
An Efficient I-MINE Algorithm for Materialized Views in a Data
Warehouse Environment

1T.Nalini, , 2Dr. A.Kumaravel, 3Dr.K.Rangarajan
Dept of CSE, Bharath University,

173, Agaram Road, Selaiyur, Chennai – 600 073, India.

Abstract—The ability to afford decision
makers with both accurate and timely
consolidated information as well as rapid
query response times is the fundamental
requirement for the success of a Data
Warehouse. Selecting views to materialize
for the purpose of supporting the decision
making efficiently is one of the most
significant decisions in designing Data
Warehouse. Selecting a set of derived
views to materialize which minimizes the
sum of total query response time &
maintenance of the selected views is
defined as view selection problem.
Therefore, to select an appropriate set of a
view is the major target that diminishes the
entire query response time and also
maintains the selected views. Selecting a
suitable set of views that minimizes the
total cost associated with the materialized
views is the key objective of data
warehousing. However, these views have
maintenance cost, so materialization of all
views is not possible. In this paper we are
taking into consideration of query
frequency, query processing cost and
space requirement. In order to find the
frequent queries, we make use of I-mine
mining techniques from which the
frequently user accessible queries will be
generated. Then, an appropriate set of
views can be selected to materialize by
minimizing the total query response time
and/or the storage space along with
maximizing the query frequency. These
can be utilized by the users to obtain the
quicker results once a set of views is
materialized for the data warehouse.

Keywords : materialization view, data
warehousing, selection cost, I-mine item
set index, FP growth

I.INTRODUCTION

Data warehouse (DW) can be defined as
subject-oriented, integrated, nonvolatile,
and time-variant collection of data in
support of management’s decision [4]. It
can bring together selected data from
multiple database or other information
sources into a single repository [6]. To
avoid accessing from base table and
increase the speed of queries posed to a
DW, we can use some intermediate results
from the query processing stored in the
DW called materialized views. Therefore,
materialized view selection involved query
processing cost and materialized view
maintenance cost. Selecting views to
materialize for the purpose of supporting
the decision making efficiently is one of
the most significant decisions in designing
Data Warehouse [5]. Selecting a set of
derived views to materialize which
minimizes the sum of total query response
time & maintenance of the selected views
is defined as view selection problem.
Therefore, to select an appropriate set of a
view is the major target that diminishes the
entire query response time and also
maintains the selected views. So, many
literatures try to make the sum of that cost
minimal.[3-15]

In order to find the frequent queries, we
make use of I-Mine techniques from which
the frequently user accessible queries will
be generated. Then, an appropriate set of
views can be selected to materialize by
minimizing the total query response time

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 366

and/or the storage space along with
maximizing the query frequency. These
can be utilized by the users to obtain the
quicker results once a set of views is
materialized for the data warehouse. Given
a set of queries Q and a quantity S
(available storage space), the view
selection problem is to select a set of
views M to materialize, that under the
multiple objectives constraint that the total
space occupied by M is less than S. [1-2]
In this paper we are consideration three
things to improve the query response time,
space constraints, query frequency. First
we describe I-mine index for materialized
view to finding query frequency. Second
we are finding query response time and
space constraint.[1] The threshold is
frequency of query is high and query cost
and space constraint is low which query is
meet the threshold that particular query is
create the materialize view. [2]

The paper is organized as follows. In
Section 2, we describe a related work of
materialized view and propose work of
selection view. In section 3, we describe
Terminology and methods using in
selection of materialized view query. In
section 4, w explain experimental setup
and results. In section 5, we describe
concluded the paper and section 6 will
provide the references.

2. RELATED WORKS

The problem of finding views to
materialize to answer queries has
traditionally been studied under the name
of view selection. Its original motivation
comes up in the context of data
warehousing.

Harinarayan et al. [21] presented a greedy
algorithm for the selection of materialized
views so that query evaluation costs can be
optimized in the special case of “data
cubes”. However, the costs for view
maintenance and storage were not
addressed in this piece of work. Yang et al.

