) 11-16.

[16] D. Gaceb, V. Eglin, F. Lebourgeois, and H.
Emptoz, Application of Graph Coloring in
Physical Layout Segmentation, IEEE 19th Intl.
Conf. on Pattern Recognition. (2008) 1-4.

[17] T. A. Redl, University Timetabling Via Graph
Coloring: an alternative approach, University of
Houston, Houston, 2007.

[18] T. Dobrolowski, D. Dereniowski, and L.
Kuszner, Koala Graph Coloring Library: An
Open Graph Coloring Library for Real World
Applications, IT, Gdansk, Poland, May 2008.

M. Z. Matondang is a PhD student in computer science
Universiti Teknologi Malaysia, Johor – Malaysia. He holds
Master degree also in computer science from the same
University in 2009 and Bachelor degree in mathematics
from the Universitas Sumatera Utara, Medan, Indonesia in
2005. His researches interests are in operational research,
soft computing and also in mathematical modeling.

A. A. Samah has received the Diploma and B.Sc. degree
from University of Technology Malaysia in 1991and 1993
respectively. In 1996, she obtained her M.Sc. from the
University of Southampton, UK and recently in 2010, she
received her PhD from Salford university, UK. Currently
she is a lecturer in Faculty of Comp. Science and
Information System, University of Technology Malaysia.
Her research interests encompass Image Processing, Soft
Computing Techniques and Operational and Simulation
Modeling.

H. Haron has received the Dip, B.Sc. degree and PhD
from University of Technology Malaysia in 1987, 1989 and
2004 respectively. He was awarded M.Sc. from the
University of Brighton, UK in 1995. Currently he is an
Associate Professor in Faculty of Comp. Science and
Information System, University of Technology Malaysia.
His research interests include Image Processing and
Computer Aided Geometric Design.

H. A. Majid has received the Dip and B.Sc. degree from
University of Technology Malaysia in 1993 and 1995
respectively. In 1998, he obtained his M.Sc. from the
University of Salford, UK. Currently he is a lecturer in
Faculty of Comp. Science and Information System,
University of Technology Malaysia. His research interests
focused on Image Processing, Operations Management
and, Warranty and Maintenance.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 7

