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Abstract—The ability to afford decision 
makers with both accurate and timely 
consolidated information as well as rapid 
query response times is the fundamental 
requirement for the success of a Data 
Warehouse. Selecting views to materialize 
for the purpose of supporting the decision 
making efficiently is one of the most 
significant decisions in designing Data 
Warehouse. Selecting a set of derived 
views to materialize which minimizes the 
sum of total query response time & 
maintenance of the selected views is 
defined as view selection problem. 
Therefore, to select an appropriate set of a 
view is the major target that diminishes the 
entire query response time and also 
maintains the selected views.  Selecting a 
suitable set of views that minimizes the 
total cost associated with the materialized 
views is the key objective of data 
warehousing. However, these views have 
maintenance cost, so materialization of all 
views is not possible. In this paper we are 
taking into consideration of query 
frequency, query processing cost and 
space requirement. In order to find the 
frequent queries, we make use of I-mine 
mining techniques from which the 
frequently user accessible queries will be 
generated. Then, an appropriate set of 
views can be selected to materialize by 
minimizing the total query response time 
and/or the storage space along with 
maximizing the query frequency. These 
can be utilized by the users to obtain the 
quicker results once a set of views is 
materialized for the data warehouse.  
 

Keywords : materialization view, data 
warehousing, selection cost, I-mine item 
set index, FP growth   
 
I.INTRODUCTION 
 
Data warehouse (DW) can be defined as 
subject-oriented, integrated, nonvolatile, 
and time-variant collection of data in 
support of management’s decision [4]. It 
can bring together selected data from 
multiple database or other information 
sources into a single repository [6]. To 
avoid accessing from base table and 
increase the speed of queries posed to a 
DW, we can use some intermediate results 
from the query processing stored in the 
DW called materialized views. Therefore, 
materialized view selection involved query 
processing cost and materialized view 
maintenance cost. Selecting views to 
materialize for the purpose of supporting 
the decision making efficiently is one of 
the most significant decisions in designing 
Data Warehouse [5]. Selecting a set of 
derived views to materialize which 
minimizes the sum of total query response 
time & maintenance of the selected views 
is defined as view selection problem. 
Therefore, to select an appropriate set of a 
view is the major target that diminishes the 
entire query response time and also 
maintains the selected views. So, many 
literatures try to make the sum of that cost 
minimal.[3-15]  
 
In order to find the frequent queries, we 
make use of I-Mine techniques from which 
the frequently user accessible queries will 
be generated. Then, an appropriate set of 
views can be selected to materialize by 
minimizing the total query response time 
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and/or the storage space along with 
maximizing the query frequency. These 
can be utilized by the users to obtain the 
quicker results once a set of views is 
materialized for the data warehouse. Given 
a set of queries Q and a quantity S 
(available storage space), the view 
selection problem is to select a set of 
views M to materialize, that under the 
multiple objectives constraint that the total 
space occupied by M is less than S. [1-2] 
In this paper we are consideration three 
things to improve the query response time, 
space constraints, query frequency.   First 
we describe I-mine index for materialized 
view to finding query frequency. Second 
we are finding query response time and 
space constraint.[1] The threshold is 
frequency of query is high and query cost 
and space constraint is low which query is 
meet the threshold that particular query is 
create the materialize view. [2]       
 
The paper is organized as follows. In  
Section 2, we describe a related work of 
materialized view and propose work of 
selection view. In section 3, we describe 
Terminology and methods using in 
selection of  materialized view query. In 
section 4, w explain experimental setup 
and results. In section 5, we describe  
concluded the paper and section 6 will 
provide the references.  
 
2. RELATED WORKS 
 
The problem of finding views to 
materialize to answer queries has 
traditionally been studied under the name 
of view selection. Its original motivation 
comes up in the context of data 
warehousing. 
 
Harinarayan et al. [21] presented a greedy 
algorithm for the selection of materialized 
views so that query evaluation costs can be 
optimized in the special case of “data 
cubes”. However, the costs for view 
maintenance and storage were not 
addressed in this piece of work. Yang et al. 