[8] proposed a heuristic algorithm which
utilizes a Multiple View Processing Plan
(MVPP) to obtain an optimal materialized
view selection, such that the best
combination of good performance and low
maintenance cost can be achieved.
However, this algorithm did not consider
the system storage constraints.
Himanshu Gupta and Inderpal Singh
Mumick [9] developed a greedy algorithm
to incorporate the maintenance cost and
storage constraint in the selection of data
warehouse materialized views.
Amit Shukla et al. [12] proposed a simple
and fast heuristic algorithm, PBS, to select
aggregates for precomputation. PBS runs
several orders of magnitude faster than
BPUS, and is fast enough to make the
exploration of the time-space tradeoff
feasible during system configuration.
Himanshu Gupta and Inderpal Singh
Mumick [6] developed algorithms to select
a set of views to materialize in a data
warehouse in order to minimize the total
query response time under the constraint
of a given total view maintenance time.
They have designed approximation
algorithms for the special case of OR view
graphs.
Chuan Zhang and Jian Yang [4] proposed
a completely different approach, Genetic
Algorithm, to choose materialized views
and demonstrate that it is practical and
effective compared with heuristic
approaches.
Sanjay Agrawal et al. [11] proposed an
end-to-end solution to the problem of
selecting materialized views and indexes.
Their solution was implemented as part of
a tuning wizard that ships with Microsoft
SQL Server 2000.
Chuan Zhang et al. [4] explored the use of
an evolutionary algorithm for materialized
view selection based on multiple global
processing plans for queries. They have
applied a hybrid evolutionary algorithm to
solve problems.
Elena Baralis, Tania Cerquitelli, and Silvia
Chiusano,developed a the I-Mine index, a
general and compact structure which

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 367

provides tight integration of item set
extraction in a relational DBMS.[1]

The primary intent of this research
is to develop a framework for selecting
views to materialize so as to achieve finer
query response in low time by reducing the
total cost associated with the materialized
views. The proposed framework exploits
materialize the candidate views by taking
into consideration of query frequency,
query processing cost and space
requirement. In order to find the frequent
queries, we make use of I-Mine techniques
from which the frequently user accessible
queries will be generated. [11] Then, an
appropriate set of views can be selected to
materialize by minimizing the total query
response time and/or the storage space
along with maximizing the query
frequency. The outcome can be directly
utilized by the users to obtain the quicker
results once a set of views is materialized
for the data warehouse.[11-14]

3. TERMINOLOGY AND METHODS

This section explains the proposed cost
effective framework for materialized view
selection. We materialize the candidate
views by taking into consideration of
query frequency, query processing cost
and space requirement. In order to find the
frequent queries, we make use of I-mine
techniques which generates the frequently
user accessible queries.[11,12]

3.1 I-Mine(Item set-Mine index)
indexes in materialized view

The I-Mine index [1] is a general

and compact structure which provides tight
integration of itemset extraction in a
relational DBMS. Since no constraint is
enforced during the index creation phase,
I-Mine provides a complete representation
of the original database. Data access as
well as itemset extraction go in parallel in
to reduce the I/O cost. The I-Mine index
structure can be efficiently exploited by
different itemset extraction algorithms. In
particular, I-Mine methods currently

support the (FP-growth and LCM v.2
algorithms), but they can straightforwardly
support the enforcement of various
constraint categories. [16]

Experiments, run for both sparse
and dense data distributions, show the
efficiency of the proposed index and its
linear scalability also for large datasets.
Itemset mining supported by the I-Mine
index shows performance always
comparable with, and often (especially for
low supports) better than, state of the art
algorithms accessing data on flat file.

The I-Mine index (is a novel data
structure that provides a compact and
complete representation of transactional
data supporting efficient item set
extraction from a relational DBMS. It is
characterized by the following properties:

1. It is a covering index. No constraint
(e.g., support constraint) is enforced
during the index creation phase. Hence,
the extraction can be performed by means
of the index alone, without accessing the
original database.
2. The I-Mine index is a general structure
which can be efficiently exploited by
various item set extraction algorithms.
3. The I-Mine physical organization
supports efficient data access during item
set extraction.
4. I-Mine supports item set extraction in
large data Sets

The index performance has been evaluated
by means of a wide range of experiments
with data sets characterized by different
size and data distribution. The execution
time of frequent item set extraction based
on I-Mine is always comparable with, and
often (especially for low supports).

