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Abstract 

Each year, millions of people suffer from after-effects of pipeline 
leakages, spills, and eruptions. Leakages Detection Systems 
(LDS) are often used to understand and analyse these phenomena 
but unfortunately could not offer complete solution to reducing 
the scale of the problem. One recent approach was to collect 
datasets from these pipeline sensors and analyse offline, the 
approach yielded questionable results due to vast nature of the 
datasets. These datasets together with the necessity for powerful 
exploration tools made most pipelines operating companies “data 
rich but information poor”. Researchers have therefore identified 
problem of dimensional reduction for pipeline sensor datasets as 
a major research issue. Hence, systematic gap filling data mining 
development approaches are required to transform data “tombs” 
into “golden nuggets” of knowledge. This paper proposes an 
algorithm for this purpose based on the Incremental Orthogonal 
Centroid (IOC). Search time for specific data patterns may be 
enhanced using this algorithm 
Keywords: Piggin, Heuristics, Incremental, Centroid. 

1. Introduction 

Pipelines are essential components of the energy supply 
chain and the monitoring of their integrities have become 
major tasks for the pipeline management and control 
systems. Nowadays pipelines are being laid over very long 
distances in remote areas affected by landslides and harsh 
environmental conditions where soil texture that changes 
between different weathers increase the probability of 
hazards not to mention the possibility of third party 
intrusion such as vandalism and deliberate attempt of 
diversions of pipeline products. It is widely accepted that 
leakages from pipelines have huge environmental, cost and 
image impacts.   

 
Conventional monitoring techniques such as the LDSs 

could neither offer continuous pipeline monitoring over 
the whole pipeline distance nor present the required 
sensitivity for pipeline leakages or ground movement 
detection. Leakages can have various causes, including 
excessive deformations caused by earthquakes, landslides, 
corrosion, fatigue, material flaws or even intentional or 
malicious damaging.   

 
Pipeline sensors datasets are structurally different and 

fundamentally unique for so many reasons. In the first 
place, these data are generated asynchronously, that is, 
each data attribute gets its instantaneous copy of datum at 
the same time at any particular time. With this, it is 
expected that the captured data will represent the in-state 
situation of the pipeline at any given time. In most cases, 
this is not true because some attributes “don’t just get any 
data at all”. Example of sensor datasets obtained from the 
velocity-vane anemometer is shown in Table 1.  Secondly, 
pipeline sensor datasets are filled with noises. Noises are 
instances of repeatedly unwanted datasets clustered around 
a particular time.  When datasets are captured this way, the 
noise level significantly determines the visualisation 
results. This is because, noises creates what is known as 
outliers which are exceptional data behaviour that are 
ordinarily are not suppose to be. They are outrageous 
exceptions falling into unacceptable limits for the specified 
data acceptable boundaries. By manual inspection, noises 
are difficult to detect and removed, this has greatly 
mediated the efficiency of the eventual visualisation 
results. Thirdly, pipeline sensors datasets comes in 
unrelated units and formats, making comparison very 
difficult. Example, the temperature is measured in degree 
Celsius while the Velocity is measured in m/s2. 
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Table 1: Data Attributes and Variables from the Velocity-
Vane Anemometer 

 
Even if every pixel on a standard display device is used 

to represent each datum, display device with the best 
resolution cannot display all the data generated by theses 
sensors in 1 minute at the same time, not even the 53 
million pixel power wall presently being used at the 
University of Leeds [1]. The same goes for the memory 
size that is required for such computation as well as the 
computational time. Definitely, this will of course require 
greater computational effort and some compromises of 
visualisation results. Hence, users of visualisation 
applications tend to rely heavily on heuristics to arriving at 
decisions from their applications.  Dimensionality 
reduction is therefore   an alternative technique to 
explaining and understanding these vast pipeline sensors 
datasets more intuitively. Presence or absence of leakages 
or abnormal situations is gradually becoming the object of 
research in the recent time. In Nigeria, the 1992 pipeline 
explosions that claimed thousands of lives in Ejigbo is one 
good example of such underground oil installations that 
resulted to explosions and allied problems as a result of 
undetected leakage and bad response time to leakages due 
to imperfection and the errors in the visualisation and LDS 
systems. The mayhem was traced to inability to properly 
analyse and visualise leakage points about the pipeline. 
Although most of these pipeline failures are blamed on the 
activities of the vandals especially in developing nations, 
yet, the basic truth is that the visualisations of the various 
leakage detection systems are error-full. When leakages 
are quickly detected and fixed, it invariably reduces the 
vandals’ activities as well as saving lives and reducing the 
overhead installation and administrative costs associated 
with pipeline installation and pigging operations.  