[8] proposed a heuristic algorithm which 
utilizes a Multiple View Processing Plan 
(MVPP) to obtain an optimal materialized 
view selection, such that the best 
combination of good performance and low 
maintenance cost can be achieved. 
However, this algorithm did not consider 
the system storage constraints.  
Himanshu Gupta and Inderpal Singh 
Mumick [9] developed a greedy algorithm 
to incorporate the maintenance cost and 
storage constraint in the selection of data 
warehouse materialized views. 
Amit Shukla et al. [12] proposed a simple 
and fast heuristic algorithm, PBS, to select 
aggregates for precomputation. PBS runs 
several orders of magnitude faster than 
BPUS, and is fast enough to make the 
exploration of the time-space tradeoff 
feasible during system configuration.  
Himanshu Gupta and Inderpal Singh 
Mumick [6] developed algorithms to select 
a set of views to materialize in a data 
warehouse in order to minimize the total 
query response time under the constraint 
of a given  total view maintenance time. 
They have designed approximation 
algorithms for the special case of OR view 
graphs. 
Chuan Zhang and Jian Yang [4] proposed 
a completely different approach, Genetic 
Algorithm, to choose materialized views 
and demonstrate that it is practical and 
effective compared with heuristic 
approaches.  
Sanjay Agrawal et al. [11] proposed an 
end-to-end solution to the problem of 
selecting materialized views and indexes. 
Their solution was implemented as part of 
a tuning wizard that ships with Microsoft 
SQL Server 2000. 
Chuan Zhang et al. [4] explored the use of 
an evolutionary algorithm for materialized 
view selection based on multiple global 
processing plans for queries. They have 
applied a hybrid evolutionary algorithm to 
solve problems. 
Elena Baralis, Tania Cerquitelli, and Silvia 
Chiusano,developed a the I-Mine index, a 
general and compact structure which 
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provides tight integration of item set 
extraction in a relational DBMS.[1] 

The primary intent of this research 
is to develop a framework for selecting 
views to materialize so as to achieve finer 
query response in low time by reducing the 
total cost associated with the materialized 
views. The proposed framework exploits 
materialize the candidate views by taking 
into consideration of query frequency, 
query processing cost and space 
requirement. In order to find the frequent 
queries, we make use of I-Mine techniques 
from which the frequently user accessible 
queries will be generated. [11] Then, an 
appropriate set of views can be selected to 
materialize by minimizing the total query 
response time and/or the storage space 
along with maximizing the query 
frequency. The outcome can be directly 
utilized by the users to obtain the quicker 
results once a set of views is materialized 
for the data warehouse.[11-14] 
 
3. TERMINOLOGY AND METHODS 

This section explains the proposed cost 
effective framework for materialized view 
selection. We materialize the candidate 
views by taking into consideration of 
query frequency, query processing cost 
and space requirement. In order to find the 
frequent queries, we make use of I-mine 
techniques which generates the frequently 
user accessible queries.[11,12]  
 
3.1 I-Mine( Item set-Mine index) 
indexes in materialized view  

 
The I-Mine index [1] is a general 

and compact structure which provides tight 
integration of itemset extraction in a 
relational DBMS. Since no constraint is 
enforced during the index creation phase, 
I-Mine provides a complete representation 
of the original database. Data access as 
well as itemset extraction go in parallel in 
to reduce the I/O cost. The I-Mine index 
structure can be efficiently exploited by 
different itemset extraction algorithms. In 
particular, I-Mine methods currently 

support the (FP-growth and LCM v.2 
algorithms), but they can straightforwardly 
support the enforcement of various 
constraint categories. [16] 

Experiments, run for both sparse 
and dense data distributions, show the 
efficiency of the proposed index and its 
linear scalability also for large datasets. 
Itemset mining supported by the I-Mine 
index shows performance always 
comparable with, and often (especially for 
low supports) better than, state of the art 
algorithms accessing data on flat file. 
 

