
 ABSTRACT
Even in this World Wide Web era where there is
unrestricted access to a lot of articles and books at
a mouse’s click, the role of an organized library is
immense. It is vital to have effective software to
manage various functions in a library and the
fundamental for effective software is the
underlying database access and the queries used.
And hence library databases become our use-case
for this study.

This paper starts off with considering a basic ER
model of a typical library relational database. We
would also list all the basic use–cases in a library
management system. The next part of the paper
deals with the sql queries used for performing
certain functions in a library database management
system. Along with the queries, we would generate
reports for some of the use cases. The final section
of the paper forms the crux of this library database
study, wherein we would dwell on the concepts of
query processing and query optimization in the
relational database domain. We would analyze the
above mentioned queries, by translating the query
into a relational algebra expression and generating
a query tree for the same. By converting algebra,
we look at optimizing the query, and by generating
a query tree, we would come up a cheapest cost
plan.
KEYWORDS: Library Databases, Query Optimiz-
ation, Relational Algebra, Query Tree, SQL Server
Management Studio, Microsoft Visual Studio, and
Cost Analysis.

1. INTRODUCTION

The Library Database is created to support the
principal functions of a lending library's day-to-
day operations. It provides access to resources
across a wide spectrum of topic and subject areas.
Such as: the arts, academic research, home
improvement, auto repair, business and much
more.

The very first step is to construct an ER-Diagram
of library databases, which is just an approximate
description of the information to be stored in the
database. With that logical design schema, we
implement our database design. The database
design of the library consists of creating queries
and stored procedures that satisfy some of the
functionalities of library operations. Through these
library operations, final reports are produced and
the designed database results are given in the form
of test forms.

For accessing and retrieving data from the
database, we convert ER-Diagram into relational
database model. Relational algebra is one of the
two formal query languages associated with the
relational model. As relational model supports
powerful query languages, steps we take in
handling the queries of library databases are:

 Initial SQL queries for library databases
 Converting these SQL queries into

relational algebra based on collection of
operators for manipulating relations and
optimizing purpose.

 Formation of Query tree for estimating the
cheapest cost plan.

 A Study of Library Databases by Translating Those SQL Queries Into

Relational Algebra and Generating Query Trees
Santhi Lasya [1], Sreekar Tanuku [2]

[1] – Department of Electronics and Computer Science, Jawaharlal Nehru
 Technological University, SNIST, Hyderabad, India.

[2] – Amazon, Seattle, WA, USA.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 210

2.1. LIBRARY DATABASES

A library database contains relevant and accurate
information in a particular field. It is both an
electronic catalog and the access point to
information from published works where
published information sources are of magazines,
newspapers, encyclopedias, journals and other
resources. Library databases are easily searchable.
Database content may often be searched by:
Keywords, Title, Author, or Subject. Each article
or book can be given in the form of

 Full Text = entire article - Library
databases sometimes omit photos, graphs,
charts, and figures from articles, but most
will indicate that these have been omitted.

 Abstract = summary provided by the
author or database publisher.

Databases provide citation information about the
items they index. A citation typically consists of
information such as:

 Title
 Author
 Source (Title and type of Publication)
 Publisher
 Date of Publication

Any library visitor may access the library database
collection and library card holders may access
many of the library’s databases from home. This
database works closely with faculty administrators,
computing services and the Research school to
provide integrated support to researchers. There is
a wide collection of electronic databases which
provides full text access to eBooks, databases, and
thesis.

2.2. ER- DIAGRAM

 Fig.1. ER-Diagram of Library Databases

2.3. STEP BY STEP PROCEDURE

A library database contains a listing of authors that
have written books on various subjects (one author
per book).Here, this database has been used to-

*Create queries against the library databases that
return a number of results which uses different
types of joins, UNION statements, CASE
statements, date manipulation, string concatenat-
ion, and aggregate functions.

*Design back-end stored procedures that satisfy
some of the functionalities of library operations
such as Add Adult, Add juvenile, Check in a Book,
Check out a book, Add Book, Renew Membership,
Change juvenile to Adult, Update Adult. The
procedures incorporated input validations and
provide adequate error handling using
TRY/CATCH.

