
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
The hierarchy is often used to infer knowledge from groups of 
items and relations in varying granularities. Hierarchical 
clustering algorithms take an input of pairwise data-item 
similarities and output a hierarchy of the data-items. This paper 
presents Bidirectional agglomerative hierarchical clustering to 
create a hierarchy bottom-up, by iteratively merging the closest 
pair of data-items into one cluster. The result is a rooted AVL 
tree. The n leafs correspond to input data-items (singleton 
clusters) needs to n/2 or n/2+1 steps to merge into one cluster, 
correspond to groupings of items in coarser granularities 
climbing towards the root.  As observed from the time 
complexity and number of steps need to cluster all data points 
into one cluster perspective, the performance of the bidirectional 
agglomerative algorithm using AVL tree is better than the current 
agglomerative algorithms. The experiment analysis results 
indicate that the improved algorithm has a higher efficiency than 
previous methods. 
Keywords: Hierarchical, Clustering, Bidirectional algorithm, 
agglomerative, AVL tree 
 
1. Introduction 
Recently, dramatic increases in the amount of information 
or data are being stored in electronic format. This 
accumulation of data has taken place at an explosive rate 
[1]. It has been estimated that the amount of information in 
the world doubles every 20 months and the size and 
number of databases are increasing even faster [1]. These 
have transformed societies into one that strongly depends 
on information and knowledge. Huge volumes of data, that 
have accumulated and generated, contains important 
information. These databases contain not only known 
information, but also new knowledge as well and are not 
easy to be extracted and understood.  

 
This essentially requires the development of reliable and 
scalable analysis procedures to extract the hidden rules, 

expressions or useful patterns from these large data.  
According to [2], never before in the history data has been 
generated at such high volumes as today.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Furthermore, [3] advancing in sensing and storage 
technology and dramatic growth in applications such as 
internet search, digital imaging, and video surveillance 
have created many high-volume and high dimensional data 
sets. It is estimated that the digital universe consumed 
approximately 281 exabytes in 2007, and it is projected to 
be 10 times that size by 2011 (1 exabyte is 1018 bytes or 
1,000,000 terabytes). Many domains started collecting and 
sorting data from different sources and the massive 
amounts of information from many fields, such as math, 
biology, medical science, business, banking, engineering, 
education, medical and DNA technology, have led to the 
accumulation of tremendous amounts of data. However, 
traditional clustering algorithms become computationally 
expensive when the data set to be clustered is large. 
Clustering is an area where the analysis of large data sets 
becomes a problem. Analyzing large data sets via 
traditional methods has moved from being tedious, to 
being highly computational cost. 
 
2. Proposed Algorithm for Bidirectional 
Agglomerative Hierarchical Clustering using 
AVL tree in the case of single-linkage 
clustering method 
In this section, in depth discussion is presented on how 
bidirectional algorithm using AVL tree works in the case 
of single-linkage clustering. The algorithm is an 
agglomerative scheme that erases nodes in the tree as old 
clusters are merged into new ones. 
The clustering are assigned sequence numbers 0,1,......, 
(n/2), (n/2) +1 and L(k) is the level of the kth clustering. A 
cluster with sequence number m is denoted (m) and the 
proximity between clusters (r) and (s) is denoted d [(r),(s)].  
The algorithm composed of the following steps: 
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BIDIRECTIONAL AGGLOMERATIVE 
HIERARCHICAL CLUSTERING USING AVL TREE 

ALGORITHM 
1. Begin with the disjoint clustering having level 

L(0) = 0 and sequence number m = 0. 
2. Arrange the pairs from minimum distance 

(similarities) to the maximum distance. 
3. Count how many pairs, say (n) pairs.( If n 

>=3) do, 
{ 

3.1 Find the median/root 
3.2 Divide the pairs in two sides according the 

median. Say left side and right side. 
3.3 Find the least dissimilar pair of clusters in the 

left and right current clustering, say pair (r), 
(s), according to 
d[(r),(s)] = min d[(i),(j)] 
where the minimum is over all pairs of clusters 
in the current clustering. 