Mapping relational queries into an item
set

A materialized view is a table on disk that
contains the result set of a query.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 368

Materialized views are most often used in
data warehousing / business intelligence
applications where querying large fact
tables with thousands of millions of rows
would result in query response times that
resulted in an unusable application.

Keeping the materialized views under
control we need to create materialized
views as forms of aggregate tables, or as
copies of frequently executed queries, this
can greatly speed up the response time of
any end user application.
Let Q = { q1 , q2 ,.. qn } be a set of finite
number of queries accessing T = { T1 , T2

,.. Tm }, set of finite number of tables
having attributes ai belongs to any table in
T. An P-Tree associated to relation R is
actually a forest of prefix-trees, where
each tree represents a group of transactions
all sharing one or more items. In order to
make ‘item sets’ based on queries, we
consider the user log for query usage and
construct the relation R with the
transaction of occurrences of subset of Q
as a row in R. Hence any algorithm meant
for index selection can be dealt with Q for
better performance.

An effective way to compactly store
transactional records is to use a prefix-tree.
Trees and prefix-trees have been
frequently used in data mining and data
warehousing indices, including cube
forest, FP-tree, H-tree, Inverted Matrix ,
and Patricia-Tries . Our current
implementation of the I-Tree is based on
the FP-tree data structure, which is very
effective in providing a compact and
lossless representation of relation R.

3.2 Fp-Growth

The initial phase of FP-growth is the
construction of a memory structure called
FP-tree. FP-tree is a highly compact
representation of the original database,
which is assumed to fit into the main
memory (a scalable, disk-based version of
FP-tree has also been proposed). FP-tree

contains only frequent items, each
transaction has a corresponding path in the
tree, and transactions having a common
prefix share the common starting fragment
of their paths. The procedure of creating
an FP-tree requires two database scans:
one to discover frequent items and their
counts, and second to build the tree by
adding transactions to it one by one.

After an FP-tree is built, the actual FP-
growth procedure is recursively applied to
it, which discovers all frequent itemsets in
a depth-first manner by exploring
projections (conditional FP-trees) of the
tree with respect to frequent prefixes found
so far. It should be noted that after the FP-
tree is created, the original database is not
scanned anymore, and therefore the whole
mining process requires exactly two
database scans.[22]

 Nodes correspond to items and have

a counter
 FP-Growth reads 1 transaction at a

time and maps it to a path
 Fixed order is used, so paths can

overlap when transactions share
items (when they have the same
prefix).

 In this case, counters are incremented
 Pointers are maintained between

nodes containing the same item,
creating singly linked lists (dotted
lines)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 369

 The more paths that overlap, the
higher the compression. FP-tree may
fit in memory.

 Frequent itemsets extracted from the
FP-Tree.

Algorithm
Input: database D, minimum support threshold
minsup
Output: the complete set of frequent patterns
Method:
1. scan D to discover frequent items and their
counts
2. create the root of FP-tree labeled as null
3. scan D and add each transaction to FP-tree
(omitting non-frequent items)
4. call FP-growth(FP-tree, null)

procedure FP-growth(FP-tree, α) {
if FP-tree contains a single path P
then for each combination β of nodes in P do
generate frequent itemset βUα
with support(βUα,D)= min support of nodes in β;
else for each ai in header table of FP-tree do {
generate frequent itemset β = aiUα
with support(β,D) = support(ai,D);
construct β's conditional pattern base and
β's conditional FP-treeβ;
if FP-tree≠Øthen FP-growth(FP-treeβ);
}

3.3 Frequent Itemset Generation

FP-Growth extracts frequent itemsets from
the FP-tree.
 Bottom-up algorithm _ from the

leaves towards the root
 Divide and conquer: first look for

frequent itemsets ending in e, then de,
etc. . . then d, then cd, etc. . .

