

 Effect of different defuzzification methods in a fuzzy based
load balancing application

Sameena Naaz1, Afshar Alam2 and Ranjit Biswas3

1Department of Computer Science
Jamia Hamdard, New Delhi, India

2Department of Computer Science
Jamia Hamdard, New Delhi, India

3Manav Rachna International University
Faridabad, Haryana, India

Abstract
 In a distributed environment the workload on the network has to
be managed in such a way that the total throughput of the system
can be maximized. For this to happen some of the jobs have to be
migrated from one node to another. When, how and where a job
has to be migrated depends upon the load balancing algorithm
being used. But it is very difficult to precisely describe the
behavior of a complex system as there are many factors which
influence it. One way to deal with the uncertainty in the behavior
of the system is to use fuzzy logic. Fuzzy logic uses the reasoning
of the human mind which is not always in the form of a yes or no.
The concept of linguistic variables is used to model the state of
the system which is imprecise and uncertain. In this work, we
have implemented the fuzzy load balancing algorithm and
compared the effect of using different defuzzification methods,
reported in the literature.

Keywords: Distributed Systems, Load Balancing, Fuzzy Logic,
Defuzzification.

1. Introduction

Over the years the hardware technology has grown on a
massive pace with the result of increase in the use of
distributed systems. These systems have the advantage of
sharing of resources as well as processing power. The
processes arrive in the system in a random manner on
different nodes. When the jobs are being executed in
parallel on different systems a decision has to be made on
to which system a newly arrived job has to be send. Load
balancing is the technique which helps in even distribution
of the jobs among the available nodes so that the
throughput can be increased.

The load balancing algorithms can be categorized as static
or dynamic in nature. Static algorithms collect no
information and make probabilistic balancing decisions,
while dynamic algorithms collect varying amounts of state
information to make their decisions. Previous research on
static and dynamic load balancing can be found in [l]-[5],
[6, 7], respectively. It has been established from the
previous studies that dynamic algorithms give better
performance improvement as compared to static
algorithms.

Different load balancing algorithms have different
complexity which depends upon the amount of
communication needed to approximate the least loaded
node. In order to make a decision the information about the
state of the different nodes has to be collected. However,
since messages containing state information for individual
nodes can only be exchanged at discrete intervals and are
subject to variable latencies before reaching their
destinations, the information used by nodes to estimate
global system state is inevitably out of date. This
uncertainty in global state has been a primary issue in the
design of efficient distributed computing systems.
Increasing the frequency of information exchange between
nodes is not necessarily a practical solution since message
overheads caused by the frequent exchange of state
information may adversely affect the efficiency of the
system. Moreover, the overheads of load balancing
mechanisms can be highly detrimental to the performance
of the system under heavy system load conditions.

When we are talking about large distributed systems there
is huge amount of global state uncertainty present in it.
Fuzzy logic based distributed load balancing algorithms
reflect the effect of uncertainty in decision making process.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 261

This approach has been discussed in [8]. The fuzzy logic
approach for Distributed Object Computing Network has
been studied in [9, 10]. Parallel and distributed computing
environment is inherently best choice for solving/running
distributed and parallel program applications. In such type
of applications, a large process/task is divided and then
distributed among multiple hosts for parallel computation.
In [10] it has been pointed out that in a system of multiple
hosts the probability of one of the hosts being idle while
other host having multiple jobs queued up can be very
high. In [11] the performance of a new Fuzzy Load
balancing algorithm is compared with the existing
algorithms.

In a distributed environment the processors are categorized
according to workload in their CPU queues as heavily
loaded (more tasks are waiting to be executed), lightly
loaded (less tasks are waiting to be executed in CPU
queue) and idle processors/hosts (having no pending work
for execution). Here CPU queue length is used as an
indicator of workload at a particular processor. The
algorithms used for load balancing may require no
information, or only information about individual jobs
(static algorithm) or may make decisions based on the
current load situation (dynamic algorithm).

In general, load balancing algorithm can be analyzed in a
framework with four dimensions: selection policy, transfer
policy, information policy, and location policy.
Specifically, information and location policies have the
most important roles.

Transfer policy: First of all the state of the different
machines is determined by calculating it’s workload. A
transfer policy determines whether a machine is in a
suitable state to participate in a task transfer, either as a
sender or a receiver. For example, a heavily loaded
machine could try to start process migration when its load
index exceeds a certain threshold.

