
 Autonomic Management for Multi-agent Systems
Nadir K .Salih1# Tianyi Zang1@ P

PG.K .Viju 2*Abdelmotalib A.Mohamed 1&

 1School of Computer Science and Engineering, Harbin Institute of Technology, China
2Department of Computer Science, Karary University, Khartoum, Sudan

Abstract-
 Autonomic computing is a computing system that
can manage itself by self-configuration, self-healing,
self-optimizing and self-protection. Researchers have
been emphasizing the strong role that multi agent
systems can play progressively towards the design and
implementation of complex autonomic systems. The
important of autonomic computing is to create
computing systems capable of managing themselves
to a far greater extent than they do today. With the
nature of autonomy, reactivity, sociality and pro-
activity, software agents are promising to make
autonomic computing system a reality. This paper
mixed multi-agent system with autonomic feature that
completely hides its complexity from users/services.
Mentioned Java Application Development
Framework as platform example of this environment,
could applied to web services as front end to users.
With multi agent support it also provides adaptability,
intelligence, collaboration, goal oriented interactions,
flexibility, mobility and persistence in software
systems.
Keywords: Autonomic, Multi-agent System, Web
Services
I. Introduction
 A new computational framework called Agent
Oriented Programming (AOP), which can be viewed as
a specialization of object oriented programming. It is
relatively a new software paradigm that brings
concepts from the theories of artificial intelligence into
the mainstream realm of distributed systems. AOP
essentially models an application as a collection of
components called agents that are characterized by,
among other things, autonomy, proactivity and an
ability to communicate. Being autonomous they can
independently carry out complex, and often long-term,
tasks [1]. Intelligent autonomic agent must build and
maintain a model of the external environment and of its
own components. Atop-level executive component
makes decisions based on the models and its current
emotional state. A planner component is used to create
multiple step scripts or sequences of actions necessary
to achieve the high-level goals being pursued by the
executive [2]. Agents have the capability to move from
one environment to another see fig.1.In the agent
design, using FraMaS “advanced behavior" wrappers
(like autonomously search according to the agent

knowledge of the user or planning strategy to arrive to
the target point) [3]. The autonomy of each agent and
the messaging interface are useful in most of flexible
and extensible systems. Because agents are not directly
linked to others, then it is easy to take one out of
operation or add a new one while the others are
running [4]. Multi-agent development has emerged as a
viable approach to meet the autonomic system
requirements-autonomy, adaptability, intelligence,
goal-oriented interaction, collaboration, and flexibility.
Using multiagent approach, real-world problems can be
modeled in the form of autonomous, interacting agent
components [8].
 An autonomic system is an autonomous computing
environment that completely hides its complexity.
Complexity hiding from users/services means that
autonomic computing will provide users with a
computing environment that allows them to
concentrate on what they want to do without worrying
about how it has to be done [12]. The characteristics of
Multiagent Systems (MASs) are that (1) each agent has
incomplete information or capabilities for solving the
problem and, thus, has a limited viewpoint; (2) there is
no system global control; (3) data are decentralized;
and (4) computation is asynchronous [13].
 The paper is organized as follows: Section II
reviews Related Work Section III focuses on the
Programming Language and Tools. Section IV
describes JADE and the Agents Paradigm. Finally,
Section V takes The Utility of Agent and WEB Service
Integration before concluding the paper.

Fig.1 Multi Agent System Model

II. Related Work
 The Unity system components are implemented
as autonomic elements— individual agents that control
resources and deliver services to humans and to other