When we consider the E-R diagram of library
databases, anyone can visit the library database
collection. And for accessing many of the library
databases, particular visitor should have a library
card. So with the help of library card, particular
member can fill up the details in 'MEMBER' entity
dataset (member_no, lastname, firstname,
middlename). Each member is provided with
member_no in library card and whenever a library
visitor wants to access particular book or any

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 211

information about the library database, using
member_no we can retrieve the information.

The personal details (like address (street, city,
state, and zip), phone_no, expr_date) of a visitor
can be filled in the entity dataset 'ADULT' and in
that, the member is given a expiry date. Once the
card is expired, then the visitor has to renew the
library card. If the member's age is less than 18
then that particular visitor comes under the dataset
'JUVENILE'. Juvenile entity dataset (member_no,
adult_member_no, birth_date) offer online access
to age-appropriate books and magazines. With the
help of adult_member_no i.e, using any adult
member library card number, juvenile members
can get their member_no.

 In the 'TITLE' dataset (title_no, title, author), the
search of a specific title or any author, provides the
title number (title_no). Through the dataset
'TITLE', the details of any book to be loaned are
known. 'LOAN' dataset (ISBN, title_no,
member_no, copy_no, out_date, due_date)
contains the information about a specific book, still
how many copies are there in the database if no
then which member_no loans that book and the
date until it is reserved by a particular member_no
is given. Here in 'LOAN' dataset ISBN i.e,
International Standard Book Number, is present
where specific number is given to the book which
is called all over world as its number. ISBN is
locked in each and every dataset wherever used.
'COPY ‘dataset (ISBN copy_no, title_no, on_loan)
gives the number of copies of each standard book
and its details. The total data of 'LOAN' and
'COPY' dataset with excess amount of data are
provided in 'LOANHIST' i.e, loan history dataset.
'LOANHIST'(ISBN, copy_no, out_data, title_no,
member_no, due_date, in_date, fine_assessed,
fine_paid, fine_due, remarks) contains database
book details i.e, copy number ,title number, book
return date, if due date is completed the fine to be
paid, overall fine to be paid, fine_due and remarks
given for that member_no.

The details of a book or even translation of any
language can be done in the 'ITEM' dataset (ISBN,
title_no, translation, loanable). Finally in
'RESERVATION' dataset (ISBN, member_no,
log_date, remarks), any member can reserve a
book and the details when that particular book is
reserved or any remarks written on that book can
be seen here. And this concludes the explanation of
the overall E-R diagram of library databases.

The front-end of the database queries include
many cases-

 Return member info from member and
 adult tables.

 Display available books.

 Search member info using member_no.

 Use UNION, list all member reserve the
 specific book.

 Use CASE, list all member reserve the
 specific book.

 Create temporary table.

 Display members have past due loan use
 temporary table.

 Display members who pay highest fine.

 List of members who want to reserve the
 specific book.

All these queries are developed on SQL Server
Management Studio (SQL Server 2008). When
you consider the use-case 'Display Available
Books' in the library databases, the code to be
written in query language on SQL Server
Management Studio is shown as,

 Fig.2. Display Available Books

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 212

Similarly, when we consider another case like
'Display members who pay highest fine', the output
form is given as,

 Fig.3. Display Members Who Pay Highest Fine

The back-end stored procedures support the
following principal functions of a library's day-to-
day operations:

Add Adult, Add Juvenile, Check In a book, Check
out a book, Add Book, Renew Membership,
Change Juvenile to Adult, Update Adult.

Here each and every case is designed and
developed on Microsoft Visual Studio
(ADO.NET). When comes to the result, Fig.4.
shows ‘Add Adult’ test form output.

 Fig.4. Add Adult

Similarly, the test form 'check out a book' output
refers to be,

 Fig.5. Check Out A Book

2.4. REPORTS OF LIBRARY DATABASES

The final reports are shown in Microsoft Visual
Studios. Overall reports produced in library
databases are-

 Complete list of books

 No of copies per title

 Most active members

 List of books on loan

 Adult member detail

 Dependents member detail

 Expired memberships

 Reference and special collection items

 Current fines for overdue books

 Total fines by member

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 213

The report ‘List of books on loan’ i.e, the list of
total books under loan in the library database are
shown as result in this fig.6.