Selection policy: This policy determines which task should
be transferred. Once the transfer policy decides that a
machine is in a heavily-loaded state, the selection policy
selects a task for transferring. Selection policies can be
categorized into two policies: preemptive and non-
preemptive. A preemptive policy selects a partially
executed task. As such, a preemptive policy should also
transfer the task state which can be very large or complex.
Thus, transferring operation is expensive. A non-
preemptive policy selects only tasks that have not begun
execution and, hence, it does not require transferring the
state of task.
Location policy: The objective of this policy is to find a
suitable transfer partner for a machine, once the transfer

policy has decided that the machine is a heavily-loaded
state or lightly-loaded one. Common location policies
include: random selection, dynamic selection, and state
polling.
Information policy: This policy determines when the
information about the state of other machines should be
collected, from where it has to be collected, and what
information is to be collected.

2. Fuzzy Logic Concept

In narrow sense, fuzzy logic is a logical system, which is
the extension of multivalued logic. In a wider sense fuzzy
logic is almost synonymous with the theory of fuzzy sets, a
theory which relates to classes of object with unsharp
boundaries in which membership is a matter of degree.
Fuzzy inference is the process of formulating the mapping
from a given input to an output using fuzzy logic. The
mapping then provides a basis from which decisions can be
made.
Basically a fuzzy logic system consists of the following 5
steps:
Fuzzification: Converting the crisp inputs to membership
functions which comply with intuitive perception of system
status.
Rules Processing: Calculating the response from system
status inputs according to the pre-defined rules matrix
(control algorithm implementation).
Inference: Evaluating each case for all fuzzy rules
Composition: Combining information from rules
De-Fuzzification: Converting the result to crisp values.

Figure 1: Fuzzy Inference System

In this paper we have compared the following five
defuzzification methods

Centroid of area ZCOG
Bisector of area ZBOA
Mean of maximum ZMOM
Smallest of maximum ZSOM

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 262

Largest of maximum ZLOM

Centroid principle or Center of Gravity
This method is also known as center of gravity or center of
area defuzzification. This technique was developed by
Sugeno in 1985. This is the most commonly used
technique. The only disadvantage of this method is that it
is computationally difficult for complex membership
functions. The centroid defuzzification technique can be
expressed as

where zCOG

 is the crisp output, µA(z) is the aggregated
membership function and z is the output variable

Bisector Method
The bisector is the vertical line that divides the region into
two sub-regions of equal area. It is sometimes, but not
always coincident with the centroid line.

Largest of Maximum
Largest of maximum takes the largest amongst all z that
belong to [z1, z2] as the crisp value called ZLOM.

Smallest of Maximum
It selects the smallest output with the maximum
membership function as the crisp value ZSOM. In other
words in Smallest of Maximum choose smallest among all
z that belong to [z1, z2]

Mean of Maximum
In this method for defuzzification only active rules with the
highest degree of fulfillment are taken into account. The
output is computed as:

Figure 2: Results using different defuzzification methods for a
particular function.

3. Distributed System Model

A simple model of a distributed system is presented here.
This model consists of a decentralized decision making
approach with cooperation from all the nodes. So the
performance can be improved here purely by intelligent
decision making and proper coordination. The various
nodes of the system here are the resources and each of
these resources can be in different states. A vector is used
to give the state of a node which describes many
characteristics of the node. The elements of this state
vector are measures which imply a cost or penalty for
using the resource.
The set of states of all the resources in the distributed
system is known as the global system state. In distributed
load balancing also the decisions are not always
necessarily made using the complete global state
information. In fact for each node under consideration only
a subset of neighboring nodes may be needed to take a
decision. Another important aspect is that a node can
change state faster than the time taken to transmit state
information from one state to another. Therefore there is
always some amount of uncertainty in the state information
used for making a decision. Hence it is necessary that the
decision making process deals with these uncertainties.
Fuzzy logic is one of the methods of dealing with this
uncertain information and has been used in the work
presented in this paper.
The Scheduler in this algorithm has to perform the
following tasks.

Threshold Estimation

Decision Making

Scheduler has two functions, threshold estimation and
decision making. When a scheduler is invoked, it estimates
two numerical thresholds from the current states of
uncertainty sources based on a fuzzy control base, and

() 2baz* +=

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 263

making scheduling and state update decision using fuzzy
consistency model.

We need to define fuzzy sets for the input parameters,
‘load’, and ‘number of heavy load node’ levels, and the
output, ‘status of load balancing node’. For this we define
five membership functions for first input parameter i.e.
’load’ and two membership functions for second input
parameter i.e. ‘number of heavy load node’ and two
membership functions for output parameter ‘status of load
balance node.

