

Abstract
The hierarchy is often used to infer knowledge from groups of
items and relations in varying granularities. Hierarchical
clustering algorithms take an input of pairwise data-item
similarities and output a hierarchy of the data-items. This paper
presents Bidirectional agglomerative hierarchical clustering to
create a hierarchy bottom-up, by iteratively merging the closest
pair of data-items into one cluster. The result is a rooted AVL
tree. The n leafs correspond to input data-items (singleton
clusters) needs to n/2 or n/2+1 steps to merge into one cluster,
correspond to groupings of items in coarser granularities
climbing towards the root. As observed from the time
complexity and number of steps need to cluster all data points
into one cluster perspective, the performance of the bidirectional
agglomerative algorithm using AVL tree is better than the current
agglomerative algorithms. The experiment analysis results
indicate that the improved algorithm has a higher efficiency than
previous methods.
Keywords: Hierarchical, Clustering, Bidirectional algorithm,
agglomerative, AVL tree

1. Introduction
Recently, dramatic increases in the amount of information
or data are being stored in electronic format. This
accumulation of data has taken place at an explosive rate
[1]. It has been estimated that the amount of information in
the world doubles every 20 months and the size and
number of databases are increasing even faster [1]. These
have transformed societies into one that strongly depends
on information and knowledge. Huge volumes of data, that
have accumulated and generated, contains important
information. These databases contain not only known
information, but also new knowledge as well and are not
easy to be extracted and understood.

This essentially requires the development of reliable and
scalable analysis procedures to extract the hidden rules,

expressions or useful patterns from these large data.
According to [2], never before in the history data has been
generated at such high volumes as today.

Furthermore, [3] advancing in sensing and storage
technology and dramatic growth in applications such as
internet search, digital imaging, and video surveillance
have created many high-volume and high dimensional data
sets. It is estimated that the digital universe consumed
approximately 281 exabytes in 2007, and it is projected to
be 10 times that size by 2011 (1 exabyte is 1018 bytes or
1,000,000 terabytes). Many domains started collecting and
sorting data from different sources and the massive
amounts of information from many fields, such as math,
biology, medical science, business, banking, engineering,
education, medical and DNA technology, have led to the
accumulation of tremendous amounts of data. However,
traditional clustering algorithms become computationally
expensive when the data set to be clustered is large.
Clustering is an area where the analysis of large data sets
becomes a problem. Analyzing large data sets via
traditional methods has moved from being tedious, to
being highly computational cost.

2. Proposed Algorithm for Bidirectional
Agglomerative Hierarchical Clustering using
AVL tree in the case of single-linkage
clustering method
In this section, in depth discussion is presented on how
bidirectional algorithm using AVL tree works in the case
of single-linkage clustering. The algorithm is an
agglomerative scheme that erases nodes in the tree as old
clusters are merged into new ones.
The clustering are assigned sequence numbers 0,1,......,
(n/2), (n/2) +1 and L(k) is the level of the kth clustering. A
cluster with sequence number m is denoted (m) and the
proximity between clusters (r) and (s) is denoted d [(r),(s)].
The algorithm composed of the following steps:

Bidirectional Agglomerative Hierarchical Clustering using AVL
Tree Algorithm

Hussain Abu-Dalbouh1 and Norita Md Norwawi2

 1 Faculty of Science & Technology

University Sains Islam Malaysia (USIM)
Bandar Baru Nilai, 71800 Nilai

Negeri Sembilan
Malaysia

2 Faculty of Science & Technology
University Sains Islam Malaysia (USIM)

Bandar Baru Nilai, 71800 Nilai
Negeri Sembilan

Malaysia

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 95

BIDIRECTIONAL AGGLOMERATIVE
HIERARCHICAL CLUSTERING USING AVL TREE

ALGORITHM
1. Begin with the disjoint clustering having level

L(0) = 0 and sequence number m = 0.
2. Arrange the pairs from minimum distance

(similarities) to the maximum distance.
3. Count how many pairs, say (n) pairs.(If n

>=3) do,
{

3.1 Find the median/root
3.2 Divide the pairs in two sides according the

median. Say left side and right side.
3.3 Find the least dissimilar pair of clusters in the

left and right current clustering, say pair (r),
(s), according to
d[(r),(s)] = min d[(i),(j)]
where the minimum is over all pairs of clusters
in the current clustering.