 First, extract prefix path sub-trees
ending in an item(set). using the
linked lists.

 Complete FP-tree
 Example: prefix path sub-trees

Each prefix path sub-tree is processed
recursively to extract the frequent itemsets.
Solutions are then merged.
E.g. the prefix path sub-tree for e will be
used to extract frequent itemsets ending in
e, then in de, ce, be and ae, then in cde,
bde, cde, etc.

3.4 Illustration of frequent itemset
Generation

Let minSup = 2 and extract all frequent
itemsets containing e.
1. Obtain the prefix path sub-tree for e:
2. Check if e is a frequent item by adding
the counts along the linked list (dotted
line). If so, extract it.
Yes, count =3 so {e} is extracted as a
frequent itemset.
3. As e is frequent, find frequent itemsets
ending in e. i.e. de,ce, be and ae. i.e.
decompose the problem recursively.
To do this, we must first to obtain the
conditional FP-tree for e.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 370

3.4 Mining rules from the generated
frequent itemsets

While association rule mining over FP-
Growth without constraints is trivial, when
constraints are in play, it is not trivial.

To calculate the confidence of a rule {A,
B} ⇒ {C} (where {A, B} is called the
rule antecedent and {C}is called the
rule consequent), one must use the
following formula:

a = rule.antecedent
c = rule.consequent
f = a UNION c = frequent itemset
 confidence(a ⇒ c) = support(a UNION c)
/ support(a) = support(f) / support(a)

So to calculate the confidence of a rule,
one needs two values: the support of the
entire (frequent) itemset of which the rule
consists (support(f)) and the support of the
antecedent (support(a)). When the
resulting confidence is smaller
than minConf, the candidate association
rule is dropped, otherwise it is added to the
result. [22]. This procedure is implemented
based on the following steps.

1) Step through header table from end to
start (least common single attribute to
most common single attribute). For each
item.
a) Count support by following node links
and add to linked list of supported
sets.
b) Determine the "ancestor trails"
connected to the nodes linked to the
current item in the header table.

c) Treat the list of ancestor itemSets as a
new set of input data and create a new
header table based on the accumulated
supported counts of the single items in
the ancestor itemSets
d) Prune the ancestor itemSets so as to
remove unsupported items.
e) Repeat (1) with local header table and
list of pruned ancestor itemSets as input.

3.5 Computation of cost selecting
queries constructing materialized views

Given space restrictions and, if available, a
set of frequently users’ queries, these
algorithms select an appropriated set of
views to materialize in order to achieve a
good performance in the query processing
of data warehousing environments.

For finding the selection cost QS of
the every query, the query frequency cost

fQ , query storage cost sQ and Query
processing cost pQ are computed using the
following formulae,

)(

i
 Max i

Q

Q
f f

f
Q =

)(

i
 Max i

Q

Q
p P

P
Q =

)(

i
 Max i

Q

Q
s S

S
Q =

Where the parameters are defined as,
Qf  frequency of query Q

QP  Processing cost of query Q

QS  Storage of cost QS

Using these parameters such as, fQ , sQ
and pQ , the selection cost QS is computed
using the designed formulae that maximize
the query frequency and minimize the
spatial cost and query processing cost.

)1(*)1(** spfQ QQQS −+−+= δβα

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 371

Where, δβα , and are Weights such that
sum of δβα , and equals 1. Moreover,

fQ represent Query frequency cost,

sQ represent query storage cost, and

pQ represent Query processing cost
respectively.
Then, the set of queries whose cost is
implemented in less than the minimum
threshold (MT) is selected to build the
materialized views.

Thus, the selected views to materialize can
be achieved the best combination of good
query response, low query processing cost
and low storage space.

4. EXPERIMENTIAL SETUP AND
RESULT

We set up the environment with a
purchase-order processing context having
four physical table and applying fifty
sample queries. The program has been
written in Java and the backend is used
SQL server8.Then we consolidate the user
profile for using those queries by one
thousand users as follows:

The input to the proposed approach is data
warehouse model, WD and a user’s table
(TU) that contains the list of queries used
by the number of users. For the
constructing materialized view, the
queries that are mostly used by the users
should be selected but, at the same time,
the query processing cost should be less as
w discussed in previous section.