3.1 Threshold Estimation

The Threshold Estimation determines the limiting value for
each membership function. Beyond this limiting value the
membership function will change.

First Input parameter: Load (0-10)
Member Function 1: Very lightly (0-2)
Member Function 2: lightly (1-5)
Member Function 3: moderate (4-6)
Member Function 4: heavy (5-9)
Member Function 5: very heavy (8 -10)

Second Input Parameter: No. of heavy load node (0-5)
Member Function 1: more (0-2.5)
Member Function 2: less (2.5 – 5)

Output Parameter: Status of load balance node (0-10)
Member Function 1: receiver (0-5)
Member Function 2: sender (6-10)

In our work here we have taken the Gaussian distribution
function for all the different linguistic variables for the
input “load”. This is shown in figure 3.

Figure 3: Input variable load of the node under consideration and
it’s membership function

The membership function used for the number of heavy
load nodes is shown in figure 4.

Figure 4: Input variable No. of Heavy Load Node and it’s
membership function.

The membership function for the output variable status of
load balance node is shown in figure 5. From this figure we
can see that there are two linguistic variables sender and
receiver here and the load on a node determines it’s value
based upon the membership function.

Figure 5: Membership function for the output variable Status of
Load Balance Node

3.2 Decision Making

The Fuzzy rules that have been used in this work are given
below:

Rule [1]. If (load is very light) then (node is receiver)

Rule [2]. If (load is very heavy) then (node is sender)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 264

Rule [3]. If (load is heavy) and (no. of heavy load nodes is
less) then (node is sender)

Rule [4]. If (load is heavy) and (no. of heavy load nodes is
more) then (node is receiver)

Rule[5]. If (load is light) and (no. of heavy load nodes is
more) then (node is receiver)

Rule[6]. If (load is light) and (no. of heavy load nodes is
less) then (node is sender)

Rule [7]. If (load is moderate) and (no. of heavy load
nodes is more) then (node is receiver)

Rule [8]. If (load is moderate) and (no. of heavy load
nodes is less) then (node is sender)

This rule base is used to find out the value of the output
variable using the fuzzy inference method.

4. Interpretation of Results

We have done the implementation of scheduler on
MATLAB. We have taken two input parameters and one
output parameter for fuzzy implementation of our logic.
The first input parameter is ‘load’ and the second one is
‘Number of heavy Load Node’ and one output i.e. ‘status
of load balance node’. We measure the input parameters
load and Number of heavy load node on a scale of 0 to 10
and 0 to 5 respectively and the output parameter status of
load balancing node on a scale of 0 to 10

Based upon the crisp values that are obtained the nodes are
categorized either as sender or as receiver. We have
calculated this crisp value using the five defuzzification
methods described above.

The surface plots that we obtain for the results are shown
in Figures 6 to 10 and the input and output values obtained
for 20 sets of data is shown in Table 1.

Figure 6 : Centroid Method

Figure 7: Bisector method

Figure 8: Mean of Maximum

Figure 9: Largest of Maximum

Figure 10: Smallest of Maximum

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 265

Table 1: Output values obtained for different defuzzification methods.