3.4 Check if left and right side have at least one
similar object(element)then merge it together
in one cluster, and find minimum is over all
pairs of clusters in the current clustering.

}
Else
{

3.5 Find the least dissimilar pair of clusters in the
left and right current clustering, say pair (r),
(s), according to
d[(r),(s)] = min d[(i),(j)]
where the minimum is over all pairs of clusters
in the current clustering.

}

4. Increment the sequence number: m = m +1.
(In both sides) Merge clusters (r) and (s) into
a single cluster to form the next clustering m.
Set the level of this clustering to
 L(m) = d[(r),(s)]

5. Update the tree, T, by deleting the nodes
corresponding to clusters (r) and (s) and
adding a node corresponding to the newly
formed cluster. The proximity between the new
cluster, denoted (r,s) and old cluster (k) is
defined in this way:
d[(k), (r,s)] = min d[(k),(r)], d[(k),(s)].

6. If all objects are in one cluster, stop. Else, go
to step 2.

Fig. 1: Pseudo code of the bidirectional agglomerative hierarchical

clustering using AVL tree algorithm

2.1 Complexity of bidirectional agglomerative
hierarchical clustering using AVL tree algorithm
Initially each of the n objects to be clustered is in a cluster
by itself, in step 1 of each loop iteration the Tree T has
nodes for each of the m remaining clusters. The number of
clusters decreases by one for step 8 and 9. When step 9

completes, the revised tree T has a nodes for each of the
(m-1) remaining clusters. Table 1 shows the complexity to
the major steps of the algorithm.

Table 1: Paradigmatic bidirectional agglomerative hierarchical clustering

using AVL tree algorithm
Algorithm Time

complexity
1. Begin with the disjoint

clustering having level L(0) =
0 and sequence number m = 0.

2. Arrange the pairs from
minimum distance
(similarities) to the maximum
distance.

3. Count how many pairs, say (n)
pairs. .(If n >=3) do,

O(1)

3.1 Find the median/root. O(1)

3.2 Divide the pairs in two sides
according the median. Say left
side and Right side.

O(1)

3.3 Find the least dissimilar pair
of clusters in the left and right
current clustering, say pair (r),
(s), according to
d[(r),(s)] = min d[(i),(j)]
where the minimum is over all
pairs of clusters in the current
clustering.

O(1)

3.4 Check if left and right side
have at least one similar object
(element) then merge it
together in one cluster, and
find minimum is over all pairs
of clusters in the current
clustering.

Else;
3.5 Find the least dissimilar pair of

clusters in the left and right
current clustering, say pair (r),
(s), according to
d[(r),(s)] = min d[(i),(j)]
where the minimum is over all
pairs of clusters in the current
clustering.

O(1)

O(1)

4. Increment the sequence
number: m = m +1. (In both
sides) Merge clusters (r) and
(s) into a single cluster to form
the next clustering m. Set the
level of this clustering to: L(m)
= d[(r),(s)]

O(1)

5. Update the tree, T, by deleting
the nodes corresponding to
clusters (r) and (s) and adding
a node corresponding to the

O(logn)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 96

newly formed cluster. The
proximity between the new
cluster, denoted (r,s) and old
cluster (k) is defined in this
way:
d[(k), (r,s)] = min d[(k),(r)],
d[(k),(s)].

6. If all objects are in one cluster,
stop. Else, go to step 2.

The complexity = Max { O(1), O(1), O(1), O(1), O(1), O(1),
O(1), O(logn)} = O(logn).

In bidirectional agglomerative clustering using AVL tree,
the distance of each cluster to all other clusters, and at each
step the number of clusters decreases by one. Considering
bidirectional agglomerative hierarchical clustering using
AVL tree in the case of single-linkage clustering, if the
number of objects are n, there are n/2 (in the best case) or
n/2+1 (in the worst case) levels. Each level involves
finding a minimum from tree T with time complexity O(1).
Merging two clusters into a single cluster need O(1) then
updating the proximity tree, T, by deleting the nodes
corresponding to clusters need O(logn).