3.4 Check if left and right side have at least one 
similar object(element)then merge it together 
in one cluster, and find minimum is over all 
pairs of clusters in the current clustering. 

} 
Else 
{ 

3.5 Find the least dissimilar pair of clusters in the 
left and right current clustering, say pair (r), 
(s), according to 
d[(r),(s)] = min d[(i),(j)] 
where the minimum is over all pairs of clusters 
in the current clustering. 

} 

4. Increment the sequence number: m = m +1. 
(In  both sides) Merge clusters (r) and (s) into 
a single cluster to form the next clustering m. 
Set the level of this clustering to 
 L(m) = d[(r),(s)] 

5. Update the tree, T, by deleting the nodes 
corresponding to clusters (r) and (s) and 
adding a node corresponding to the newly 
formed cluster. The proximity between the new 
cluster, denoted (r,s) and old cluster (k) is 
defined in this way: 
d[(k), (r,s)] = min d[(k),(r)], d[(k),(s)]. 

6. If all objects are in one cluster, stop. Else, go 
to step 2. 

 
Fig. 1: Pseudo code of the bidirectional agglomerative hierarchical 

clustering using AVL tree algorithm 
 
2.1 Complexity of bidirectional agglomerative 
hierarchical clustering using AVL tree algorithm  
Initially each of the n objects to be clustered is in a cluster 
by itself, in step 1 of each loop iteration the Tree T has 
nodes for each of the m remaining clusters. The number of 
clusters decreases by one for step 8 and 9. When step 9 

completes, the revised tree T has a nodes for each of the 
(m-1) remaining clusters. Table 1 shows the complexity to 
the major steps of the algorithm. 
 
Table 1: Paradigmatic bidirectional agglomerative hierarchical clustering 

using AVL tree algorithm 
Algorithm Time 

complexity 
1. Begin with the disjoint 

clustering having level L(0) = 
0 and sequence number m = 0. 

 

2.  Arrange the pairs from 
minimum distance 
(similarities) to the maximum 
distance. 

 

3. Count how many pairs, say (n) 
pairs. .( If n >=3) do, 

O(1) 

3.1 Find the median/root. O(1) 

3.2 Divide the pairs in two sides 
according the median. Say left 
side and Right side. 

O(1) 

3.3 Find the least dissimilar pair 
of clusters in the left and right 
current clustering, say pair (r), 
(s), according to 
d[(r),(s)] = min d[(i),(j)] 
where the minimum is over all 
pairs of clusters in the current 
clustering. 

O(1) 

3.4 Check if left and right side 
have at least one similar object 
(element) then merge it 
together in one cluster, and 
find minimum is over all pairs 
of clusters in the current 
clustering. 

Else;  
3.5 Find the least dissimilar pair of  

clusters in the left and right 
current clustering, say pair (r), 
(s), according to 
d[(r),(s)] = min d[(i),(j)] 
where the minimum is over all 
pairs of clusters in the current 
clustering. 

O(1) 
 
 
 
 
 
 
 

O(1) 

4. Increment the sequence 
number: m = m +1. (In  both 
sides) Merge clusters (r) and 
(s) into a single cluster to form 
the next clustering m. Set the 
level of this clustering to:  L(m) 
= d[(r),(s)] 

O(1) 

5. Update the tree, T, by deleting 
the nodes corresponding to 
clusters (r) and (s) and adding 
a node corresponding to the 

O(logn) 
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newly formed cluster. The 
proximity between the new 
cluster, denoted (r,s) and old 
cluster (k) is defined in this 
way: 
d[(k), (r,s)] = min d[(k),(r)], 
d[(k),(s)]. 

6. If all objects are in one cluster, 
stop. Else, go to step 2. 

 

 
The complexity = Max { O(1), O(1), O(1), O(1), O(1), O(1), 
O(1), O(logn)} = O(logn). 
 