The I-Mine index (is a novel data 
structure that provides a compact and 
complete representation of transactional 
data supporting efficient item set 
extraction from a relational DBMS. It is 
characterized by the following properties: 
 
1. It is a covering index. No constraint 
(e.g., support constraint) is enforced 
during the index creation phase. Hence, 
the extraction can be performed by means 
of the index alone, without accessing the 
original database. 
2. The I-Mine index is a general structure 
which can be efficiently exploited by 
various item set extraction algorithms. 
3. The I-Mine physical organization 
supports efficient data access during item 
set extraction. 
4. I-Mine supports item set extraction in 
large data Sets 
 
The index performance has been evaluated 
by means of a wide range of experiments 
with data sets characterized by different 
size and data distribution. The execution 
time of frequent item set extraction based 
on I-Mine is always comparable with, and 
often (especially for low supports). 
 
Mapping relational queries into an item 
set  

A materialized view is a table on disk that 
contains the result set of a query. 
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Materialized views are most often used in 
data warehousing / business intelligence 
applications where querying large fact 
tables with thousands of millions of rows 
would result in query response times that 
resulted in an unusable application. 

Keeping the materialized views under 
control we need to create materialized 
views as forms of aggregate tables, or as 
copies of frequently executed queries, this 
can greatly speed up the response time of 
any end user application.  
Let Q = { q1 , q2 ,.. qn } be a set of finite 
number of queries accessing  T = { T1 , T2 

,.. Tm }, set of finite number of tables 
having attributes ai belongs to any table in 
T. An  P-Tree associated to relation R is 
actually a forest of prefix-trees, where 
each tree represents a group of transactions 
all sharing one or more items.  In order to 
make ‘item sets’ based on queries, we 
consider the user log for query usage and 
construct the relation  R with the 
transaction of occurrences of  subset of Q 
as a row in R. Hence any algorithm meant 
for index selection can be dealt with Q for 
better performance.   
 
An effective way to compactly store 
transactional records is to use a prefix-tree. 
Trees and prefix-trees have been 
frequently used in data mining and data 
warehousing indices, including cube 
forest, FP-tree, H-tree, Inverted Matrix , 
and Patricia-Tries . Our current 
implementation of the I-Tree is based on 
the FP-tree data structure, which is very 
effective in providing a compact and 
lossless representation of relation R.  
 
3.2 Fp-Growth  
 
The initial phase of FP-growth is the 
construction of a memory structure called 
FP-tree. FP-tree is a highly compact 
representation of the original database, 
which is assumed to fit into the main 
memory (a scalable, disk-based version of 
FP-tree has also been proposed). FP-tree 

contains only frequent items, each 
transaction has a corresponding path in the 
tree, and transactions having a common 
prefix share the common starting fragment 
of their paths. The procedure of creating 
an FP-tree requires two database scans: 
one to discover frequent items and their 
counts, and second to build the tree by 
adding transactions to it one by one. 
 
After an FP-tree is built, the actual FP-
growth procedure is recursively applied to 
it, which discovers all frequent itemsets in 
a depth-first manner by exploring 
projections (conditional FP-trees) of the 
tree with respect to frequent prefixes found 
so far. It should be noted that after the FP-
tree is created, the original database is not 
scanned anymore, and therefore the whole 
mining process requires exactly two 
database scans.[22] 
 

 
 Nodes correspond to items and have 

a counter 
 FP-Growth reads 1 transaction at a 

time and maps it to a path 
 Fixed order is used, so paths can 

overlap when transactions share 
items (when they have the same 
prefix ). 

 In this case, counters are incremented 
 Pointers are maintained between 

nodes containing the same item, 
creating singly linked lists (dotted 
lines) 
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 The more paths that overlap, the 
higher the compression. FP-tree may 
fit in memory. 

 Frequent itemsets extracted from the 
FP-Tree. 