3. Related Works
Clustering is considered as an unsupervised classification
process that means no predefined classes [4-6]. Clustering
large data sets of high dimensionality has always been a
serious challenge for clustering algorithms. Clustering of
large datasets can be very difficult with the available
clustering algorithms mainly due to the time complexity.
Hierarchical methods rely on a distance function to
measure the similarity between clusters. These methods do
not scale well with the number of data objects. Their
computational complexity is usually O(n²). [7-9].
To solve the complexity problem, many improved
algorithms are proposed [10-12]. That aimed to improve
performance, some of these partition algorithms. It was
chosen to reduce the distance calculation process. Like the
method based on the k-d tree structure and pruning
function proposed by [10], P-CLUSTER, the parallel
clustering algorithm utilizes three kinds of pruning
methods proposed by [13] and the parallel algorithm based
on the k-d tree structure proposed by [14].
According to [15] by reducing distance or similarity
calculation, the algorithm does not guarantee accuracy.
[15] use parallel computing, assign the distance computing
to show different nodes in a distributed environment,
which improved the efficiency and ensure the
effectiveness.
There are many recently developed representative of
hierarchical clustering algorithm found in the literature that
attempted and proposed for handling large data sets and to
overcome the complexity time such as: i) Agglomerative

Nesting (AGNES) [16] it with O(n²) time complexity. ii)
Divisive Analysis (DIANA) [16] it with O(n²) time
complexity. iii) Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH) [17] it with O(n)
time complexity. iv) Clustering Using REpresentatives
(CURE) [18] it with O(n²) time complexity, v) RObust
Clustering using links (ROCK) [19] it with
O(O(n²)+nmmma +n2logn)) time complexity.

4. An Example
The following discussion on bidirectional agglomerative
hierarchical clustering using AVL tree algorithm is based
on a simple example of distances in kilometers between
some Malaysian states. The method used is single-linkage.
There are eleven data points: JHR, KED, KTN, MLK,
NSN, PHG, PRK, PLS, PNG, SGR, and TRG.

Fig. 2: First cluster in AVL tree

Based on Figure 2 the median/ root is NSN and TRG, at
distance 471. The Min Left Side pair of states is KDH and
PLS, at distance 45. These are merged into a single cluster
called "KDH/PLS" and the Right Side pair of states is
KTN and SGR, at distance 474. The level of the new
cluster is L (KED/PLS) = 45, L (KTN/SGR) = 474, and
the new sequence number is m = 1. In addition the left side
and right side elements did not have any same element.
Therefore no need to merge the left side cluster and right
side cluster into a one cluster. The cluster, side, sequence
number, elements and distances are shown in Table 2.

Table 2: First cluster
Cluster Side Sequence

No
Element Distance

KDH/PLS Left
side

1

KED and
PLS

45

KTN/SGR Right
side

KTN and
SGR

474

Then compute the distance from this new compound object
in the left side to all other objects, and compute the
distance from this new compound object in the right side to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 97

all other objects. In single link clustering the rule is that the
distance from the compound object to another object is
MIN distance from any member of the cluster to the
outside object. Therefore the distance from "KED/PLS" to
JHR is chosen to be 830, which is the distance from
“KED” to “JHR”, and so on. The distances between this
cluster and the remaining elements in the distance matrix
are computed as shown below.

d (KED/PLS) JHR = min [d (KED, JHR), d (PLS,JHR)] =
d (KED,JHR) = 830.
d (KED/PLS) KTN = min [d (KED, KTN), d (PLS, KTN)]
= d (KED, KTN) = 409.
d (KED/PLS) MLK = min [d (KED, MLK), d (PLS,
MLK)] = d (KED, MLK) = 609.
d (KED/PLS) NSN = min [d (KED, NSN), d (PLS, NSN)]
= d (KED, NSN) = 526.
d (KED/PLS) PHG = min [d (KED, PHG), d (PLS, PHG)]
= d (KED, PHG) = 684.
d (KED/PLS) PRK = min [d (KED, PRK), d (PLS, PRK)]
= d (KED, PRK) = 257.
d (KED/PLS) PNG = min [d (KED, PNG), d (PLS, PNG)]
= d (KED, PNG) = 93.
d (KED/PLS) SGR = min [d (KED, SGR), d (PLS, SGR)]
= d (KED, SGR) = 462.
d (KED/PLS) TRG = min [d (KED, TRG), d (PLS, TRG)]
= d (KED, TRG) = 521.