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 338

autonomic elements. Every Unity component is an
autonomic element. This includes: computing
resources (e.g. databases, storage systems, servers),
higher-level elements with some management authority
(e.g. workload managers or provisioners), and elements
that assist other elements in doing their tasks (e.g.
policy repositories, sentinels, brokers, or registries) [9].
Each autonomic element is responsible for its own
internal autonomic behavior, namely, managing the
resources that it controls, and managing its own
internal operations, including self-configuration, self-
optimization, self-protection and self-healing. MAACE
emphasis on self-organization and self-healing of
application services and it is an open and extensible
computing environment to allow heterogeneous agent
to join it. By the cooperation of agent federation
system, agent mediate system and agent monitor
system, MAACE lead to automated control and
management of a wide range of network centric
applications and services [10].The Bean Generator is a
tool that supports agent engineers in creating message
content ontologies compliant with the JADE support.
The tool is a plug-in for Protege, which is a commonly
used ontology editor that enables engineers to
graphically model ontologies. Furthermore, additional
functionality and storage formats can be ‘plugged in’ to
the system. Another advantage of the Protege tool is
that other ontologies can be imported. Repositories of
existing ontologies ranging from biological domains to
market place product and service descriptions can be
found at the Protege community page and at the
DAML site1. The languages used to represent these
ontologies can be XML, RDF, DAML-OIL, XMI, SQL
or UML [5]. The jademx JADE add-on, which
provides two major capabilities: the ability to interface
JADE agents with Java JMX (Java Management
Extensions) and the ability to unit test JADE agents
using JUnit. Jademx is available for download from the
third-party software area of the JADE website.
Everyday, useful software systems rarely exist in
isolation. Indeed, one of the strengths of JADE is that
the full capabilities of the Java environment are
available when creating a software agent application.
JMX is the Java technology for management and
monitoring of software systems; it was originally part
of the Java EE enterprise platform (formerly known as
J2EE), but as of Java 5 it is available as part of the
standard J2SE environment. Furthermore, unit testing
is an important technique for the development of robust
software and Junit is a standard methodology for the
unit testing of applications written in Java. Jademx was
developed for an industrial software agent effort
requiring management using Java EE and to be unit-
testable. A jademx agent can be configured either
programmatically or by using XML [1]. The Java
Sniffer is a stand-alone Java application, developed by

Rockwell Automation, Inc., that can remotely connect
to running JADE systems and is intended as an
alternative to JADE’s built-in sniffer. The tool receives
messages from all agents in the system, reasons about
the information, and presents it from different points of
view (see Fig.2) [6]. We observed Jadex Belief Desire
Intention BDI reasoning engine that allows
development of rational agents using mentalistic
notions in the implementation layer. In other words, it
enables the construction of rational agents following
the BDI model. In contrast to all other available BDI
engines, Jadex fully supports the two-step practical
reasoning process (goal deliberation and means–end
reasoning) instead of operationalizing only the means–
end process. This means that Jadex allows the
construction of agents with explicit representation of
mental attitudes (beliefs, goals and plans) and that
automatically deliberate about their goals and
subsequently pursue them by applying appropriate
plans. The reasoning engine is clearly separated from
its underlying infrastructure, which provides basic
platform services such as life-cycle management and
communication. Hence, running Jadex over JADE
combines the strength of a well-tested agent
middleware with the abstract BDI execution model.
For the programming of agents, the engine relies on
established techniques, such as Java and XML and, to
further simplify the development task, Jadex includes a
rich suite of run-time tools that are based upon the
JADE administration and debugging tools. It also
includes a library of ready-to-use generic
functionalities provided by several agent modules
(capabilities) [7]. OMACS is a metamodel for agent
organizations. It defines the required organizational
structure that allows multiagent teams to autonomously
reconfigure at runtime, thus enabling them to cope with
unpredictable situations in a dynamic environment [11].
MAGE, an agent-oriented programming environment,
with complete tools to support agent-based requirement
analysis, design, development and deployment, is a
powerful development environment for autonomous
computing [14].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 339