In bidirectional agglomerative clustering using AVL tree, 
the distance of each cluster to all other clusters, and at each 
step the number of clusters decreases by one. Considering 
bidirectional agglomerative hierarchical clustering using 
AVL tree in the case of single-linkage clustering, if the 
number of objects are n, there are n/2 (in the best case) or 
n/2+1 (in the worst case) levels. Each level involves 
finding a minimum from tree T with time complexity O(1). 
Merging two clusters into a single cluster need O(1) then 
updating the proximity tree, T, by deleting the nodes 
corresponding to clusters need O(logn). 
 
3. Related Works 
Clustering is considered as an unsupervised classification 
process that means no predefined classes [4-6]. Clustering 
large data sets of high dimensionality has always been a 
serious challenge for clustering algorithms. Clustering of 
large datasets can be very difficult with the available 
clustering algorithms mainly due to the time complexity. 
Hierarchical methods rely on a distance function to 
measure the similarity between clusters. These methods do 
not scale well with the number of data objects. Their 
computational complexity is usually O(n²). [7-9].  
To solve the complexity problem, many improved 
algorithms are proposed [10-12]. That aimed to improve 
performance, some of these partition algorithms. It was 
chosen to reduce the distance calculation process. Like the 
method based on the k-d tree structure and pruning 
function proposed by [10], P-CLUSTER, the parallel 
clustering algorithm utilizes three kinds of pruning 
methods proposed by [13] and the parallel algorithm based 
on the k-d tree structure proposed by [14]. 
According to [15] by reducing distance or similarity 
calculation, the algorithm does not guarantee accuracy. 
[15] use parallel computing, assign the distance computing 
to show different nodes in a distributed environment, 
which improved the efficiency and ensure the 
effectiveness. 
There are many recently developed representative of 
hierarchical clustering algorithm found in the literature that 
attempted and proposed for handling large data sets and to 
overcome the complexity time such as: i) Agglomerative 

Nesting (AGNES) [16] it with O(n²) time complexity. ii) 
Divisive Analysis (DIANA) [16] it with O(n²) time 
complexity. iii) Balanced Iterative Reducing and 
Clustering using Hierarchies (BIRCH) [17] it with O(n) 
time complexity. iv) Clustering Using REpresentatives 
(CURE) [18] it with O(n²) time complexity, v) RObust 
Clustering using links (ROCK) [19] it with 
O(O(n²)+nmmma +n2logn)) time complexity. 
 
4. An Example 
The following discussion on bidirectional agglomerative 
hierarchical clustering using AVL tree algorithm is based 
on a simple example of distances in kilometers between 
some Malaysian states. The method used is single-linkage. 
There are eleven data points: JHR, KED, KTN, MLK, 
NSN, PHG, PRK, PLS, PNG, SGR, and TRG. 
 

 
Fig. 2: First cluster in AVL tree  

 
Based on Figure 2 the median/ root is NSN and TRG, at 
distance 471. The Min Left Side pair of states is KDH and 
PLS, at distance 45. These are merged into a single cluster 
called "KDH/PLS" and the Right Side pair of states is 
KTN and SGR, at distance 474. The level of the new 
cluster is L (KED/PLS) = 45, L (KTN/SGR) = 474, and 
the new sequence number is m = 1. In addition the left side 
and right side elements did not have any same element. 
Therefore no need to merge the left side cluster and right 
side cluster into a one cluster. The cluster, side, sequence 
number, elements and distances are shown in Table 2. 
 

Table 2: First cluster 
Cluster Side Sequence 

No      
Element Distance 

KDH/PLS Left 
side 

 
1 

 

KED and  
PLS 

45 

KTN/SGR Right 
side 

KTN and 
SGR 

474 

 
Then compute the distance from this new compound object 
in the left side to all other objects, and compute the 
distance from this new compound object in the right side to 
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all other objects. In single link clustering the rule is that the 
distance from the compound object to another object is 
MIN distance from any member of the cluster to the 
outside object. Therefore the distance from "KED/PLS" to 
JHR is chosen to be 830, which is the distance from 
“KED” to “JHR”, and so on. The distances between this 
cluster and the remaining elements in the distance matrix 
are computed as shown below.  