The distances between the right side cluster and the
remaining elements in the distance matrix are computed as
shown below.

d (KTN/SGR) JHR = min [d (KTN, JHR), d (SGR,JHR)]
= d (SGR,JHR) = 368.
d (KTN/SGR) KTN = min [d(KTN, KED/PLS), d (SGR,
KED/PLS)] = d (KTN, KED/PLS) = 409.
d (KTN/SGR) MLK = min [d (KTN, MLK), d (SGR,
MLK)] = d (SGR, MLK) = 144.
d (KTN/SGR) NSN = min [d (KTN, NSN), d (SGR,
NSN)] = d (SGR, NSN) = 64.
d (KTN/SGR) PHG = min [d (KTN, PHG), d (SGR,
PHG)] = d (SGR, PHG) = 259.
d (KTN/SGR) PRK = min [d (KTN, PRK), d (SGR, PRK)]
= d (SGR, PRK) = 205.
d (KTN/SGR) PNG = min [d (KTN, PNG), d (SGR,
PNG)] = d (SGR, PNG) = 369 .
d (KED/PLS) TRG = min [d (KTN, TRG), d (SGR, TRG)]
= d (KTN, TRG) = 168.

Fig. 3: Second cluster in AVL tree

Based on Figure 3 the root or the median is JHR and PHG,
at distance 325. The minimum Left Side pair of states is
KTN/SGR and NSN, at distance 64. These are merged into
a single cluster called "KTN/SGR/NSN", and the
minimum Right Side pair of states is MLK and PRK, at
distance 349. The level of the new cluster is L
(KTN/SGR/NSN) = 64, L (MLK/PRK) = 349, and the new
sequence number is m = 2. In addition the left side and
right side elements did not have any same element.
Therefore no need to merge the left side cluster and right
side cluster. The cluster, side, sequence number, elements
and distances are shown in Table 3.

Table 3: Second cluster
Cluster Side Sequence

No
Element Distance

KTN/SGR/N
SN

Left
side

2

KTN,
SGR
and
NSN

64

MLK/PRK Right
side

MLK
and
PRK

349

The distances between this cluster and the remaining
elements in the distance matrix are computed as shown
below.

d (KTN/SGR/NSN) JHR = min [d(KTN/SGR, JHR), d
(NSN,JHR)] = d(NSN,JHR) = 304.
d (KTN/SGR/NSN) KTN = min [d(KTN/SGR, KED/PLS),
d (NSN, KED/PLS)] = d (KTN, KED/PLS) = 409.
d (KTN/SGR/NSN) MLK = min [d (KTN/SGR, MLK), d
(NSN, MLK)] = d(NSN, MLK) = 80.
d (KTN/SGR/NSN) PHG = min [d (KTN/SGR, PHG), d
(NSN, PHG)] = d(SGR, PHG) = 259.
d (KTN/SGR/NSN) PRK = min [d (KTN/SGR, PRK), d
(NSN, PRK)] = d (SGR, PRK) = 205.
d (KTN/SGR/NSN) PNG = min [d (KTN/SGR, PNG), d
(NSN, PNG)] = d (SGR, PNG) = 369 .
d (KTN/PLS/NSN) TRG = min [d (KTN/SGR, TRG), d
(NSN, TRG)] = d (KTN, TRG) = 168.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 98

The distances between the right side cluster and the
remaining elements in the distance matrix are computed as
shown below.

d (MLK/PRK) JHR = min [d(MLK, JHR), d (PRK,JHR)]
= d (MLK,JHR) = 224.
d (MLK/PRK) KTN = min [d(MLK, KED/PLS), d (PRK,
KED/PLS)] = d (PRK, KED/PLS) = 257.
d (MLK/PRK) KTN/SGR/NSN = min [d (MLK,
KTN/SGR/NSN), d (PRK, KTN/SGR/NSN)] = d (MLK,
KTN/SGR/NSN) = 80.
d (MLK/PRK) PHG = min [d (MLK, PHG), d (PRK,
PHG)] = d (MLK, PHG) = 292.
d (MLK/PRK) PNG = min [d (MLK, PNG), d (PRK,
PNG)] = d (PRK, PNG) = 164 .
d (MLK/PRK) TRG = min [d (MLK, TRG), d (PRK,
TRG)] = d (PRK, TRG) = 503.