The schema of the data warehouse used in
the proposed approach is represented with
four various tables such as customer (1T),
order (2T), product (3T) and vehicle (4T).
Here, ‘order’ (2T) is a target table, which
consists of four field records such as

OrderID, ProductID, CustomerID and
Time of buying where, ProductID and
CustomerID are two foreign key relations.
The order table contains one tuple for each
new order, and its key is OrderID. The
customer table contains details about the
customer and its field records are
customerID, Name, Age, Housetype and
City.

TU is used to find the frequency of every
queries for computing the query frequency
cost. TU - consisting of ‘ m ’ columns
signifies the set of queries used by the
corresponding users and ‘ n ’ rows signifies
the number of users who are used the data
warehouse to find the important
information by posing the queries.

we apply I-Mine algorithm to user’s query
table TU for finding the frequent queries
and their corresponding support value.
Details are given in section 3. After
mining the frequent queries we find
selection cost for materialized views.
Details of Methodology are shown in
section 4.

By considering these multi-objective, at
first we sort the queries in a descending
order based on frequency and at the same
time, for other objectives, the queries are
sorted in a ascending order according to
the storage cost and query processing cost.
Then, we select the top ‘ k ’ queries from
the every sorted list so that the queries that
are satisfying multiple objectives can be
possibly selected. [13,14]

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 372

Sample queries

1. select customer.cid,customer.name from
dbo.Customer where cid in (select
vehicle.cid from dbo.Vehicle where
Vehicle.model='model-19' and
Vehicle.color='color-1')
2. SELECT Customer.name, Orders.oid
from dbo.Customer INNER JOIN
dbo.Orders ON Customer.cid = Orders.cid
3. SELECT Customer.name, Customer.age
from dbo.Customer WHERE
(((Customer.age)>30))
4.SELECT Customer.age, Vehicle.model
from dbo.Customer INNER JOIN
dbo.Vehicle ON customer.cid =
Vehicle.cid WHERE
(((Customer.age)='DISTINCT') AND
((Vehicle.model)='DISTINCT'))
5.SELECT Product.price, Product.quantity
from dbo.Product WHERE
(((Product.price)>7000) AND
((Product.quantity)>20))

Sample TU
Query Qs Qf Qc sq

1 0 0.7 0.2 8.2
2 0 0.8 0.2 8.4
3 0 0.7 0.2 8.2
4 0 0.7 0.2 8.2
5 0 0.8 0.2 8.4
6 0 0.6 0.2 8
7 0 0.6 0.2 8
8 0 0.6 0.2 8

…n
(168) 0 0.6 0 8.7

1000 users are access 46 queries.
FP tree generate 2355 nodes.
FP mining generate from 2355 nodes to
168 frequent sets.
Query Qs Qf Qc sq

85 0 1 0 9.9
57 0 0.9 0 9.7
49 0 0.9 0 9.7
44 0 1 0.1 9.7

159 0 0.9 0.1 9.5
105 0 0.9 0 9.5
131 0 0.9 0 9.5

86 0 0.9 0 9.4
63 0 0.8 0 9.3

101 0 0.8 0 9.3
167 0 0.8 0 9.3

28 0 0.8 0 9.3
140 0 0.8 0 9.3
125 0 0.8 0 9.3

75 0 0.8 0 9.3
50 0 0.8 0 9.3

150 0 0.8 0 9.2
55 0 0.8 0 9.1
78 0 0.8 0 9.1

130 0 0.8 0 9.1
142 0 0.8 0 9.1
141 0 0.8 0 9.1

88 0 0.8 0 9.1
89 0 0.8 0 9.1

116 0 0.8 0 9.1
41 0 0.8 0 9.1
27 0 0.8 0 9.1
31 0 0.8 0 9.1
29 0 0.8 0 9.1

132 0 0.8 0 9.1
90 0 0.8 0 9.1
25 0 0.8 0 9.1
26 0 0.8 0 9.1
21 0 0.8 0 9.1
16 0 0.9 0.2 9.1
24 0 0.8 0 9.1
96 0 0.8 0 9.1

From the frequent set we apply the
multiple objective to find the selection cost
of queries. From that we select top ‘k’
queries.