Algorithm 
Input: database D, minimum support threshold 
minsup 
Output: the complete set of frequent patterns 
Method: 
1. scan D to discover frequent items and their 
counts 
2. create the root of FP-tree labeled as null 
3. scan D and add each transaction to FP-tree 
(omitting non-frequent items) 
4. call FP-growth(FP-tree, null) 
 
procedure FP-growth(FP-tree, α) { 
if FP-tree contains a single path P 
then for each combination β of nodes in P do 
generate frequent itemset βUα 
with support(βUα,D)= min support of nodes in β; 
else for each ai in header table of FP-tree do { 
generate frequent itemset β = aiUα 
with support(β,D) = support(ai,D); 
construct β's conditional pattern base and 
β's conditional FP-treeβ; 
if FP-tree≠Øthen FP-growth(FP-treeβ); 
} 
 
3.3 Frequent Itemset Generation  
 
FP-Growth extracts frequent itemsets from 
the FP-tree. 
 Bottom-up algorithm _ from the 

leaves towards the root 
 Divide and conquer: first look for 

frequent itemsets ending in e, then de, 
etc. . . then d, then cd, etc. . . 

 First, extract prefix path sub-trees 
ending in an item(set). using the 
linked lists. 

 

 
 Complete FP-tree 
 Example: prefix path sub-trees 

 
Each prefix path sub-tree is processed 
recursively to extract the frequent itemsets. 
Solutions are then merged. 
E.g. the prefix path sub-tree for e will be 
used to extract frequent itemsets ending in 
e, then in de, ce, be and ae, then in cde, 
bde, cde, etc. 

 

3.4 Illustration of frequent itemset 
Generation  

Let minSup = 2 and extract all frequent 
itemsets containing e. 
1. Obtain the prefix path sub-tree for e: 
2. Check if e is a frequent item by adding 
the counts along the linked list (dotted 
line). If so, extract it. 
Yes, count =3 so {e} is extracted as a 
frequent itemset. 
3. As e is frequent, find frequent itemsets 
ending in e. i.e. de,ce, be and ae.  i.e. 
decompose the problem recursively. 
To do this, we must first to obtain the 
conditional FP-tree for e.  
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3.4 Mining rules from the generated 
frequent itemsets 

While association rule mining over FP-
Growth without constraints is trivial, when 
constraints are in play, it is not trivial. 

To calculate the confidence of a rule {A, 
B} ⇒ {C} (where {A, B} is called the 
rule antecedent and {C}is called the 
rule consequent), one must use the 
following formula: 
 
a = rule.antecedent 
c = rule.consequent 
f = a UNION c = frequent itemset 
 confidence(a ⇒ c) = support(a UNION c) 
/ support(a)  = support(f) / support(a) 
 
So to calculate the confidence of a rule, 
one needs two values: the support of the 
entire (frequent) itemset of which the rule 
consists (support(f)) and the support of the 
antecedent (support(a)). When the 
resulting confidence is smaller 
than minConf, the candidate association 
rule is dropped, otherwise it is added to the 
result. [22]. This procedure is implemented 
based on the following steps. 
 
1) Step through header table from end to 
start (least common single      attribute to 
most common single attribute). For each 
item. 
a) Count support by following node links 
and add to linked list of        supported 
sets. 
b) Determine the "ancestor trails" 
connected to the nodes linked to the        
current item in the header table. 

c) Treat the list of ancestor itemSets as a 
new set of input data and        create a new 
header table based on the accumulated 
supported counts of        the single items in 
the ancestor itemSets  
d) Prune the ancestor itemSets so as to 
remove unsupported items.      
e) Repeat (1) with local header table and 
list of pruned ancestor itemSets  as input.  

3.5 Computation of cost selecting 
queries constructing materialized views 

Given space restrictions and, if available, a 
set of frequently users’ queries, these 
algorithms select an appropriated set of 
views to materialize in  order to achieve a 
good performance in the query processing 
of data warehousing environments.  
 