 
 A central problem in scientific visualisation is to 

develop an acceptable and resources efficient 
representation for such complex datasets [2, 3]. The 
challenges of high dimensional datasets vary significantly 
across many factors and fields.  Some researchers 
including [4] and [5] viewed these challenges as 
scientifically significant for positive theoretical 
developments. There are so many problems of high 
dimensional datasets ranging from attributes relevance and 
presence to variable importance. In practical sense, not all 
the dimensions or attributes and not all variables or 
instances- presence or absence in  high dimensional 
datasets are relevant for every specific user defined 
interests in understanding certain underlying phenomena 
represented by the datasets.   

        
More recently, [5, 6, and 7] asserted that principal 

among the problems of dimensionality reduction is the 
issue of accuracy compromise. They all submitted that 
almost all data reduction algorithms and methods employ 
one or more procedures that lead to significant 
compromise of accuracy.  Without any loss of generality, 
the problem under investigation has to do with trying to 
find the extent of allowable and reasonable reduction in 
data dimensions that could be carried out on high pipeline 
sensor datasets without a compromise of the desired 
visualisation quality obtainable from such datasets under 
specific or desired boundary conditions. Mathematically, 
given an n-dimensional random variable x = (x1, … . xn)T  
a lower dimensional random variable  s = (s1, … . sm )T    
with n >>> m such that the entire member data of x are 
fully represented by s with n , m Є R (R is the set of real 
numbers) is required. The overall goal of reducing the data 
dimension is to enable a lower dimensional space reveal to 
us “as much as possible” details about a high dimensional 
data space with minimal loss of data integrity and 
compromise.  

 
Often in computer graphics this is very necessary 

because the available devices (such as monitors) cannot 
display all the intrinsic elements of the voluminous 
datasets generated by modern day sensors and remote 
sensing devices. If the dimensionality of datasets could be 
reduced, the resulting data could be used more effectively 
in visualisation, verification, classification, and 
exploration. There are many dimensionality reduction 
algorithms and approaches. These are discussed in Section 
2 of this paper. 
 

Pressure 
(N/m2 ) 

Temp. 
(0C) 

Vol. 
(M3/H)        
x E-03 

Flow 
Velocity  

(m/s) 

External 
Body 
Force 

EBF (N) 
- - - - - 

1.002312 19.302978 0.0055546 12.002302 - 
1.002202 19.302990 0.0055544 12.002302 0.000344 

- 19.302990 - - 0.002765 
0.903421 - - 12.003421 - 
1.002212 19.302978 0.0055546 12.004523 - 

- 18.999996 0.0055544 12.005620 0.003452 
0.960620 18.999996 - - - 
1.002801 - - 12.002302 0.003564 
1.002376 19.302978 - 12.002302 0.005423 

- 18.999996 - - 0.005642 
. . . . . 
. . . . . 
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2. Literature Review 

Reducing dimensionality has been described as an 
essential task for many large-scale information processing 
problems involving document classification, searching 
over Web data sets [5]. Because of the exponential growth 
of the Web information and other remote sensing devices, 
many traditional classification techniques now require a 
very huge amount of memory and CPU resource if 
dimensionality reductions are not performed on the 
datasets as required.  Sometimes, dimensionality reduction 
is a pre-processing step in data mining but may also be 
some steps towards data exploration and analysis such as 
in data clustering, visualisation etc. Historically, the 
Principal Components Analysis (PCA) originally credited 
to Pearson (1901) whose first appearance in modern 
literatures dates back to the work by Hotelling (1933) was 
a popular approach to reducing dimensionality. It was 
formerly called the Karhunen-Loeve procedure, 
eigenvector analysis and empirical orthogonal functions. 
The PCA is a linear technique that regards a component as 
linear combinations of the original variables . The goal of 
PCA is to find a subspace whose basis vectors correspond 
to the directions with maximal variances.  
 

Let X be an dxp matrix obtained from sensor datasets 
for example, where d represents the individual data 
attributes (columns) and p the observations (or variables) 
that is being measured. Let us further denote the 
covariance matrix C that defined X explicitly as: 

 
 C = 1

n
∑ (xi − x�)(xi − x�)Tn

i=1   (1.0) 
 

Where xi  Є X and x�  is the mean of  xi  , T is the 
positional order of xi Є X, and X is the covariance matrix 
of the sampled data. We can thus define an objective 
function as: 

 
 G(w) =  WTCW    (2.0) 
 

The PCA’s aims is to maximise this stated objective 
function G(W) in a solution space defined by: 
  

Hdxp = �WЄ Rdxp , WT W = I�  (3.0) 
 
It has been proved that the column vectors of W are the p 
higher or maxima eigenvectors of covariance matrix C 
defined above [see 8]).   However, for very large and 
massive datasets like the pipeline sensors datasets, an 
enhancement of the PCA called the  Incremental PCA 
developed by [9,10] could be a useful approach. The IPCA 
is an incremental learning algorithm with many variations. 
The variations differ by their ways of incrementing the 
internal representations of the covariance matrix. Although 

both the PCA and the IPCAs are very effective for most 
data mining applications, but, because they ignore the 
valuable class label information in the entire data space, 
they are inapplicable for sensor datasets.  
 