Before selected the query to materialize storage
cost and query cost are high

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 373

After satisfy multiple objectives selected queries
are materialized.

Total storage is taken less space after
select cost of query.

7. CONCLUSIONS

The selection of views to materialize is
one of the most important issues in
designing a data warehouse. The view
selection problem has been addressed in
this paper by means of taking into account
the essential constraints for selecting views
to materialize so as to achieve the best
combination of low storage cost, low
query processing cost and high frequency
of query. It can be utilized by the users to
obtain the quicker results once a set of
views is materialized for the data
warehouse. For experimentation, the
proposed approach is executed on the
simulated data warehouse model and the
query list to find the efficiency of the
proposed approach in maintaining of
materialized view.

In addition to, the choice of
algorithm is a major concern in finding the
frequent queries for further reducing the
time complexity. By considering these, we
make use of the I-Mine algorithm, Index
Support for Item Set Mining to mine the
frequent queries. The advantage of the I-
Mine algorithm is that it can mine the
frequent queries with less computation
time due to its I-Mine index structure
compared with the traditional algorithms
like, Apriori and FP-Growth.

As further extensions of this work,
Incremental update of the index. Currently,
when the transactional database is updated,
the I-Mine index needs to be
rematerialized. A different approach would
be to incrementally update the index when
new data become available. Since no
support threshold is enforced during the
index creation phase, the incremental
update is feasible without accessing the
original transactional database. Also work
can be extended with various granular
sizes of query i.e. a query can be
charactered with the tables, records,
attributes levels to meet accurate
requirements instead considering only the
queries as items in our itemset.

8. REFERENCES
[1] Elena Baralis, Tania Cerquitelli, and Silvia
Chiusano,” I-Mine: Index Support for Item Set
Mining” IEEE Transactions on Knowledge and
Data Engineering, vol. 21, no. 4, april 2009
[2] B.Ashadevi, R.Balasubramanian,” Cost
Effective Approach for Materialized Views
Selection in Data Warehousing Environment”,
IJCSNS International Journal of Computer Science
and Network Security, VOL.8 No.10, October
2008
[3] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J.
Widom, "View Maintenance in a Warehousing
Environment." In Proceedings of the ACM
SIGMOD Conference, San Jose, California, May
1995.
 [4] C. Zhang, X. Yao, and J. Yang. An
evolutionary Approach to Materialized View
Selection in a Data Warehouse Environment. IEEE
Transactions on Systems, Man and Cybernetics,
vol. 31, no.3, pp. 282–293, 2001.
[5] H. Gupta, I.S. Mumick,” Selection of views to
materialize under a maintenance cost constraint”,
In Proc. 7th International Conference on Database
Theory (ICDT'99), Jerusalem, Israel, pp. 453–470,
1999.
 [6] J.Yang, K. Karlapalem, and Q. Li. “A
framework for designing materialized views in data
warehousing environment”. Proceedings of 17th
IEEE International conference on Distributed
Computing Systems, Maryland, U.S.A., May 1997.
 [7] S. Agrawal, S. Chaudhuri, and V. Narasayya,
“Automated Selection of Materialized Views and
Indexes in SQL Databases,” Proceedings of
International Conference on Very Large Database
Systems, 2000.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 374