For finding the selection cost QS of 
the every query, the query frequency cost 

fQ , query storage cost sQ and Query 
processing cost pQ are computed using the 
following formulae,  

)(

i
   Max i

Q

Q
f f

f
Q =      

)(

i
   Max i

Q

Q
p P

P
Q =         

)(

i
   Max i

Q

Q
s S

S
Q =  

Where the parameters are defined as, 
Qf  frequency of query  Q  

QP  Processing cost of query Q  

QS  Storage of cost QS  
 
Using these parameters such as, fQ , sQ  
and pQ , the selection cost QS  is computed 
using the designed formulae that maximize 
the query frequency and minimize the 
spatial cost and query processing cost.  
 

)1(*)1(** spfQ QQQS −+−+= δβα  
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Where, δβα     , and are Weights such that 
sum  of δβα     , and  equals 1. Moreover,  

fQ  represent Query frequency cost,  

sQ  represent query storage cost, and   

pQ represent Query processing cost 
respectively. 
Then, the set of queries whose cost is 
implemented in less than the minimum 
threshold ( MT ) is selected to build the 
materialized views.   

 
Thus, the selected views to materialize can 
be achieved the best combination of good 
query response, low query processing cost 
and low storage space. 

4. EXPERIMENTIAL SETUP AND 
RESULT 

We set up the environment with a  
purchase-order processing context having 
four physical table and applying fifty 
sample queries. The program has been 
written in Java  and the backend is used 
SQL server8.Then we consolidate the user 
profile for using those queries by one 
thousand users as follows: 
 
The input to the proposed approach is data 
warehouse model, WD  and a user’s table 
( TU ) that contains the list of queries used 
by the number of users. For the 
constructing  materialized view, the 
queries that are mostly used by the users 
should be selected but, at the same time, 
the query processing cost should be less as 
w discussed in previous section. 
 
The schema of the data warehouse used in 
the proposed approach is represented with 
four various tables such as customer ( 1T ), 
order ( 2T ), product ( 3T ) and vehicle ( 4T ). 
Here, ‘order’ ( 2T ) is a target table, which 
consists of four field records such as 

OrderID, ProductID, CustomerID and 
Time of buying where, ProductID and 
CustomerID are two foreign key relations. 
The order table contains one tuple for each 
new order, and its key is OrderID. The 
customer table contains details about the 
customer and its field records are 
customerID, Name, Age, Housetype and 
City.  
 

 

TU  is used to find the frequency of every 
queries for computing the query frequency 
cost.  TU - consisting of ‘ m ’ columns 
signifies the set of queries used by the 
corresponding users and ‘ n ’ rows signifies 
the number of users who are used the data 
warehouse to find the important 
information by posing the queries.  

we apply I-Mine algorithm to user’s query 
table TU  for finding the frequent queries 
and their corresponding support value. 
Details are given in section 3. After 
mining the frequent queries we find 
selection cost for materialized views. 
Details of Methodology are shown in 
section 4. 

By considering these multi-objective, at 
first we sort the queries in a descending 
order based on frequency and at the same 
time, for other objectives, the queries are 
sorted in a ascending order according to 
the storage cost and query processing cost. 
Then, we select the top ‘ k ’ queries from 
the every sorted list so that the queries that 
are satisfying multiple objectives can be 
possibly selected. [13,14] 
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Sample queries 
 
1. select customer.cid,customer.name from  
dbo.Customer where cid in (select 
vehicle.cid from dbo.Vehicle where 
Vehicle.model='model-19' and 
Vehicle.color='color-1') 
2. SELECT Customer.name, Orders.oid 
from dbo.Customer INNER JOIN 
dbo.Orders ON Customer.cid = Orders.cid 
3. SELECT Customer.name, Customer.age 
from dbo.Customer WHERE 
(((Customer.age)>30)) 
4.SELECT Customer.age, Vehicle.model 
from dbo.Customer INNER JOIN 
dbo.Vehicle ON customer.cid = 
Vehicle.cid WHERE 
(((Customer.age)='DISTINCT') AND 
((Vehicle.model)='DISTINCT')) 
5.SELECT Product.price, Product.quantity 
from dbo.Product WHERE 
(((Product.price)>7000) AND 
((Product.quantity)>20))  
 