Fig 2 JavaSniffer user interface

III. Programming Language and Tools

Multi-agent systems programming languages,
platforms and development tools are important
components that can affect the diffusion and use of
agent technologies across different application domains.
In fact, the success of multi-agent systems is largely
dependent on the availability of appropriate technology
(i.e. programming languages, software libraries and
development tools) that allows relatively
straightforward implementation of the concepts and
techniques that form the basis of multi-agent systems.
Multi-agent systems can be realized by using any kind
of programming language. In particular, object-
oriented languages are considered a suitable means
because the concept of agent is not too distant from the
concept of object. In fact, agents share many properties
with objects such as encapsulation, and frequently,
inheritance and message passing. However, agents also
differ from objects in several key ways; they are
autonomous (i.e. they decide for themselves whether or
not to perform an action on request from another agent);
they are capable of a flexible behavior; and each agent
of a system has its own thread of control. An important
characteristic that multi-agent systems should provide
is the capability to support interoperability among
legacy software systems. Therefore, the availability of
software tools for their integration with other common
technologies can be a key to their success. The Internet
is one the most important application domains and the
most important communication means that multi-agent
systems can use to provide interoperability among
legacy software systems; therefore, a lot of current
research and development work is oriented towards
providing suitable techniques and software tools for the
integration of multi-agent systems with Web
technologies such as, for example, Web services and
Semantic Web technologies.

IV. JADE and the Agents Paradigm
 JADE is a software platform that provides basic
middleware-layer functionalities which are
independent of the specific application and which
simplify the realization of distributed applications that
exploit the software agent abstraction. A significant
merit of JADE is that it implements this abstraction
over a well-known object-oriented language, Java,
providing a simple and friendly API. The following
simple design choices were influenced by the agent
abstraction. An Agent is Autonomous and Proactive:
An agent cannot provide call-backs or its own object
reference to other agents in order to mitigate any
chance of other entities coopting control of its services.
An agent must have its own thread of execution, using
it to control its life cycle and decide autonomously
when to perform which actions. The System is Peer-to-
Peer each agent is identified by a globally unique name
(the Agent Identifier, or AID, as defined by FIPA). It
can join and leave a host platform at any time and can
discover other agents through both white-page and
yellow-page services (provided in JADE by AMS and
the DF agents as defined also by the FIPA
specifications). An agent can initiate communication
with any other agent at any time it wishes and can
equally be the object of an incoming communication at
any time. On the basis of these design choices, JADE
was implemented to provide programmers with the
following ready-to-use and easy-to-customize core
functionalities:-
 • A fully distributed system inhabited by agents,
each running as a separate thread, potentially on
different remote machines, and capable of transparently
communicating with one another, i.e. the platform
provides a unique location-independent API that
abstracts the underlying communication infrastructure.

• Efficient transport of asynchronous messages via a
location-transparent API. The platform selects the best
available means of communication and, when possible,
avoids marshalling/unmarshalling java objects. When
crossing platform boundaries, messages are
automatically transformed from JADE’s own internal
Java representation into proper FIPA-compliant
syntaxes, encodings and transport protocols.

• Support for agent mobility. Both agent code and,
under certain restrictions, agent state can migrate
between processes and machines. Agent migration is
made transparent to communicating agents that can
continue to interact even during the migration process.

• A set of graphical tools to support programmers
when debugging and monitoring. These are particularly
important and complex in multi-threaded, multi-
process, multi-machine systems such as a typical JADE
application.

• Integration with various Web-based technologies
including JSP, servlets, applets and Web service

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 340

technology. The platform can also be easily configured
to cross firewalls and use NAT systems.

• An in-process interface for launching/controlling a
platform and its distributed components from an
external application.

V. The Utility of Agent and WEB Service
Integration
 Integrating Web services and software agents
brings about an obvious benefit: connecting application
domains by enabling a Web service to invoke an agent
service and vice versa. However, this interconnection is
more than simply cross-domain discovery and
invocation; it will also allow complex compositions of
agent services and Web services to be created,
managed and administered by controller agents. To the
users of Web services, whether human or
computational, agents can be a powerful means of
indirection by masking the Web service for purposes of,
for example, redirection, aggregation, integration and
administration. Redirection describes the case where a
Web service may no longer be available for some
reason, or the owner of the Web service wishes to
temporarily redirect invocations to another Web
service without removing the original implementation.
Aggregation allows several Web services to be
composed into logically interconnected clusters,
providing patterned abstractions of behavior that can be
invoked through a single service interface. Integration
describes the means of simply making Web services
available to consumers already using, or planning to
use, agent platforms for their business applications, and
administration covers aspects of automated Web
service management where the agent autonomously
administers one or more Web services without
necessary intervention from a human user.