d (KED/PLS) JHR = min [d (KED, JHR), d (PLS,JHR)] = 
d (KED,JHR) = 830. 
d (KED/PLS) KTN = min [d (KED, KTN), d (PLS, KTN)] 
= d (KED, KTN) = 409. 
d (KED/PLS) MLK = min [d (KED, MLK), d (PLS, 
MLK)] = d (KED, MLK) = 609. 
d (KED/PLS) NSN = min [d (KED, NSN), d (PLS, NSN)] 
= d (KED, NSN) = 526. 
d (KED/PLS) PHG = min [d (KED, PHG), d (PLS, PHG)] 
= d (KED, PHG) = 684. 
d (KED/PLS) PRK = min [d (KED, PRK), d (PLS, PRK)] 
= d (KED, PRK) = 257. 
d (KED/PLS) PNG = min [d (KED, PNG), d (PLS, PNG)] 
= d (KED, PNG) = 93. 
d (KED/PLS) SGR = min [d (KED, SGR), d (PLS, SGR)] 
= d (KED, SGR) = 462. 
d (KED/PLS) TRG = min [d (KED, TRG), d (PLS, TRG)] 
= d (KED, TRG) = 521. 

The distances between the right side cluster and the 
remaining elements in the distance matrix are computed as 
shown below.  

d (KTN/SGR) JHR = min [d (KTN, JHR), d (SGR,JHR)] 
= d (SGR,JHR) = 368. 
d (KTN/SGR) KTN = min [d(KTN, KED/PLS), d (SGR, 
KED/PLS)] = d (KTN, KED/PLS) = 409. 
d (KTN/SGR) MLK = min [d (KTN, MLK), d (SGR, 
MLK)] = d (SGR, MLK) = 144. 
d (KTN/SGR) NSN = min [d (KTN, NSN), d (SGR, 
NSN)] = d (SGR, NSN) = 64. 
d (KTN/SGR) PHG = min [d (KTN, PHG), d (SGR, 
PHG)] = d (SGR, PHG) = 259. 
d (KTN/SGR) PRK = min [d (KTN, PRK), d (SGR, PRK)] 
= d (SGR, PRK) = 205. 
d (KTN/SGR) PNG = min [d (KTN, PNG), d (SGR, 
PNG)] = d (SGR, PNG) = 369 . 
d (KED/PLS) TRG = min [d (KTN, TRG), d (SGR, TRG)] 
= d (KTN, TRG) = 168. 
 

Fig. 3: Second cluster in AVL tree 
 

Based on Figure 3 the root or the median is JHR and PHG, 
at distance 325. The minimum Left Side pair of states is 
KTN/SGR and NSN, at distance 64. These are merged into 
a single cluster called "KTN/SGR/NSN", and the 
minimum Right Side pair of states is MLK and PRK, at 
distance 349. The level of the new cluster is L 
(KTN/SGR/NSN) = 64, L (MLK/PRK) = 349, and the new 
sequence number is m = 2. In addition the left side and 
right side elements did not have any same element. 
Therefore no need to merge the left side cluster and right 
side cluster. The cluster, side, sequence number, elements 
and distances are shown in Table 3. 
 

Table 3: Second cluster 
Cluster Side Sequence 

No      
Element Distance 

KTN/SGR/N
SN 

Left 
side 

 
2 

 

KTN, 
SGR 
and  
NSN 

64 

MLK/PRK Right 
side 

MLK 
and 
PRK 

349 

The distances between this cluster and the remaining 
elements in the distance matrix are computed as shown 
below. 