 Fig.6. List Of Books On Loan

Similarly, Fig.7 shows another report ‘Current
fines for overdue books’ where the overdue book
fines are given as result in the test form.

 Fig.7. Current Fines For Overdue Books

We have seen two examples in each and every case
of front-end queries and back-end stored
procedures. In the similar way, the rest of the
output test forms and reports in the library
database are produced.

3.1. TRANSLATION OF SQL QUERIES IN
TO RELATIONAL ALGEBRA AND
GENERATING QUERY TREE

SQL queries are optimized by decomposing them
into a collection of smaller units, called blocks. A
typical relational query optimizer concentrates on
optimizing a single block at a time. When a user
submits an SQL query, the query is parsed into a
collection of query blocks and then passed onto the
query optimizer.

 Fig.8. Query Optimizer

The optimizer examines the system catalogs to
retrieve information about the types and lengths of
fields, statistics about the referenced relations, and
the access paths available for them. The optimizer
then considers each query block and chooses a
query evaluation plan for that block.

In given query, it essentially enumerates a certain
set of plans and chooses the plan with the least
estimated cost. The query blocks that contain two
or more relations in the FROM clause require joins
(or cross-products). Finding a good plan for such
queries is very important because these queries can
be quite expensive. Regardless of the plan chosen,
the size of the final result can be estimated by
taking the product of the sizes of the relations in
the FROM clause and the reduction factors for the
terms in the WHERE clause. But, depending on
the order in which relations are joined,
intermediate relations of widely varying sizes can
be created, leading to plans with very different
costs. In that process of enumerating multiple
relation queries plan, query is taken as example for
forming the cheapest plan.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 214

3.1.1. RELATIONAL ALGEBRA

Relational algebra is the query language associated
with the relational model. Queries in algebra are
composed using a collection of operators. Each
relational query describes a step-by-step procedure
for computing the desired output, based on the
order in which operators are applied in the query.

For optimizing a query block, the SQL query must
be converted into relational algebra expression.

3.1.2. QUERY TREE

Query tree is a tree data structure that corresponds
to a relational algebra expression. It represents the
input relations of the query as leaf nodes of the
tree, and represents the relational algebra
operations as internal nodes.

An execution of the query tree consists of
executing an internal node operation whenever its
operands are available and then replacing that
internal node by the relation that results from
executing the operation.

When we consider a case "Display available
books" from front-end database queries as an
example, As shown in fig.2,

CASE1: Display available books

CASE1: SQL QUERY:

 SELECT i.ISBN, copy_no, t.title_no,
 translation, title, author
 FROM copy As c
 INNER JOIN item As i
 ON i.isbn = c.isbn
 AND i.title_no = c.title_no
 INNER JOIN title As t
 ON t.title_no = i.title_no;

A query block is an SQL query with no nesting and
exactly one SELECT clause and one FROM clause
and at most one WHERE clause, GROUP BY
clause, and HAVING clause.

So, the first step in optimizing a query block is to
express it as a relational algebra expression.

Every SQL query block can be expressed as an
extended algebra expression having this form. The
SELECT clause corresponds to the projection
operator, the WHERE clause corresponds to the
selection operator, the FROM clause corresponds
to the cross-product of relations, and the remaining
clauses are mapped to corresponding operators in a
straightforward manner.

The alternative plans examined by a typical query
optimizer can be understood by recognizing that a
query is essentially treated as an algebra
expression. Translating that "CASE1: SQL
QUERY" into relational algebra expression, we
have

CASE1: RELATIONAL ALGEBRA:

For estimating the cost of an evaluation plan for a
query block, we consider query tree. For each node
in the tree, we must estimate the cost of
performing the corresponding operation. Costs are
affected significantly by whether pipelining is used
or temporary relations are created to pass the
output of an operator to its parent.

Steps in converting a query tree during
optimization involve:

 Initial (canonical) query tree for sql query.
 Moving SELECT operations down the

 query.
 Applying the more restrictive SELECT

operation first.
 Replacing CARTESIAN PRODUCT and

SELECT with JOIN operations.
 Moving PROJECT operations down the

query tree.