The Linear Discriminant Analysis (LDA) emerged as 
another approach commonly used to carry out 
dimensionality reduction. Its background could be traced 
to the PCA and it works by discriminating samples in their 
different classes. Its goal is to maximize the Fisher 
criterion specified by the objective function: 

 

 𝐺𝐺(𝑤𝑤) = � 𝑊𝑊𝑇𝑇 𝑠𝑠𝑏𝑏 𝑊𝑊�
� 𝑊𝑊𝑇𝑇 𝑠𝑠𝑤𝑤 𝑊𝑊�

    (4.0) 

 
Where sb = ∑ pi(mi − x�)(mi − x�)Tc

i=1  and sw =
∑ pi E((x − mi)(x − mi)Tc

i=1 }  with x Є ci are called the 
Inter class scatter matrix and Intra class scatter matrix 
respectively. E denotes the expectation and  pi(x) = ni

n
 is 

the prior probability of a variable (x) belonging to attribute 
(i).  

 
W can therefore be computed by solving w∗ =

arg max G(w)  in the solution space 
Hdxp = �WЄ Rdxp , WT W = I�,  in most reports; this is 
always accomplished by providing solution to the 
generalized eigenvalue decomposition problem 
represented by the equation:  

 
Sbw =λSww                 (5.0) 
 

When the captured data is very large like in the case of 
sensors datasets considered in this research, LDA becomes 
inapplicable because it is harder and computationally 
expensive to determine the Singular Value Decomposition 
(SVD) of the covariance matrix more efficiently. LDA 
uses attribute label information of the samples, which has 
been found unsuitable by many researchers including [5]  
for numerical datasets. [11] had developed a variant of the 
LDA called the Incremental LDA (ILDA) to solve the 
problem of inability to handle massive datasets, but, its 
stability for this kind of application remains an issue till 
present date. 
 

The Orthogonal Centroid (OC) algorithm by [12 and13] 
is another acceptable algorithm that uses orthogonal 
transformation on centroid of the covariance matrix. It has 
been proved to be very effective for classification 
problems by [14] and it is based on the vector space 
computation in linear algebra by using the QR matrix 
decomposition where Q is an orthogonal matrix and R is 
an upper triangular matrix (Right Triangular Matrix) of the 
covariance matrix. The Orthogonal Centroid algorithm for 
dimensionality reduction has been successfully applied on 
text data (see [12]). But, the time and space cost of QR 
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decomposition are too expensive for large-scale data such 
as Web documents. Further, its application to numerical 
data or multivariate and multidimensional datasets of this 
sort remains a research challenge till date. However, its 
basic assumptions are extremely acceptable for 
development of such better algorithms. 

 
In 2006, a highly scalable incremental algorithm based 

on the OC algorithm called the Incremental OC (IOC) was 
proposed by [5]. Because OC largely depends on the PCA, 
it is therefore not out of focus to state that the IOC is also a 
relaxed version of the conventional PCA.  IOC is a one-
pass algorithm. As dimensionality increases and defiles 
batch algorithms, IOC becomes an immediate alternative. 
The increase in data dimensionality could now be treated 
as a continuous stream of datasets similar to those 
obtainable from the velocity vane thermo-anemometer 
(VVTA) sensors and other data capturing devices, and 
then we can compute the low dimensional representation 
from the samples given, one at a time with user defined 
selection criterion Area of Interest (AOI) (iteratively). This 
reassures that the IOC is able to handle extremely large 
datasets. However, because of its neglect of the variables 
with extremely low eigenvalues, it is poised to be 
insensitive to outliers. Unfortunately, this is the case with 
the kind of data used in this research. There is therefore a 
necessity to improve the IOC algorithm to accommodate 
the insurgencies and the peculiarity presented by pipeline 
sensor datasets.  The derivation of the IOC algorithm as 
well as the improvement proposed to the algorithm is 
discussed in detail in the following subsections. 
 
 
3. IOC Derivation and the Proposed (HPDR) 
Improvement 
Basic Assumption 1: The IOC optimization problem 
could be restated as  
 
 max ∑ WTSb Wp

i=1                 (6.0)
  
The aim of this is to optimise equation 6.0 with W Є Xdxp, 
where the parameters have their usual meanings. However, 
this is conditional upon wiwi

T=1 with i=1,2,3,….p. Now, p 
belongs to the infinitely defined subspace of X, but, since 
it is not possible to select the entire variables for a 
particular data attribute at a time, we introduced a bias 
called Area of Interest (AOI) to limit each selection from 
the entire data space. 
 