d (KTN/SGR/NSN) JHR = min [d(KTN/SGR, JHR), d 
(NSN,JHR)] = d(NSN,JHR) = 304. 
d (KTN/SGR/NSN) KTN = min [d(KTN/SGR, KED/PLS), 
d (NSN, KED/PLS)] = d (KTN, KED/PLS) = 409. 
d (KTN/SGR/NSN) MLK = min [d (KTN/SGR, MLK), d 
(NSN, MLK)] = d(NSN, MLK) = 80. 
d (KTN/SGR/NSN) PHG = min [d (KTN/SGR, PHG), d 
(NSN, PHG)] = d(SGR, PHG) = 259. 
d (KTN/SGR/NSN) PRK = min [d (KTN/SGR, PRK), d 
(NSN, PRK)] = d (SGR, PRK) = 205. 
d (KTN/SGR/NSN) PNG = min [d (KTN/SGR, PNG), d 
(NSN, PNG)] = d (SGR, PNG) = 369 . 
d (KTN/PLS/NSN) TRG = min [d (KTN/SGR, TRG), d 
(NSN, TRG)] = d (KTN, TRG) = 168. 
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The distances between the right side cluster and the 
remaining elements in the distance matrix are computed as 
shown below.  

d (MLK/PRK) JHR = min [d(MLK, JHR), d (PRK,JHR)] 
= d (MLK,JHR) = 224. 
d (MLK/PRK) KTN = min [d(MLK, KED/PLS), d (PRK, 
KED/PLS)] = d (PRK, KED/PLS) = 257. 
d (MLK/PRK) KTN/SGR/NSN = min [d (MLK, 
KTN/SGR/NSN), d (PRK, KTN/SGR/NSN)] = d (MLK, 
KTN/SGR/NSN) = 80. 
d (MLK/PRK) PHG = min [d (MLK, PHG), d (PRK, 
PHG)] = d (MLK, PHG) = 292. 
d (MLK/PRK) PNG = min [d (MLK, PNG), d (PRK, 
PNG)] = d (PRK, PNG) = 164 . 
d (MLK/PRK) TRG = min [d (MLK, TRG), d (PRK, 
TRG)] = d (PRK, TRG) = 503. 

 
Fig. 4: Third cluster in AVL tree 

 
Based on Figure 4 the root or the median is JHR and 
KTN/SGR/NSN, at distance 304. The minimum Left Side 
pair of states is KTN/SGR/NSN and MLK/PRK, at 
distance 80. These are merged into a single cluster called 
"KTN/SGR/NSN/MLK/PRK", and the minimum Right 
Side pair of states is JHR and KTN/SGR/NSN, at distance 
305. The level of the new cluster is L 
(KTN/SGR/NSN/MLK/PRK) = 80, L 
(JHR/KTNSGR/NSN) = 305, and the new sequence 
number is m = 3. In addition the left side and right side 
have same element(s) in both sides. Therefore merge the 
left side cluster and the right side cluster in one cluster. 
The level of the new cluster is L (KTN/SGR/NSN/ 
JHR/MLK/PRK) = 385. The cluster, side, sequence 
number, elements and distances are shown in Table 4. 

Table 4: Third cluster 
Cluster Side Sequence 

No      
Element Distance 

KTN/SG
R/NSN/J
HR/ML
K/PRK 

-  
3 

KTN, 
SGR, 
NSN, 
JHR, 
MLK, 
PRK 

385 

The distances between this cluster and the remaining 
elements in the distance matrix are computed as shown 
below. 

d (KTN/SGR/NSN/JHR/MLK/PRK) JHR = min [d 
(KTN/SGR, JHR), d (NSN,JHR)] = d (NSN,JHR) = 304. 
d (KTN/SGR/NSN/JHR/MLK/PRK) KTN = min [d 
(KTN/SGR, KED/PLS), d (NSN, KED/PLS)] = d (KTN, 
KED/PLS) = 409. 
d (KTN/SGR/NSN/JHR/MLK/PRK) MLK = min [d 
(KTN/SGR, MLK), d (NSN, MLK)] = d(NSN, MLK) = 
80. 
d (KTN/SGR/NSN/JHR/MLK/PRK) PHG = min [d 
(KTN/SGR, PHG), d (NSN, PHG)] = d(SGR, PHG) = 
259. 
d (KTN/SGR/NSN/JHR/MLK/PRK) PRK = min [d 
(KTN/SGR, PRK), d (NSN, PRK)] = d (SGR, PRK) = 
205. 
d (KTN/SGR/NSN/JHR/MLK/PRK) PNG = min [d 
(KTN/SGR, PNG), d (NSN, PNG)] = d (SGR, PNG) = 
369 . 
d (KTN/SGR/NSN/JHR/MLK/PRK) TRG = min [d 
(KTN/SGR, TRG), d (NSN, TRG)] = d (KTN, TRG) = 
168.   
 