So the converted query tree for "CASE1:
RELATIONAL ALGEBRA" is,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 215

CASE1: QUERY TREE:

Suppose that the following indexes are available:
for Item and Title, a B+ tree index on the -(ISBN
and title_no) fields and a hash tree on the title_no
field(join method of item and title);similarly for
Copy, a B+ tree index on the -(ISBN and title_no)
fields and a hash tree on the ISBN and title_no
fields.

The best plan is found for accessing each relation,
regarded as the first relation in an execution. so the
best plan for copy, item and title is obviously a file
scan because no selections match an available
index. Still now the plans generated are taken as
outer relation and we consider joining another
relation as the inner one. Hence, the following
joins are processed: file scan of Item(outer) with
Title(inner),file scan of Item(outer) with
Copy(inner),file scan of Copy(outer) with
Title(inner), file scan of Copy(outer) with
Item(inner).

For each such pair, we consider every join method,
and for each join method, we consider every
available access path for the inner relation. For
each pair of relations, we retain the cheapest of the
plans considered for every sorted order in which
the tuples are generated. Note that, since the result
of the first join is produced in sorted order by
title_no, whereas the second join requires its inputs
to be sorted by ISBN and title_no, the result of the
first join must be sorted by ISBN and title_no
before being used in the second join. The tuples in
the result of the second join are generated in sorted
order by ISBN and title_no fields. For each plan
retained, if the result is not sorted on ISBN and
title_no, we add the cost of sorting on the ISBN
and title_no fields.

The sample plan generated produces tuples in
ISBN and title_no order, therefore, it may be the
cheapest plan for the query even if a cheaper plan
joins all three relations but does not produce tuples
in ISBN and title_no order.

As we have seen one example of SQL query
translating into relational algebra including the
formation of query tree, we'll see another example
for some more information.

CASE2: use UNION, list all member reserve the
specific book.

CASE2: SQL QUERY:

SELECT i.ISBN, title, m.member_no, lastname
+','+ firstname As Name,
'Adult' As [MemberType] FROM adult As a
INNER JOIN member As m
ON a.member_no = m.member_no
INNER JOIN reservation As r
ON m.member_no = r.member_no
INNER JOIN item As i
ON r.isbn = i.isbn
INNER JOIN title As t
ON t.title_no = i.title_no WHERE i.isbn = 500;

UNION

SELECT i.ISBN, title, m.member_no, lastname
+','+ firstname As Name,
'Juvenile' As [MemberType] FROM juvenile As j
INNER JOIN member As m
ON j.member_no = m.member_no
INNER JOIN reservation As r
ON m.member_no = r.member_no
INNER JOIN item As i
ON r.isbn = i.isbn
INNER JOIN title As t
ON t.title_no = i.title_no WHERE i.isbn = 500;

Here we use the UNION operation to club two
datasets ADULT and JUVENILE. When consider
the relational algebra for optimizing that SQL
query, the result can be given as,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 216

CASE2: RELATIONAL ALGEBRA:

Many inner joins are consider for obtaining the
required information taking into account the
selection - t.ISBN = '500' and the optimizer uses
UNION operation to gather wanted information
from the datasets ADULT and JUVENILE. For
estimating the cost from this query, consider query
tree,

CASE2: QUERY TREE:

We have two datasets ADULT and JUVENILE
combining with UNION operation. And the same
information i.e, selection operator "t.ISBN = '500'
" is required as a result in both the datasets. So the
tree continues from UNION operation as shown in
the figure, and continues with the left depth tree
and the right depth tree which have the same
indexes and joins to be considered.

First we'll estimate the cost for the left depth tree
and the same cost is taken for the right depth tree
which combines with a UNION operation.

The indexes available for this left depth tree query
are: for Member, a B+ tree index on the
member_no and hash tree on the member_no; for
Reservation, a B+ tree index on the member_no
and hash tree on the ISBN; for Item, a B+ tree
index on the member_no and a clustered B+ tree
on the ISBN field; for title, a B+ tree index on the
ISBN(join method with title) field and a hash tree
index on the ISBN(join method with title) field.