Fig. 4: Third cluster in AVL tree

Based on Figure 4 the root or the median is JHR and
KTN/SGR/NSN, at distance 304. The minimum Left Side
pair of states is KTN/SGR/NSN and MLK/PRK, at
distance 80. These are merged into a single cluster called
"KTN/SGR/NSN/MLK/PRK", and the minimum Right
Side pair of states is JHR and KTN/SGR/NSN, at distance
305. The level of the new cluster is L
(KTN/SGR/NSN/MLK/PRK) = 80, L
(JHR/KTNSGR/NSN) = 305, and the new sequence
number is m = 3. In addition the left side and right side
have same element(s) in both sides. Therefore merge the
left side cluster and the right side cluster in one cluster.
The level of the new cluster is L (KTN/SGR/NSN/
JHR/MLK/PRK) = 385. The cluster, side, sequence
number, elements and distances are shown in Table 4.

Table 4: Third cluster
Cluster Side Sequence

No
Element Distance

KTN/SG
R/NSN/J
HR/ML
K/PRK

-
3

KTN,
SGR,
NSN,
JHR,
MLK,
PRK

385

The distances between this cluster and the remaining
elements in the distance matrix are computed as shown
below.

d (KTN/SGR/NSN/JHR/MLK/PRK) JHR = min [d
(KTN/SGR, JHR), d (NSN,JHR)] = d (NSN,JHR) = 304.
d (KTN/SGR/NSN/JHR/MLK/PRK) KTN = min [d
(KTN/SGR, KED/PLS), d (NSN, KED/PLS)] = d (KTN,
KED/PLS) = 409.
d (KTN/SGR/NSN/JHR/MLK/PRK) MLK = min [d
(KTN/SGR, MLK), d (NSN, MLK)] = d(NSN, MLK) =
80.
d (KTN/SGR/NSN/JHR/MLK/PRK) PHG = min [d
(KTN/SGR, PHG), d (NSN, PHG)] = d(SGR, PHG) =
259.
d (KTN/SGR/NSN/JHR/MLK/PRK) PRK = min [d
(KTN/SGR, PRK), d (NSN, PRK)] = d (SGR, PRK) =
205.
d (KTN/SGR/NSN/JHR/MLK/PRK) PNG = min [d
(KTN/SGR, PNG), d (NSN, PNG)] = d (SGR, PNG) =
369 .
d (KTN/SGR/NSN/JHR/MLK/PRK) TRG = min [d
(KTN/SGR, TRG), d (NSN, TRG)] = d (KTN, TRG) =
168.

 Fig. 5: Forth cluster in AVL tree

Based on Figure 5 the root or the median is
KTN/SGR/NSN/JHR/MLK/PRK and PHG, at distance
259. The minimum left side pair of states is KDH/PLS and
PNG, at distance 93. These are merged into a single cluster
called "KDH/PLS/PNG", and the minimum Right Side pair
of states is KTN/SGR/NSN/JHR/MLK/PRK and
KDH/PLS, at distance 369. The level of the new cluster is
L (KDH/PLS/PNG) = 93, L
(KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS) = 369, and
the new sequence number is m = 4. In addition the left side
and right side have same element(s) in both sides.
Therefore merge the left side cluster and the right side
cluster in one cluster. The level of the new cluster is L
(KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG) = 462.
The cluster, side, sequence number, elements and distances
are shown in Table 5.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 99

Table 5: Forth cluster

Cluster Side Sequence
No

Element Distance

KTN/SG
R/NSN/J
HR/MLK
/PRK/KD
H/PLS/P
NG

-
4

KTN, SGR,
NSN, JHR,
MLK, PRK,
KDH, PLS,
PNG

462

The distances between this cluster and the remaining
elements in the distance matrix are computed as shown
below.

d (KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG) PHG
= min [d (KTN/SGR/NSN/JHR/MLK/PRK, PHG), d
(KDH/PLS/PNG, PHG)] = d
(KTN/SGR/NSN/JHR/MLK/PRK, PHG) = 259.
d (KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG) TRG
= min [d (KTN/SGR/NSN/JHR/MLK/PRK, TRG), d
(KDH/PLS/PNG, TRG)] = d
(KTN/SGR/NSN/JHR/MLK/PRK, TRG) = 168.