 Fig. 5: Forth cluster in AVL tree 
 

Based on Figure 5 the root or the median is 
KTN/SGR/NSN/JHR/MLK/PRK and PHG, at distance 
259. The minimum left side pair of states is KDH/PLS and 
PNG, at distance 93. These are merged into a single cluster 
called "KDH/PLS/PNG", and the minimum Right Side pair 
of states is KTN/SGR/NSN/JHR/MLK/PRK and 
KDH/PLS, at distance 369. The level of the new cluster is 
L (KDH/PLS/PNG) = 93, L 
(KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS) = 369, and 
the new sequence number is m = 4. In addition the left side 
and right side have same element(s) in both sides. 
Therefore merge the left side cluster and the right side 
cluster in one cluster. The level of the new cluster is L 
(KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG) = 462. 
The cluster, side, sequence number, elements and distances 
are shown in Table 5. 
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Table 5: Forth cluster 

Cluster Side Sequence 
No      

Element Distance 

KTN/SG
R/NSN/J
HR/MLK 
/PRK/KD
H/PLS/P
NG 

-  
4 

 

KTN, SGR, 
NSN, JHR, 
MLK, PRK, 
KDH, PLS, 
PNG 

462 

 
The distances between this cluster and the remaining 
elements in the distance matrix are computed as shown 
below. 

 
d (KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG) PHG 
= min [d (KTN/SGR/NSN/JHR/MLK/PRK, PHG), d 
(KDH/PLS/PNG, PHG)] = d 
(KTN/SGR/NSN/JHR/MLK/PRK, PHG) = 259. 
d (KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG) TRG 
= min [d (KTN/SGR/NSN/JHR/MLK/PRK, TRG), d 
(KDH/PLS/PNG, TRG)] = d 
(KTN/SGR/NSN/JHR/MLK/PRK, TRG) = 168. 

 

 
 Fig. 6: Fifth cluster in AVL tree 

 
Based on Figure 6 the minimum left side pair of states is 
KTN/SGR/NSN/JHR /MLK/PRK/KDH/PLS/PNG and 
TRG, at distance 168. These are merged into a single 
cluster called 
“KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG/TRG", 
and the minimum right side pair of states is 
KTN/SGR/NSN/JHR/MLK/PRK/KDH/PLS/PNG and 
PHG the level of the new cluster is L 
(KTN/SGR/NSN/JHR/MLK/PRK /KDH/PLS/PNG/TRG) 
= 168, and the new sequence number is m = 5. In addition 
the left side and right side have same element(s) in both 
sides. Therefore merge the left side cluster and the right 
side cluster in one cluster. The level of the new cluster is L 
(KTN/SGR/NSN/JHR/MLK/PRK 
/KDH/PLS/PNG/PHG/TRG) = 427. The cluster, side, 
sequence number, elements and distances are shown in 
Table 6. 
 
 
 

Table 6: Fifth cluster 
Cluster Side Sequence 

No      
Element Distance 

KTN/SGR/
NSN/JHR/
MLK 
/PRK/KDH
/PLS/PNG/
PHG/TRG 

-  
5 

 

KTN, SGR, 
NSN, JHR, 
MLK, PRK, 
KDH, PLS, 
PNG,PHG,T
RG 

168 

The final cluster is (KTN/SGR/NSN/JHR/MLK 
/PRK/KDH/PLS/PNG/PHG/TRG) 

Table 7 shows an example of hierarchical clustering of 
eleven labeled points, namely JHR, KED, KTN, MLK, 
NSN, PHG, PRK, PLS, PNG, SGR and TRG. The 
example showing the following sequence of nested 
partitions: 
 