A Lagrange function L is then introduced such that: 
 
 L(wk , λk) = ∑ wkSb wk

Tp
i=1 − λk(wkwk

T − 1)    
Or  
 

L(wk , λk) = ∑ wkSb wk
Tp

i=1 − λkwk wk
T + λk)      (7.0) 

 
(Observe that if wkwk

T=1, then equation (7.0) is 
identically (6.0)) 

 
With λk  being the Lagrange multipliers, at the saddle 

point, L must = 0. Therefore, it means Sb wk
T = λkwk

T  
necessarily.  Since obviously p >>>AOI at any point in 
time, this means that, w, the columns or attributes of W are 
p leading vectors of Sb . Sb (n) Can be computed therefore 
by using: 

 
Sb (n) = ∑ pj(n)AOI

j=1 (mj(n) − m(n))(mj(n) − m(n))T

       (8.0) 
 

 Where mj(n) is the mean of data attribute j at step i and 
m(i) is the mean of variables at step i. T is the order of the 
variable in the covariance matrix  defined by data space X. 
To dance around this problem, the Eigen Value 
Decomposition (EVD) is the approach that is commonly 
used although it has been reported to have high 
computation complexity problems.   

     
     The EVD is computed by following the following 
procedure:  
Given any finite data samples X={x1,x2,x3,...,xn} we first 
compute the mean  of xi by using the conventional 
formula: 
  
  μ = 1

n
∑ xi

n
1    (9.0)

  
This is followed by the computation of the covariance C 

defined as: 
 
 C = 1

n
∑ (xi −n

1 x�)(xi − x�)T                 (10.0)
  
      Next, we compute the eigenvalue λ(s)  and 
eigenvectors e(s) of the matrix C and iteratively solve: 
 

Ce=λe                           (11.0) 
 

      PCA then orders λ by their magnitudes such that  λ1 
>λ2>λ3>... >λn , and reduces the dimensionality by 
keeping direction e such that λ <<< T. In other words, the 
PCA works by ignoring data values whose eigenvalue(s) 
seems very insignificant. To apply this or make it usable 
for pipeline sensor datasets, we need a more adaptive 
incremental algorithm, to find the p leading eigenvectors 
of Sb  in an iterative way. For sensor datasets, we present 
each sample of the selected AOI as: (x{n}, ln) where x{n} 
is the nth training data, ln  is its corresponding attribute 
label and n = 1, 2,3, . . . . AOI. 
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Basic Assumption 2: if given  limn→∞ a(n) = a,  then  
limn→∞(1

n
∑ a(i)) = an

i=1  by induction, therefore, it means 
that limn→∞ sb (n) = sb,  using Assumption 1.0: which 
means that: 
 
 
 limn→∞(1

n
∑ sb(𝑖𝑖)) = sb

n
i=1                            (12.0) 

 
 

However, the general eigenvector form is Au =λu, 
where u is the eigenvector of A corresponding to the 
eigenvalue-λ. By replacing the matrix A with sb(n), we 
can obtain an approximate iterative eigenvector 
computation formulation with v = Au =λu  or u= v/λ: 

 
  v(n) =  1

n
∑ sb(i) u(i)n

i=1              (13.0) 
 
     Injecting equation 8.0 into equation 13.0 implies: 

v(n) =  
1
n

� � pj(n)
AOI

j=1

(mj(n)
n

i=1
− m(n))(mj(n) − m(n))T u(i) 

 
     Assuming that Φj(i)= mj(n) − m(n); it means  
 
v(n) =  1

n
∑ ∑ pj(n)AOI

j=1 Φj(i)Φj(i)T u(i)n
i=1             (14.0) 

 
     Therefore, since u= v/λ: the eigenvector u�⃗  can be 
computed using  
 
 
  u�⃗ = v

‖v‖
                            (15.0) 

 
 

But, vector u�⃗ (i)  could be explicitly defined as  
u�⃗ (i)= v(i−1)

‖v(i−1)‖
 , with i=1,2,3,…n.       Therefore,  

 
v(n) =  1

n
∑ ∑ �pj(n)Φj(i)Φj(i)T�AOI

j=1   v(i−1)
‖v(i−1)‖

n
i=1        (16.0) 

  
    Hence;  
  
v(n) =
 n−1

n
v(n − 1) + 1

n
∑ �pj(n)Φj(n)Φj(n)T�AOI

j=1   v(n−1)
‖v(n−1)‖

             
                               (17.0) 
 
    If we substitute   ξj(n) =  Φj(n)T v(n−1)

‖v(n−1)‖
  , 

j=1,2,3….AOI, and  if we set v(0)=x(1) as a starting point, 
then it is comfortable to write v(n) as: 
 

v(n) =  v(n−1)2

n
+ 1

n
∑ �pj(n)Φj (n)  ξj(n)�AOI

j=1             (18.0) 
 

Since the eigenvectors must be orthogonal to each other 
by definition. Therefore, we could span variables in a 
complementary space for computation of the higher order 
eigenvectors of the underlying covariance matrix. To 
compute the (j+α)th eigenvector, where α=1,2,3…AOI, we 
then  subtract its projection on the estimated jth 
eigenvector from the data. 