For (Adult, Member, Reservation, and Item), the
best plan is obviously a file scan as seen in earlier
case. The best plan for Title is to hash index on
ISBN, which matches the selection t.ISBN = '500'.
The B+ tree on ISBN also matches this selection
and is retained even though the hash index is
cheaper, because it returns tuples in stored order by
ISBN field. Similarly, the joins processed in
CASE2 are: all possible file scans for Adult,
Member, Reservation, Item, Title as seen in earlier
CASE1 and; Title accessed via B+ tree index on
ISBN(outer) with Adult(inner), Title accessed via
hash tree index on ISBN(outer) with
Adult(inner),Title accessed via B+ tree index on
ISBN(outer) with Member(inner),Title accessed
via hash tree index on ISBN(outer) with
Member(inner),Title accessed via B+ tree index on
ISBN(outer) with Reservation(inner), Title
accessed via hash tree index on ISBN(outer) with
Reservation(inner), Title accessed via B+ tree
index on ISBN(outer) with Item(inner), Title
accessed via hash tree index on ISBN(outer) with
Item(inner).

We consider here two examples for cheapest plan.
First example, with Title accessed via hash index
on ISBN as the outer relation, an index nested
loops join accessing Item via the B+ tree index on
ISBN(join method title) is likely to be a good plan;
observe that there is no hash index on this field of
Item. Another plan for joining Item and Title is to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 217

access Title using the hash index on ISBN, access
Item using the B+ tree on ISBN (join method title),
and use a sort-merge order by ISBN (join method
title).It is retained even if the previous plan is
cheaper, unless an even cheaper plan produces the
tuples in sorted order by ISBN (join method title).
As told in the previous CASE1, considering the
cost of sorting on member_no field, the cheapest
plan is generated. From this, even right depth tree
sorting cost is considered to be cheapest plan. And
the result cost is clubbed by the UNION operation
which overall is generated to be cheapest cost plan.

Similarly rest of the queries built in library
databases are translated into relational algebra and
the formation of query tree for estimating the least
cost plan are done.

4. CONCLUSION

In this paper, we have described the query
optimization of a single query block, which is
expressed by translating SQL queries into
relational algebra expression. We have
implemented the design of library databases and
used those SQL queries for the purpose of our
optimization. Generating the cheapest cost plan is
estimated in the formation of query tree. The
process of finding a good plan for any SQL query
gets complex when we require joins. Even for
cases like this, we evaluated the cheapest query
plan using left deep plans. But, the downside to
this method of left deep plans is that, if the number
of joins is more than 15 or so, analyzing the cost of
optimization becomes complex.

 5. REFERENCES

[1] Raghu Ramakrishnan and Johannes Gehrke:
'Database Management Systems' - Introduction to
database design and translation into relational
algebra including tree structures, third edition,
2003, pages 25-110,344-385,478-507.

[2] Elmasri, Navathe: ' Fundamentals of Database
systems', 2nd Edition,1994.

[3] A Swami, Optimization of Large join Queries
Combining Heuristics and Combinatorial
Techniques, in Proceedings of the 1989 ACM-
SIGMOD Conference, Portland, OR, June 1989

[4] Harrington, Jan L.: 'Relational database design
and implementation | clearly explained, third
edition.

[5]Henk Ernst Blok, Djoerd Hiemstra and sunil
choenni, Franciska de jong, Henk M. Blanken and
peter M.G. Apers. Predicting the cost-quality
tradeoff for information retrieval queries:
Facilitating database and query optimization.
Proceedings of the tenth international conference
on information and knowledge management,
October 2001, pages 207-214.

[6]Micheal L. Rupley, Jr.: 'Introduction to query
processing and optimization'.

[7]Jamie MacLennan, ZhaoHui Tang, Bogdan
Crivat: 'Data Mining with Microsoft SQL Server
2008'.

[8]Roger Jennings: 'Professional ADO.NET 3.5
with LINQ and the entity Framework', 2009.

[9]Carlos Coronel, Steven Morris, Peter Rob:
‘Database Systems- Design, Implementation and
Management', ninth edition.

[10] 'Introduction to Databases and Programming
with ADO.NET'-
www.philadelphia.edu.jo/courses/ADO.NET/0782
141838-1.pdf

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 218

http://www.philadelphia.edu.jo/courses/ADO.NET/0782141838-1.pdf
http://www.philadelphia.edu.jo/courses/ADO.NET/0782141838-1.pdf