Table 7: Overall cluster and sequence number 
Sequence 
No      

Root Cluster 
 

Overall 
cluster 

Left  
cluster 

Right  
cluster 

m1 NSN, 
TRG 

KDH/PLS KTN/SGR  

m2 JHR, 
PHG 

KTN/SGR
/NSN 

MLK/PRK  

m3 JHR, 
KTN/S
GR/N
SN  

KTN/SGR
/NSN/ML
K/PRK 

JHR and 
KTN/SGR
/NSN 

KTN/SGR/N
SN/ 
JHR/MLK/P
RK 

m4 
 

KTN/S
GR/N
SN/JH
R/ML
K/PR
K,PH
G 

KDH/PLS/
PNG 

KTN/SGR
/NSN/JHR
/MLK/PR
K and 
KDH/PLS 

KTN/SGR/N
SN/JHR/ML
K/PRK/KD
H/PLS/PNG 

m5 PHG, 
TRG 

KTN/SGR
/NSN/JHR
/MLK/PR
K/KDH/P
LS/PNG 
and TRG, 

KTN/SGR
/NSN/JHR
/MLK/PR
K/KDH/P
LS/PNG 
and PHG 

KTN, SGR, 
NSN, JHR, 
MLK, PRK, 
KDH, PLS, 
PNG,PHG,T
RG 

 
 
5. Results and Discussions 
From the results of the manual analysis of applying 
bidirectional agglomerative hierarchical clustering using 
single-link method on Malaysian states example. Consider 
the number of objects are n, there are n/2 (in the best case) 
or n/2+1 (in the worst case) levels. Bidirectional algorithm 
in each level involves finding a minimum from tree T with 
time complexity O(1), then merge two clusters into a single 
cluster it need O(1), finally update the proximity tree, T, by 
deleting the nodes corresponding to clusters its need 
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O(logn). Therefore, this approach is more efficient in 
clustering huge amount of data and the performance of the 
bidirectional agglomerative hierarchical clustering using 
AVL tree algorithm is better from the bidirectional 
agglomerative hierarchical clustering using distance matrix 
and traditional agglomerative hierarchical clustering 
algorithms. In fact of the manual analysis on bidirectional 
agglomerative hierarchical clustering use distance matrix 
for single-link method. It is obvious n data point’s need 
(n/2) in the best case or (n/2+1) in the worst case steps to 
merge all data points into one cluster. While the traditional 
agglomerative hierarchical clustering algorithms need (n-1) 
steps for merging all data points into single cluster.  The 
bidirectional agglomerative hierarchical clustering using 
distance matrix and as for traditional agglomerative 
hierarchical clustering algorithms, the dissimilarity matrix 
D has a row and a column for each of the n elements. The 
overall complexity to merge all data points into single 
cluster is O(n²). Therefore the bidirectional use distance 
matrix and agglomerative hierarchical clustering method is 
a limitation to handle large datasets within a reasonable 
time and memory resources. 
 
 6. Conclusions 
The complexity analysis is the algorithm performance in 
determining the resources such as execution time and 
memory usage necessary to execute it. Usually, the 
complexity of an algorithm is a function related to the 
input length/size to the number of fundamental steps. This 
paper proposes a hierarchical algorithm called 
bidirectional agglomerative hierarchical clustering 
algorithm based on the AVL tree by clustering the objects 
in left and right the median/root to enhance the complexity 
time of the current agglomerative hierarchical clustering 
algorithms and to reduce the gap between the flooding of 
information and the current agglomerative hierarchical 
clustering algorithm. One of the advantages of the 
proposed bidirectional agglomerative hierarchical 
clustering algorithm using AVL tree and that of other 
similar agglomerative algorithm is that, it has relatively 
low computational requirements. The overall complexity 
of the proposed algorithm is O(logn) and need (n/2 or 
n/2+1) to cluster all data points in one cluster whereas the 
previous algorithm is O(n²) and need (n-1) steps to cluster 
all data points into one cluster. 
 
Appendix 
 

Table 8: Original distances 
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