Sample TU  
Query Qs Qf Qc sq 

1 0 0.7 0.2 8.2 
2 0 0.8 0.2 8.4 
3 0 0.7 0.2 8.2 
4 0 0.7 0.2 8.2 
5 0 0.8 0.2 8.4 
6 0 0.6 0.2 8 
7 0 0.6 0.2 8 
8 0 0.6 0.2 8 

…n 
(168) 0 0.6 0 8.7 

1000 users are access 46 queries. 
FP tree  generate 2355 nodes. 
FP mining generate from 2355 nodes to 
168 frequent sets. 
Query Qs Qf Qc sq 

85 0 1 0 9.9 
57 0 0.9 0 9.7 
49 0 0.9 0 9.7 
44 0 1 0.1 9.7 

159 0 0.9 0.1 9.5 
105 0 0.9 0 9.5 
131 0 0.9 0 9.5 

86 0 0.9 0 9.4 
63 0 0.8 0 9.3 

101 0 0.8 0 9.3 
167 0 0.8 0 9.3 

28 0 0.8 0 9.3 
140 0 0.8 0 9.3 
125 0 0.8 0 9.3 

75 0 0.8 0 9.3 
50 0 0.8 0 9.3 

150 0 0.8 0 9.2 
55 0 0.8 0 9.1 
78 0 0.8 0 9.1 

130 0 0.8 0 9.1 
142 0 0.8 0 9.1 
141 0 0.8 0 9.1 

88 0 0.8 0 9.1 
89 0 0.8 0 9.1 

116 0 0.8 0 9.1 
41 0 0.8 0 9.1 
27 0 0.8 0 9.1 
31 0 0.8 0 9.1 
29 0 0.8 0 9.1 

132 0 0.8 0 9.1 
90 0 0.8 0 9.1 
25 0 0.8 0 9.1 
26 0 0.8 0 9.1 
21 0 0.8 0 9.1 
16 0 0.9 0.2 9.1 
24 0 0.8 0 9.1 
96 0 0.8 0 9.1 

  
From the frequent set we apply the 
multiple objective to find the selection cost 
of queries.  From that we select top ‘k’ 
queries.   
 

 
Before selected the query to materialize storage 
cost and query cost are high  
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After satisfy multiple objectives selected queries 
are materialized.  
 

  
Total storage  is taken less space after 
select cost of query. 
 
7. CONCLUSIONS 
 
The selection of views to materialize is 
one of the most important issues in 
designing a data warehouse. The view 
selection problem has been addressed in 
this paper by means of taking into account 
the essential constraints for selecting views 
to materialize so as to achieve the best 
combination of low storage cost, low 
query processing cost and high frequency 
of query. It can be utilized by the users to 
obtain the quicker results once a set of 
views is materialized for the data 
warehouse. For experimentation, the 
proposed approach is executed on the 
simulated data warehouse model and the 
query list to find the efficiency of the 
proposed approach in maintaining of 
materialized view.  

In addition to, the choice of 
algorithm is a major concern in finding the 
frequent queries for further reducing the 
time complexity. By considering these, we 
make use of the I-Mine algorithm, Index 
Support for Item Set Mining to mine the 
frequent queries. The advantage of the I-
Mine algorithm is that it can mine the 
frequent queries with less computation 
time due to its I-Mine index structure 
compared with the traditional algorithms 
like, Apriori and FP-Growth.  
 

As further extensions of this work, 
Incremental update of the index. Currently, 
when the transactional database is updated, 
the I-Mine index needs to be 
rematerialized. A different approach would 
be to incrementally update the index when 
new data become available. Since no 
support threshold is enforced during the 
index creation phase, the incremental 
update is feasible without accessing the 
original transactional database. Also work 
can be extended with various granular 
sizes of query i.e. a query can be 
charactered with the tables, records, 
attributes levels to meet accurate 
requirements instead considering only the 
queries as items in our itemset. 
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