 

 𝑥𝑥𝑗𝑗 +𝛼𝛼 (𝑛𝑛) = 𝑥𝑥𝑗𝑗 (𝑛𝑛) − (𝑥𝑥 𝑗𝑗 (𝑛𝑛)𝑇𝑇 𝑣𝑣𝑗𝑗 (𝑛𝑛))

�𝑣𝑣𝑗𝑗 (𝑛𝑛)�
2                 (19.0) 

(Note that j+α = AOI for any particular selection) 
 

Where x1(n)= x(n). Using this approach, we have been 
able to address the problem of high time consumption. 
This is because the orthogonality could now only be 
enforced when there is convergence which may not be at 
the beginning but may occur at any point at the extreme 
end of the selected and repeated AOIs. Through the 
projection procedure at each step, we can then get the 
eigenvectors of Sb one by one (i.e for each set of the 
predetermined AOI). The IOC algorithm summary as 
presented by [5]  is shown in Algorithm 1 and improved 
IOC called the HPDR algorithm is presented in Algorithm 
2.0, the solution of step n is given as: 
 

 vj(n) = vj (n)
�vj (n)�

 with j=1,2,3…p                (20.0) 
 

3.1The IOC Algorithm and the HPDR 

By going through the algorithm an example could be used 
to illustrate how HPDR solves the leading eigenvectors of 
Sb incrementally and sequentially. Let us assume that 
input sensor datasets obtained from the two sources 
(manually and experimentally) are represented by  {ai }, 
i= 1,2,3,… and {bi }, i= 1,2,3… When there is no data 
input, the means m(0), m1(0), m2(0), are all zero. If we let 
the initial eigenvector  v1(1) =a1 for a start, then HPDR 
algorithm can be used to compute the initial values  or the 
leading samples of the datasets ai(s) and bi(s)  of the entire 
data space X. These initial values are given as: a1, a2, and 
b1, b2, and they can then be computed using equation 20.0. 
 

3.2 The Expected Likelihoods (EL) 

Because of IOC’s insensitivity to outliers and less 
significant variables in the dataset, the expected likelihood 
is then computed. The computation is achieved by 
undergoing the following processes: 
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Given an arbitrary unordered set of data X defined by 
X={x1,x2,x3,…xn }k along with a set of unordered 
attributes Z={X1,X2,X3,…XN}k-n such that the attitudinal 
vector Zψ depends on the covariance matrix or X .  The 
rowsum (RS), columsum (CS) and Grandtotal (GT) of the 
covariance matrix X│Xψ  are defined as: 

 
 
      RS = ∑ {Xi}Nk

i=1               (21.0) 
 
 
  CS = ∑ {Zi}Nk−n

i=1                            (22.0) 
 
And 
 
 GT = ∑ {Zi}N + ∑ {Xi }Nk

i=1
k−n
i=1                      (23.0) 

 
Using the product of the respective Row Sum (RS) the 

Column Sum (CS) divided by the Ground Total (GT), the 
expected for each of the covariance matrix elements could 
be estimated. The computation begins with the 
initialisation of counters for the row, the column and the 
Area of Interest (AOI) selected as  i , j, and N  
respectively. The datum in the first data value in the first 
row and the first column is read and the expected value for 
this position is computed. The jth column positional value 
is advanced until all the five dimensions (J=5) are all 
traversed. The system then increment i and moves to the 
(i+1)th row positional value and the process continues 
until the entire value of the AOI=N is completely 
traversed. The WAEL is thus computed by finding the 
weighted average value of the data attributes as shown in 
Algorithm 2.0. Thus, the expected variable xi of {X} 
belonging to position {xi,yi} of the covariance matrix X is 
computed using the expected likelihood function: 
 
  Ek(xi , yi) = RS +CS

GT
                         (24.0) 

 
The Averaged Expected Likelihood Al for Ek(xi, yi) is 

defined further by  
                           Al = 
 

     � Ek

k−n

k=1

�

Ek−n   →  on major axis
.
.

0                     elsewhere

�              (25.0) 

 
This gives a unit dimensional matrix A representing the 

original data X. 
 

3.3 Weighted Average Expected Likelihoods 
(WAEL)  

The WAEL is the weighted mean of the expected 
likelihoods and it is comparable but not the same as the 
arithmetic mean. It is based on the assumption that 
although each data value is important, they do not 
contribute equally to the flow dynamics and the selected 
datasets. It is determined by computing the average for the 
reduced expected likelihoods with a weight factor for each 
data entity. The weight factor (or the Information Gain 
(IG)) is the degree of sensitivity of the attribute to the 
entire data space.  This idea plays a role in descriptive 
statistics and it also occurs in more general forms other 
areas of statistics and mathematics. This position is 
justified because judging from the IG computation for 
each of the attributes; we could see that each of the sensor 
data attributes contributes differently to the entire flow 
process. It will therefore be very illogical to use the simple 
average for the computation of the likelihoods. 
 