[8] P. Kalnis, N. Mamoulis, and D. Papadias,
“View Selection Using Randomized Search,” Data
and Knowledge Eng., vol. 42, no. 1, 2002.
[9] Gupta, H. & Mumick, I., Selection of Views to
Materialize in a Data Warehouse. IEEE
Transactions on Knowledge and Data Engineering,
17(1), 24-43, 2005.
[10] M. Lee and J. Hammer, Speeding up
materialized view selection in data warehouses
using a randomized algorithm,
International Journal of Cooperative Information
Systems, 10(3): 327–353, 2001.
 [11] Gang Gou; Yu, J.X.; Hongjun Lu., "A*
search: an efficient and flexible approach to
materialized view selection Systems," IEEE
Transactions on Man, and Cybernetics, Part C:
Applications and Reviews, Vol. 36, no. 3, May
2006 pp: 411 - 425.
[12] A. Shukla, P. Deshpande, and J. F. Naughton,
“Materialized view selection for multidimensional
datasets,” in Proc. 24th Int. Conf. Very Large Data
Bases, 1998, pp. 488–499.
[13] T.Nalini,S.K.Srivatsa,K.Rangarajan,”
International Journal of Advanced Research in
Computer Engineering(IJARCE),”Method of
ranking in indexes on materialized view for
database workload” Vol.4,No.1,pp 157-162
[14] T.Nalini,S.K.Srivatsa,K.Rangarajan,”
International journal of computer science, systems
engineering and information
technology(IJCSSEIT),” Efficient methods for
selecting materialized views in a data
warehouse”Vol.3,No.2, pp 305-310
[15] R. Agrawal and R. Srikant, “Fast Algorithm
for Mining Association Rules,” Proc. 20th Int’l
Conf. Very Large Data Bases (VLDB ’94), Sept.
1994.
[16] R. Agrawal, T. Imilienski, and A. Swami,
“Mining Association Rules between Sets of Items
in Large Databases,” Proc. ACM SIGMOD ’93,
May 1993.
[17] J. Han, J. Pei, and Y. Yin, “Mining Frequent
Patterns without Candidate Generation,” Proc.
ACM SIGMOD, 2000.
[18]A. Savasere, E. Omiecinski, and S.B. Navathe,
“An Efficient Algorithm for Mining Association
Rules in Large Databases,” Proc. 21st Int’l Conf.
Very Large Data Bases (VLDB ’95), pp. 432-444,
1995.
[19] H. Toivonen, “Sampling Large Databases for
Association Rules,” Proc. 22nd Int’l Conf. Very
Large Data Bases (VLDB ’96), pp. 134-145, 1996.
[20] M. El-Hajj and O.R. Zaiane, “Inverted Matrix:
Efficient Discovery of Frequent Items in Large
Datasets in the Context of Interactive Mining,”
Proc. Ninth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (SIGKDD), 2003.
[21] V. Harinarayan, A. Rajaraman, and J. Ullman.
“Implementing data cubes efficiently”. Proceedings
of ACM SIGMOD 1996 International Conference

on Management of Data, Montreal, Canada, pages
205--216, 1996.
[22] Frequent Pattern Growth (FP-Growth)
Algorithm An Introduction, Florian Verhein ,
January 2008.

Mrs. T.Nalini received M.Sc from the
Karanataka university, M.Tech from Bharath
University in 2000, 2007 respectively. Now,
she is pursuing Ph.D. in Bharath University.
She was a Lecturer between 2000 and 2006.
Currently she is an Assistant Professor in the
Department of CSE. She has published more
than 4 research papers in international
journals. She also presented the paper in 15
national conferences and 2 international
conferences. She is a life member of many
professional bodies like ISTE, CSI, IEEE.

Dr. A.Kumaravel received PG in Computer
Science in Applied Sciences from the MIT
Chennai , Ph.D in theoretical computer
science from Anna university in 1988,1992
respectively. He was worked as a professor in
CS for more than 20 years in Singapore. He
has published more than 10 papers, and he also
presented 20 papers in national and
international conferences. He has organized
workshops, national and international
conferences, seminars in various
organizations. Now, he is working as Dean of
Computing Studies. He had received senior
fellowship in UGC. He is a life member of
many professional bodies like ISTE, CSI,
IEEE.

Dr.K.Rangarajan is a Professor and Dean of
Science & Humanities, Bharath University,
TN, India. He has about 60 research
publications and guiding many research
scholars. His research areas include Automata
Theory, Formal Languages, Petri Nets and
Graph theory.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 375