VI. Conclusion
 Many researchers in the MAS community have
recognized the advantages of an agent based approach
to building deployable solutions in the number of
application domains comprising complex, distributed
systems. Autonomic Computing is providing new
vistas in reducing the complexity incurred in today’s
distributed systems. It minimizes human intervention
and reduces the administration cost of enterprise IT
systems. With multi agent support it also provides
adaptability, intelligence, collaboration, goal oriented
interactions, flexibility, mobility and persistence in
software systems.
 In this paper, we mentioned JADE was
implemented to provide programmers with the ready-
to-use and easy-to-customize core functionalities .An
Agent is Autonomous and Proactive. In addition we
have recommended an agent-Web service that has the
features of both the agent technology as well as the

Web services technology and is managed by an
autonomic system based on multi-agent support. This
can help to develop enterprise IT systems that are
optimal, highly available.

References
[1] John Wiley, Sons Ltd, 2007, Developing Multi-Agent
Systems with JADE
[2] J. P. Bigus D. A. Schlosnagle, A toolkit
for building multiagent autonomic systems, IBM Systems
Journal, Vole 41, NO 3, 2002
[3] Henri Avancini, Analía Amandi. A Java Framework for
Multi-agent Systems, SADIO Electronic Journal of
Informatics and Operations Research, vol. 3, no. 1, pp. 1-12
(2000).
[4] Fatemeh Daneshfar, Hassan Bevrani. Multi-Agent
Systems in Control Engineering: A Survey, Hindawi
Publishing Corporation Journal of Control Science and
Engineering Volume 2009, Article ID 531080, 12 pages.
[5] Alessio Bosca, Dario Bonino. Ontology Exploration
through Logical Views in Protégé, 18th International
Workshop on Database and Expert Systems Applications,
IEEE, 2007.
[6] Pavel Vrba, Pavel Tich. Rockwell Automation’s Holonic
and Multiagent Control Systems Compendium, IEEE
Transactions On Systems, MAN, And Cybernetics—PART C:
Applications And Reviews, Vole. 41, NO. 1, January 2011
[7] Frank Chiang, Robin Braun, Autonomic Service
Configuration for Telec-munication MASS with Extended
Role-Based GAIA and JADEx. 2005 IEEE
[8] Gilda Pour, Multi-Agent Autonomic Architectures for
Quality Control Systems, San Jose State University San Jose,
CA, U.S.A.
[9] Gerald Tesauro, David M. Chess. A Multi-Agent Systems
Approach to Autonomic Computing, AAMAS’04, July 19-23,
2004, New York, New York, USA
[10] Jun W, JI Gao, Bei-Shui Liao, Jiu-Jun Chen. Multi -
Agent System Based Autonomic Computing Environment,
Proceedings of the Third International Conference on
Machine Laming and Cybemetics, Shanghai, 26-29 August
2004.
[11] Walamitien H. Oyenan and Scott A. DeLoach. Design
and Evaluation of a Multiagent Autonomic Information
System. International Conference on Intelligent Agent
Technology 2007 IEEE/WIC/ACM.
[12]Huaglory Tianfield. Multi-Agent Autonomic
Architecture and Its Application in E- Medicine, Proceedings
of the IEEE/WIC International Conference on Intelligent
Agent Technology, 2003.
[13] Katia P. Sycara. Multiagent Systems, This Is a
Publication of the American Association for Artificial
Intelligence, 1998
[14] Zhongzhi Shi, Haijun Zhang, Yong Cheng. MAGE: An
Agent-Oriented Software Engineering Environment,
Proceedings of the Third IEEE International Conference on
Cognitive Informatics, 2004.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 341