Although WAEL will behave similar to the normal 
statistical means, if all the sensor datasets are equally 
weighted, then what is computed is just the arithmetic 
mean which is considered unsuitable for sensor datasets 
due to its variability. Example of such effects is found in 
what the statisticians know as the Simpson’s Paradox. This 
paradox illustrates how correlation in different groups of 
data is completely reversed by just combining the two data 
groups. This is always the case when frequency of data is 
given causal interpretations hastily. However, Simpson’s 
Paradox will disappear if causal relations (in terms of 
frequencies) are brought into consideration. The 
computation follows the conventional weighted average 
formula for the reduced dimension. For example in Table 
2. we expanded IG computation for datasets represented in 
Table 1. to reflect the percentage contributions of each 
attributes. The percentage contribution is then calculated 
by the formula %Contribution = (Gain/Total Gain)*100. 

 
Table 2: Percentage Contributions of Attributes 

 

 

  

Data Attribute Information 
Gain 

Percentage 
Contribution 

(%) 
Pressure (p) 0.898 26.5 

Temperature (t) 0.673 19.86 
Volume (v) 0.944 27.85 

Flow Velocity (f) 0.445 13.13 
Ext.Body force (e) 0.429 12.66 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 273



 

 

3.4 Data Attributes Selection  

Based on the generated metadata, the data attributes 
selection could be performed by using the modified back 
propagation algorithm. Without modification, back 
propagation algorithm lacks robustness this is because 
errors grow exponentially while the attribute weight 
diminishes. It is observed that as the bias increases, there 
is heavy tendency for the error inherited into the 
visualisation to also rise. In the conventional back 
propagation algorithm, each attribute is given a weight 
which equals the sum of the errors inherited multiplied by 
the mean data entity. This condition of the back 
propagation algorithm has greatly mediated its use for 
modern applications of this sort.  
 

With this modification however, it is possible to reduce 
the errors inherited by inversing the error threshold as 
shown in the modified version in Section 4. There are 
alternative methods for carrying out data classification, 
however, due to its robustness and wider acceptability, the 
decision tree algorithm by [15]  is employed to carry out 
data classification. This algorithm works by computing the 
Information Gain (I.G) for each data attribute and 
promoting the one with the highest gain as the root for the 
tree as the test or lead attribute. This method forces the 
lead attribute to “inherit” transferable qualities of the other 
attributes which in turn provided a basis for quicker 
visualisation. The computation of the IG  is achieved by 
using the conventional information gain formula: 
 
I(s1, s2, … sm ) = − ∑ pi log2(pi)m

i=1               (26.0) 
 

Where pi = si/s is the probability that an arbitrary 
sensor data belong to a class Ci . Log base 2 has been used 
because the data are encoded in bits and si is the number 
of sample S in class Ci. m is the number of case attributes.  

3.5 High Performance Dimensionality Reduction 
Algorithm (HPDR) 

To achieve high performance in dimensionality reduction, 
this paper is structured as a form of combinational 
framework (like a bridge) between the Feature Extraction 
based method -IOC and the Feature Selection based 
method- the EL. The strength is derived by the 
introduction of a mechanism for users’ choice of Areas of 
Interest (AOI). This is made possible by effectively 
determining the IG by each of the attributes and 
determining the lead attribute. Fixing the expected 
likelihood for the cases of emptiness completely remove 
the shortfalls insensitivity to outliers and less significant 
variables in the dataset [16].  Using this approach is not 
completely new; it has been found extremely advantageous 
in statistical and mathematical applications see examples 

in [17, 18 19]. It is often used for the computation of the 
popular Chi-square in non-parametric statistics for 
example. The normalised data is simply subjected to the 
HPDR (Algorithm 2).  

 
 

Algorithm 1: Conventional IOC Dimensionality Reduction 
Algorithm 

*Yan et al.(2006) 
 

Dimensionality reduction algorithms are extremely useful 
in improving the efficiency and the effectiveness of 
datasets classifiers [5]. Reducing dimensionality this way 
is of great importance to ensure quality and efficiency of 
data classifiers for large scale and continuous data streams 
like sensor’s datasets, this is because of the poor 
classification efficiency of earlier approach such as the 
IOC powered by the high dimension of the data space. It 
has been viewed and described as an essential data mining 
and data pre-processing approach for large scale and 
streaming datasets classification tasks.  
  