 Fig. 6: Fifth cluster in AVL tree

Based on Figure 6 the minimum left side pair of states is
KTN/SGR/NSN/JHR /MLK/PRK/KDH/PLS/PNG and
TRG, at distance 168. These are merged into a single
cluster called
“KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG/TRG",
and the minimum right side pair of states is
KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG and
PHG the level of the new cluster is L
(KTN/SGR/NSN/JHR/MLK/PRK /KDH/PLS/PNG/TRG)
= 168, and the new sequence number is m = 5. In addition
the left side and right side have same element(s) in both
sides. Therefore merge the left side cluster and the right
side cluster in one cluster. The level of the new cluster is L
(KTN/SGR/NSN/JHR/MLK/PRK
/KDH/PLS/PNG/PHG/TRG) = 427. The cluster, side,
sequence number, elements and distances are shown in
Table 6.

Table 6: Fifth cluster
Cluster Side Sequence

No
Element Distance

KTN/SGR/
NSN/JHR/
MLK
/PRK/KDH
/PLS/PNG/
PHG/TRG

-
5

KTN, SGR,
NSN, JHR,
MLK, PRK,
KDH, PLS,
PNG,PHG,T
RG

168

The final cluster is (KTN/SGR/NSN/JHR/MLK
/PRK/KDH/PLS/PNG/PHG/TRG)

Table 7 shows an example of hierarchical clustering of
eleven labeled points, namely JHR, KED, KTN, MLK,
NSN, PHG, PRK, PLS, PNG, SGR and TRG. The
example showing the following sequence of nested
partitions:

Table 7: Overall cluster and sequence number
Sequence
No

Root Cluster

Overall
cluster

Left
cluster

Right
cluster

m1 NSN,
TRG

KDH/PLS KTN/SGR

m2 JHR,
PHG

KTN/SGR
/NSN

MLK/PRK

m3 JHR,
KTN/S
GR/N
SN

KTN/SGR
/NSN/ML
K/PRK

JHR and
KTN/SGR
/NSN

KTN/SGR/N
SN/
JHR/MLK/P
RK

m4

KTN/S
GR/N
SN/JH
R/ML
K/PR
K,PH
G

KDH/PLS/
PNG

KTN/SGR
/NSN/JHR
/MLK/PR
K and
KDH/PLS

KTN/SGR/N
SN/JHR/ML
K/PRK/KD
H/PLS/PNG

m5 PHG,
TRG

KTN/SGR
/NSN/JHR
/MLK/PR
K/KDH/P
LS/PNG
and TRG,

KTN/SGR
/NSN/JHR
/MLK/PR
K/KDH/P
LS/PNG
and PHG

KTN, SGR,
NSN, JHR,
MLK, PRK,
KDH, PLS,
PNG,PHG,T
RG

5. Results and Discussions
From the results of the manual analysis of applying
bidirectional agglomerative hierarchical clustering using
single-link method on Malaysian states example. Consider
the number of objects are n, there are n/2 (in the best case)
or n/2+1 (in the worst case) levels. Bidirectional algorithm
in each level involves finding a minimum from tree T with
time complexity O(1), then merge two clusters into a single
cluster it need O(1), finally update the proximity tree, T, by
deleting the nodes corresponding to clusters its need