S.No

INPUTS OUTPUT
Load No. of

Heavy
Load
Node

Centroid Bisector MOM LOM SOM

1 7 2 7.2647 7.3000 7.5500 10.0000 5.1000

2 4 5 2.8181 2.8000 2.6000 5.2000 0

3 9 3 7.0142 7.1000 7.3500 10.0000 4.7000

4 6 1 7.1095 7.1000 7.3500 10.0000 4.7000

5 4 5 2.8181 2.8000 2.6000 5.2000 0

6 10 5 7.4348 7.5000 8.9500 9.1000 8.8000

7 9 3 7.0142 7.1000 7.3500 10.0000 4.7000

8 6 1 7.1095 7.1000 7.3500 10.0000 4.7000

9 7 2 7.2647 7.3000 7.5500 10.0000 5.1000

10 6 3 2.8415 2.8000 2.6000 5.2000 0

11 3 3 2.6763 2.7000 2.4000 4.8000 0

12 4 2 7.0955 7.1000 7.3500 10.0000 4.7000

13 5 4 2.5057 2.5000 0.2000 0.4000 0

14 3 4 2.6635 2.6000 2.4000 4.8000 0

15 9 2 7.0955 7.1000 7.3500 10.0000 4.7000

16 2 1 7.2724 7.3000 7.5500 10.0000 5.1000

17 3 2 7.2647 7.3000 7.5500 10.0000 5.1000

18 2 2 7.2647 7.3000 7.5500 10.0000 5.1000

19 3 3 2.6763 2.7000 2.4000 4.8000 0

20 5 3 2.5143 2.5000 1.4000 2.8000 0

5. Conclusion and Future Work

The results obtained using the five defuzzification methods
have been shown in table1. From this table we find that
centroid method, bisector method and mean of maximum
method are giving us approximately the same results in the
load balancing application that we have taken. Where as
for the smallest of maximum and largest of maximum
approaches there is wide variations in the results that are
obtained. The reason for this is that these two methods use
the two extremes i.e smallest or largest values for
calculation of the crisp value.
The results obtained in the tables above are graphically
shown in figures 6 to 10 and from these figures also we
infer the same results. Hence we conclude that centroid,
bisector and MOM methods are better as compared to the
LOM, SOM, as there is more consistency in the results.

In future this work has to be extended by using these
methods in actual simulation for load balancing to find out
the effect on response time.

References
[1]. P. V. McGregor and R. R. Boorstyn, “Optimal load
balancing in a computer network,” in Proc. 1975 Int. Conf: on
Commun., vol. 3, pp. 41.14-41.19.
[2]. E. D. S. Silva and M. Gerla, “Load balancing in distributed
systems with multiple classes and site constraints,” in Proc.
Performance’84, pp. 17-33.
[3]. A. N. Tantawi and D. Towsley, “A general model for optimal
static load balancing in star network configurations, ” in Proc.
Performance’84, pp. 277-291.
[4]. A. N. Tantawi and D. Towsley, “Optimal static load
balancing in distributed computer systems,” J. ACM, vol. 32, no.
2, pp. 445465, Apr. 1985.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 266

[5]. J. F. Kurose and S. Singh, “A distributed algorithm for
optimum static load balancing in distributed computer systems,”
in Proc. IEEE INFOCOM’86, pp. 458-467.
[6]. F. Bonomi and A. Kumar, “Adaptive optimal load balancing
in a heterogeneous multiserver system with a central job
scheduler,” IEEE Trans. Computer, vol. 39, pp. 1232-1250, Oct.
1990.
{7]. T. C. K. Chow and J. A. Abraham, “Load balancing in
distributed systems,” IEEE Trans. Software Eng., vol. SE-8, pp.
401-412, July 1982.
[8]. Chulhye Park and Jon G.Kuhl, “A Fuzzy based distributed
load balancing algorithm”, Proceedings of the Second
International Symposium on Autonomous Decentralized Systems
(ISADS'95) IEEE, 1995.
[9]. Lap-Sun Cheung, “A Fuzzy Approach to Load Balancing in
a Distributed Object Computing Network”, First IEEE
International Symposium on ClusterComputing and the Grid
(CCGrid'01) risbane, Australia May 15-May 18, 2001.
[10]. Yu-Kwong Kwok And Lap-Sun Cheung, “A New Fuzzy-
Decision Based Load Balancing System For Distributed Object
Computing”, Journal Of Parallel And Distributed Computing,
Volume 64 Issue 2, February 2004
[11]. Abbas Karimi, Faraneh Zarafshan, Adznan b. Jantan, A.R.
Ramli and M. Iqbal b. Saripan, “A New Fuzzy Approach for
Dynamic Load Balancing Algorithm” International Journal of
Computer Science and Information Security(IJCSIS).

AUTHORS PROFILE

Sameena Naaz received the degree of B.Sc Engg. in computers
from Aligarh Muslim University, in 1998 and the M..Tech Degree in
Electronics from Aligarh Muslim University, in 2000. She is
pursuing her Ph. D from Hamdard University. Sameena Naaz has
worked as a lecturer at Amity College of Engg. And Tech. Delhi,
Inti College Malaysia and is currently working as an Assistant
Professor at Jamia Hamdard University, New Delhi India in the
Department of Computer Science. She is a member of
International Association of Computer Science and Information
Technology (IACSIT). Her research interests include soft
computing and load balancing and scheduling in distributed
systems.
Professor Afshar Alam has an MCA and Ph. D degree and is
working as a Professor at Jamia Hamdard University in the
Department of Computer Science
Professor Ranjit Biswas has an M.tech , Ph. D and is currently
working with Manav Rachna International University Faridabad,
Haryana, India.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 267