3.6 Analysing the HPDR Algorithm  

This algorithm must be repeated p number of time 
(iterations) and for each iteration there is the need to 
predetermine AOI set of variables {j}. This is free for any 
user to determine the area where specific data intuition is 
needed such that: 
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for n=1,2,3,…AOI do the following steps: 

 M(n)=((n-1)m(n-1)+x(n))/n 

 Nln(n)= Nln(n-1)+1 

Mln(n)=(Nln(n-1)mln(n-1)+x(n))/Nln(n) 

Φi1 (n)=mi(n)-m(n), i=1,2,…5 

for i=1,2,…5; j=1,2,3,… AOI   (max i=5, 
because we have just 5 dimensions) 

If  j=n then      Vj(n)=x(n) 

else 

   𝛼𝛼𝑖𝑖
𝑗𝑗 (𝑛𝑛) =  𝛷𝛷𝑖𝑖

𝑗𝑗 (𝑛𝑛)𝑇𝑇 𝑣𝑣𝑗𝑗 (𝑛𝑛−1)
�𝑣𝑣𝑗𝑗 (𝑛𝑛−1)�

 

10Compute the expected E(i)for each j of the AOI Є C 

Ex into position Pi; 

n-- 

if n>1, then i++; 

If i>5, j++; go to 
Step 10 otherwise; 

Compute Weighted Averaged 
Expected Likelihood (WAEL)-Al 

  end if  

 end if 

Return Al into position pi 

end if  

end for  

end for  

𝑣𝑣𝑗𝑗 (𝑛𝑛) =  
𝑣𝑣𝑗𝑗 (𝑛𝑛 − 1)2

𝑛𝑛
+

1
𝑛𝑛

� �𝑝𝑝𝑗𝑗 (𝑛𝑛)𝛷𝛷𝑗𝑗 (𝑛𝑛) 𝛼𝛼𝑖𝑖
𝑗𝑗 (𝑛𝑛)�

𝐴𝐴𝐴𝐴𝐴𝐴

𝑗𝑗 =1

   

𝑥𝑥𝑗𝑗 +𝛼𝛼 (𝑛𝑛) = 𝛷𝛷𝑖𝑖
𝑗𝑗 (𝑛𝑛) −

(𝛷𝛷𝑖𝑖
𝑗𝑗 (𝑛𝑛)𝑇𝑇𝑣𝑣𝑗𝑗 (𝑛𝑛))
‖𝑣𝑣𝑗𝑗 (𝑛𝑛)‖2  

𝐸𝐸𝑥𝑥 =
𝑅𝑅𝑅𝑅𝑖𝑖 ∗ 𝐶𝐶𝑅𝑅𝑖𝑖

𝐺𝐺𝑇𝑇
 

𝐴𝐴𝑙𝑙 = � 𝜆𝜆 ∗ 𝐸𝐸𝑥𝑥 /5
𝑛𝑛

𝑥𝑥=1

 

αi
j(n), with i =  1,2,3, … AOI 

(α (n) has its usual meaning) 
 

Algorithm 2. High Performance Dimensionality Reduction 
Algorithm 

 
 
 

When computational complexities are out of it, HPDR 
offers a faster approach to reducing the dimensionality of 
the datasets based on the predefined criteria. The strength 
of this algorithm lies in the interaction with subtlety of the 
intrinsic data interdependencies. When users are 
empowered to make their choice of the area to visualise or 
explore, better results are obtained.   Because the 
computation is done one after the other in an iterative 
manner, HPDR offers the advantage of improved memory 
usage, this is a good and better promise that the earlier 
approaches in terms of the storage requirements.  Viewing 
from another angle, considering the volume and nature of 
the pipeline sensor datasets, it is practically impossible to 
render the whole data, even after the dimensionality has 
been reduced. The HPDR offers the benefit of AOI 
selection; this enables step by step and continuous 
processing of the data in a manner that supersedes the 
conventional batch processing technique. 
 
4. Procedures 
 
Given D = n x m data space and two disjointed datasets 
{X, Sk Є D}Assuming that dataset (X)= {xi; 1 ≤ i ≤ 𝜉𝜉 Є 
N+}  and dataset (Sk) = { sj; 1 ≤ j ≤ 𝜆𝜆 Є N+}  Є D such 
that   X∩ Sk = ф, then X and  Sk  are independent 
variables (vectors) of the set D it follows that: 
 

Centroid (cXi) = X� + Sk��� = �
1
λ ∑ sj

λ
j=1 + 1ξ ∑ xi

I
i=1

2
�          (27.0) 

or      
       
 2cXi = 1

λ
∑ sj

λ
j=1 + 1

ξ
∑ xi

ξ
i=1               (28.0) 

 
     X� and Sk���� denotes the means of X and Sk respectively, 𝜆𝜆 
and 𝜉𝜉 are arbitrary constants. If all missing 𝜆𝜆sand 𝜉𝜉s can be 
computed and inserted by “any means” into D such that n𝜆𝜆 
= n𝜉𝜉, it follows that: 
 
           cXi = 1

2λ
�∑ sj

λ
j=1 +  ∑ xi

λ
i=1 �                          (29.0) 

      
     If Sk represents a specific scenario Ap Є D. Therefore 
with the new centres for each classes or attributes, dataset 
D can be regrouped more effectively. 
 