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 100

O(logn). Therefore, this approach is more efficient in
clustering huge amount of data and the performance of the
bidirectional agglomerative hierarchical clustering using
AVL tree algorithm is better from the bidirectional
agglomerative hierarchical clustering using distance matrix
and traditional agglomerative hierarchical clustering
algorithms. In fact of the manual analysis on bidirectional
agglomerative hierarchical clustering use distance matrix
for single-link method. It is obvious n data point’s need
(n/2) in the best case or (n/2+1) in the worst case steps to
merge all data points into one cluster. While the traditional
agglomerative hierarchical clustering algorithms need (n-1)
steps for merging all data points into single cluster. The
bidirectional agglomerative hierarchical clustering using
distance matrix and as for traditional agglomerative
hierarchical clustering algorithms, the dissimilarity matrix
D has a row and a column for each of the n elements. The
overall complexity to merge all data points into single
cluster is O(n²). Therefore the bidirectional use distance
matrix and agglomerative hierarchical clustering method is
a limitation to handle large datasets within a reasonable
time and memory resources.

 6. Conclusions
The complexity analysis is the algorithm performance in
determining the resources such as execution time and
memory usage necessary to execute it. Usually, the
complexity of an algorithm is a function related to the
input length/size to the number of fundamental steps. This
paper proposes a hierarchical algorithm called
bidirectional agglomerative hierarchical clustering
algorithm based on the AVL tree by clustering the objects
in left and right the median/root to enhance the complexity
time of the current agglomerative hierarchical clustering
algorithms and to reduce the gap between the flooding of
information and the current agglomerative hierarchical
clustering algorithm. One of the advantages of the
proposed bidirectional agglomerative hierarchical
clustering algorithm using AVL tree and that of other
similar agglomerative algorithm is that, it has relatively
low computational requirements. The overall complexity
of the proposed algorithm is O(logn) and need (n/2 or
n/2+1) to cluster all data points in one cluster whereas the
previous algorithm is O(n²) and need (n-1) steps to cluster
all data points into one cluster.

Appendix

Table 8: Original distances

J
H
R

K
D
H

K
T
N

M
L
K

NS
N

P
H
G

P
R
K

P
L
S

P
N
G

S
G
R

T
R
G

J
H
R

 83
0

68
9

22
4

30
4

32
5

57
3

8
7
5

73
7

36
8

52
1

K
D
H

83
0 0 40

9
60
6

52
6

68
4

25
7

4
5 93 46

2
52
1

K
T
N

68
9

40
9 0 60

9
53
8

37
1

39
1

4
5
4

38
6

47
4

16
8

M
L
K

22
4

60
6

60
9 0 80 29

2
34
9

6
5
1

51
3

14
4

50
8

N
S
N

30
4

52
6

53
8 80 0 25

9
26
9

5
7
1

43
3 64 47

1

P
H
G

32
5

68
4

37
1

29
2

25
9 0 42

7

7
2
9

59
1

25
9

20
9

P
R
K

57
3

25
7

39
1

34
9

26
9

42
7 0

3
0
2

16
4

20
5

50
3

PL
S

87
5 45 45

4
65
1

57
1

72
9

30
2 0 13

8
50
7

56
6

P
N
G

73
7 93 38

6
51
3

43
3

59
1

16
4

1
3
8

0 36
9

49
8

S
G
R

36
8

46
2

47
4

14
4 64 25

9
20
5

5
0
7

36
9 0 45

5

T
R
G

52
1

52
1

16
8

50
8

47
1

20
9

50
3

5
6
6

49
8

45
5 0

Acknowledgments
The authors wish to thank Universiti Sains Islam Malaysia,
Faculty of Science and Technology.

References
[1] S. Moran, Y. Hey, and K. Liu. An Empirical

Framework for Automatically Selecting the Best
Bayesian Classifier. Proceedings of the World
Congress on Engineering 2009 Vol I WCE 2009,
July 1 - 3, 2009, London, U.K.

[2] S. Kanaujiya. Visual Data Mining. Proceedings of 2nd
National Conference on Challenges &
Opportunities in Information Technology (COIT-
2008) RIMT-IET, Mandi Gobindgarh. March 29,
2008.

[3] J. Gantz. F. 2008. The diverse and exploding digital

universe. Available online at:
<http://www.emc.com/collateral/analyst-
reports/diverse-exploding-digitaluniverse. pdf>.

[4] G. Bordogna, and G. Pasi. Hierarchical-Hyperspherical
Divisive Fuzzy C-Means (H2D-FCM) Clustering
for Information Retrieval. IEEE computer society
2009 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent
Technology -Workshops.

 [5] M. Halkidi, D. Gunopulos, M. Vazirgiannis, N.
Kumar, and C. Domeniconi. A Clustering

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 101

Framework Based on Subjective and Objective
Validity Criteria. ACM Transactions on Knowledge
Discovery from Data (TKDD). Vol 1, No.4, 2008.

[6] A. Jain, Murty, P.J. Flynn. 1999. “Data Clustering: A
Review”, ACM Computing Surveys. Vol. 31, No. 3.
1999, pp.264-323.

[7] C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A
Survey of Web Clustering Engines. ACM
Computing Surveys. Vol. 41, No. 3, 2009.

[8] J. J. Hu, C. G. Tang, J. Peng, C. Li, C. A. Yuan, and A.
L. Chen. A Clustering Algorithm Based Absorbing
Nearest Neighbors. WAIM 2005, Volume 3739
of Lecture Notes in Computer Science, Springer,
2005, p.p 700-705.

[9] Ke-Bing, Z. 2007. Visual Cluster Analysis in Data
Mining. (PhD Thesis). Macquarie University.

[10] K. Alsabti, S. Ranka, and V. Singh. An Efficient K-
Means Clustering Algorithm,
http://www.cise.ufl.edu/_ranka/, 1997.

[11] M. N. Joshi. Parallel K-Means Algorithm on
Distributed Memory Multiprocessors. 2003

[12] L. Liping, and M. Zhi-Qing Meng. A method of
choosing the initial cluster centers, Computer
Engineering and Applications, pp.179-180.

[13] D. Judd, P. K. McKinley, and A. K. Jain. Large-Scale
Parallel Data Clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 20,
No. 8, AUGUST 1998, pp.871-876.

[14] M. Hemalatha, P. Ranjith Jebah Thangiah, K.
Vivekanandan. A Distributed and Parallel
Clustering Algorithm for Massive Biological Data.
JCIT: Journal of Convergence Information
Technology, Vol. 3, No. 4, 2008, pp. 84 -88.

[15] H. Gao, J. Jiang, L. She, and Y. Fu. A New
Agglomerative Hierarchical Clustering Algorithm
Implementation based on the Map Reduce
Framework. International Journal of Digital Content
Technology and its Applications, Vol. 4 No. 3,
2010.

[16] L. Kaufman, and P. J. Rousseeuw. Finding Groups in
Data: an Introduction to Cluster Analysis”, John
While & Sons.

[17] T. Zhang , R. Ramakrishnan, and M. livny BIRCH:
An efficient data clustering method for very large
databases. In Proc. 1996 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’96). 1996, Pp.103–
114.

[18] S. Guha, R. Rastogi, and K. Shim. An efficient
clustering algorithm for large databases. In
Proceedings of SIGMOD, June 1998, pp.73–84.

[19] S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust
Clustering Algorithm for Categorical Attributes", In
the Proceedings of the IEEE Conference on Data
Engineering. 1999.

Hussain Mohammad Abu Dalbouh is a PhD student at the
University Science Islam Malaysia (USIM), was born on the 26 of
May 1982, his nationality Jordanian. He obtained his Bachelor’s
degree in Computer Information System in 2005 from the Al
Yarmouk University, Jordan. He received his Master’s degree in
Information Technology from University Utara Malaysia (UUM)
in 2009. His interest Areas: Artificial Intelligence (AI), Data
Mining (DM), Visualization, Tree data structure, Data structure
and algorithms.

 Norita Md Norwawi is an Associate Professor at Universiti Sains
Islam Malaysia. She obtained her Bachelor in Computer Science
in 1987 from the University of New South Wales, Australia. She
received her Master’s degree in Computer Science from National
University of Malaysia in 1994. In 2004, she obtained her PhD
specializing in Temporal Data Mining and Multiagent System
from University Utara Malaysia. As an academician, her research
interests include artificial intelligence, multi-agent system,
temporal data mining, text mining, knowledge mining,
information security and digital Islamic application and content.
Her works have been published in international conferences,
journals and won awards on research and innovation competition
in national and international level.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 102