5. Results and Evaluation 
 
Generally, there is no uniformity or industrial standard for 
testing and implementing dimensionality reduction across 
all applications; many researchers have developed area-
specific dimensionality reduction algorithms and 
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techniques which has made comparison extremely 
difficult. Examples of such area or domain specific 
application are found in  [3, 5, 6, 7, 16,17, 18, 19,20, 21, 
22,  23, 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33] to 
mention but a few.  
 

Most researchers make use of statistical illustrations 
and comparative graphs to compare dimensionality 
reduction and data mining techniques.  Examples are 
found in [5,16]. Dimensionality reduction helps to make 
better statistical decisions that could lead to significant and 
concrete results in pipeline sensors data visualisations. 
This could be in the form of increased income or 
energising efficient processes. The future suggests that the 
choice of such an effective dimensionality reduction and 
data mining tool will depend on the expected return on the 
overall efforts put into it. It is therefore imperative to 
critically examine and assess the overall business situation 
in question and how the selected tool could effectively 

achieve the goals of dimensionality reduction and the data 
mining process. To help evaluation, some checklists have 
been compiled using the Cross Industry Standard Process 
for Data Mining (CRISP-DM).  

 
    The CRISP-DM is a six-phase process. The choice of 
tool however should be flexible thereby allowing selective 
changes to the entire data space as may be deemed 
necessary. The six stages involved are: Business 
understanding; Data understanding; Data preparation; 
Modelling; Evaluation and Deployment. The algorithms 
compared are the Principal Component Analysis (PCA), 
the Linear Discriminant Analysis (LDA), the Incremental 
Orthogonal Centroid (IOC) and the proposed High 
Performance Dimensionality Reduction algorithm (HPDR) 
on the datasets obtained from two source: The VVTA and 
the Turbulence Rheometer. The results obtained are 
presented in Table 3. 

 
Table 3: Summary of the Result Obtained Comparing Four Dimensionality Reduction Algorithms 

 
Note: The CMCR is computed using the ratio TT/EPR 

 

 
 

Fig. 1. Comparing Dimensionality Reduction Algorithms 
 

The evaluation of the proposed method is designed as 
an assessment of the model proposed prior deployment 
when compared with existing and previously used 
techniques. The evaluation phase examines how the 

original data obtained from the sensors have been injected 
into the developed algorithm and how the results obtained 
is of any significance to the users of the system.  However, 
this paper has been able to compare the dimensionality 
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reduction algorithms’ efficiency when applied to reducing 
a five dimensional sensor data obtained from the velocity 
vane thermo-anemometer and the Turbulence Rheometer 
into one dimension. The parameters used for comparison 
are the Error in Prediction Ratio (EPR), the Covariance 
Matrix Convergence Ratio (CMCR) and the averaged 
Time Taken (TT) for the computation. Similar comparison 
methods are found in the works reported by [3, 5, 16, and 
29]. 
 

From the graph in Figure 1, the HPDR shows a lot of 
promises for higher selection of AOI although this has not 
been tested beyond 15 rows of selected variables at any 
single time due to the limitations imposed by the renderer. 
As shown, the %EPR obviously promises to increase as 
the AOI selection increases. The HPDR algorithm also 
showed a better improvement when compared with the 
existing techniques that are currently being used. Figure 1 
was generated automatically using the Microsoft Excel 
worksheet with the vertical axis representing the nominal 
value in terms of the algorithms’ performances. 
 
6. Conclusion 
It was observed that as the number of variables begins to 
increase beyond the predefined set limit of 15 for each 
AOI, the IOC and the HPDR shows some similarities in 
terms of efficiency of time. In one of our recent 
publications, It was suggested that a synchronisation data 
steaming device could be used as a means of increasing 
the attributes and the variables without a compromise of 
data integrity but there are positions yet unclosed in this 
suggestion because it simply depended on heuristics.  
Here, the sensor datasets are non fuzzy, so heuristics has 
no part to play hence, it is advisable not to apply this 
streaming device for now until further researches proved 
otherwise.  
 

However, looking at the example reported by [16], it 
could be stated that the modified algorithm may 
significantly be a good starting focus for predictions and 
fuzzy applications. In their example, they made use of the 
Penalised Independent Component Analysis on DNA 
microarray data whose results obtained justified this 
assertion. 
 

When the attributes of the pipeline sensor datasets 
exceeds five with more excessively large amount of 
datasets beyond the Microsoft Excel native rows, there are 
no guidelines or rule to offer at the moment because of the 
limitations particular to the Microsoft Excel which is 
obviously outside the scope of this research. The future 
direction of this work is on the possibility applying the 
devices on data capture for the algorithm directly to further 
improve the depiction of certainty of the sensors’ datasets 

visualisation as well as providing new algorithms for 
saving operational and hazards costs in pipelining. 
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