

An Automated Approach to Embrace Changes During Use case Model

Evolution

Dr. Amer AbuAli
Department of Software Engineering,
Faculty of Information Technology

P.O. Box 1 Philadelphia University, 19392, Amman, Jordan.
Tel: 00 962 6 4799000

Abstract:
Use case model is subject to changes throughout the software
development life cycle. Impacts of these changes affect
directly the requirements and consequently the resulted
system. Scrapping and replacing use case is expensive; in this
paper we proposed a solution that integrates changes in use
case in requirement phase. This solution combines
independent enhancements to some version of a use case into
a new version that include the enhancements and the old use
case. CASE tool implementation and experimental evaluation
of the proposed approach showed promising results in terms
of software development time saving and better use case
models integrity.

Keywords: Requirement engineering, Functional
requirements, Use case changes, Use case evolution.

1. Introduction

Understanding the requirements of a problem is among
the most difficult tasks that face a software engineer.
Requirement engineering (RE) helps software
engineers to better understand the problem they will
work to solve. It encompasses the set of tasks that lead
to an understanding of what the business impact of the
software will be, what the customer wants, and how
end-users will interact with the software [1, 2].
Most of the changes into software can be traced back to
the early requirements stage when a recovery action
can still be cost-effective [3]. Such changes may
become necessary because of changes in the real-world
context in which the proposed system would be
situated or because of changes in stakeholder
perceptions of the proposed system. Requirements
Evolution involves updating a description of user
requirements for a target system to accommodate new
requirements or to remove existing ones [4, 5].
To capture functional requirements, that are statements
of the services that the system must provide or are
descriptions of how some computations must be
carried out [6, 7], the widespread practice is the use
case model. It describes the functional requirements of
a software system and is used as input to several
activities in a software development project. It gives a
high-level view of the requirements of a system. The

quality of the use case model therefore has an
important impact on the quality of software [8].
Use case model is subject to changes sometimes later
in software life cycle. Changes are due to 1) market
demands, such as a large customer wanting things done
their way; 2) business requirement change, such as new
policies or operational processes; 3) legislative and
regulatory change; and 4) imaginative users. Impacts of
these changes affect directly the requirements and
consequently the product [3, 9].
Here, we faced two problems: (1) scrapping and
replacing use cases or (2) merging changes in order to
create new use case. The former is more expensive, we
propose an original solution to the second problem.
Use case merging is essential to deal with parallel
modifications carried out by different requirement
engineers that are not necessarily aware of each other's
changes. Our solution combines various independent
enhancements of a given version of a use case into a
new use case that includes the semantics of both the
enhancements and the old use case. In this context,
changes are brought in separate copies of the old use
case. Copies as well as the old use case are compared
and merged in order to produce a new version
including all modifications. This approach provides
computer aid for combining the results of several
people's separate efforts. This approach is inspired
from our previous researches in software merging
where we have proposed a new approach for program
integration [10, 11].
The outline of this paper is as follows: Section 2
presents a background about the use case concept.
Section 3 discusses our approach to use case
modelling. Section 4 illustrates our identification of
changes by an example. Section 5 shows the manner of
merging use cases. Sections 6 and 7 demonstrate the
tool support and experimental use of the proposed
approach. Finally, Section 8 concludes our research
direction.

2. Background

Employment of use cases is now common practice in
software development, and use case is now a
recognized concept in development processes [12, 13].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 193

A use case is an object-oriented modeling construct
that is used to define the behavior of a system.
Interactions between the user and the system are
described through a prototypical course of actions
along with a possible set of alternative courses of
action. Primarily, use cases have been associated with
requirements gathering and domain analysis. However,
with the release of the Unified Modeling Language
(UML) specification version 1.5 [14], the scope of use
cases has broadened to include modeling constructs at
all levels. Due to this expanded scope, the
representation of use cases has taken on increasing
importance.
A use case defines a goal-oriented set of interactions
between external actors and the system under
consideration. Actors are parties outside the system that
interact with the system [14]. An actor may be a class
of users, roles users can play, or other systems. A use
case is initiated by a user with a particular goal in
mind, and completes successfully when that goal is
satisfied. It describes the sequence of interactions
between actors and the system necessary to deliver the
service that satisfies the goal. It also includes possible
variants of this sequence, e.g., alternative sequences
that may also satisfy the goal, as well as sequences that
may lead to failure to complete the service because of
exceptional behavior, error handling, etc. The system is
treated as a “black box”, and the interactions with
system, including system responses, are as perceived
from outside the system [12, 13].
According to UML version 1.5 [14] we describe,
briefly, the types of relationships of use case as below:
i) Actor relationships
There is one standard relationship among actors and
one between actors and use cases, called generalization
and association respectively. A generalization from an
actor A to an actor B indicates that an instance of A
can communicate with the same kinds of use-case
instances as an instance of B. Association is related to
the participation of an actor in a use case, i.e. instances
of the actor and instances of the use case communicate
with each other.
ii) Use case relationships
In addition to the association, described previously,
there are several standard relationships among use
cases or between actors and use cases. A generalization
from use case A to use case B indicates that A is a
specialization of B. An extend relationship from use
case A to use case B indicates that an instance of use
case B may be augmented (subject to specific
conditions specified in the extension) by the behavior
specified by A. The behavior is inserted at the location
defined by the extension point in B which is referenced
by the extend relationship. While an include
relationship from use case A to use case B indicates
that an instance of the use case A will also contain the
behavior as specified by B. The behavior is included at
the location which defined in A.

3. Use case modelling

To permit an automatic use case analysis which is
implicit in the conventional representation, an
explicit representation needs an internal form.

3.1 Internal form

In the context of use case understanding and
modification (evolution), a dependence relationship
of a use case model is defined formally by the 5-
tuples:

<As, At, Rel, Typ, Id>.
It means that target actor/use case At depends on
actor/use As according to the relationship Rel with the
type Typ for the relationship Id.
Rel is a relationship that can be a generalization
between actors/use cases (Gen), an association
between actor and use case (Ass), an extend (Ext), or
an include between use cases (Inc).
Typ is dedicated to the type of multiplicity in a given
association (n..m), it is the number of possible
instances of actors associated with a single instance of
use case.
Id is a unique identifier corresponding to relationship
number.

3.2 Modeling

3.2.1 Modeling actor relationships
An association is formalized by the following 5-tuplet:
<Actor, Use case, Ass, Mul, Id>.
It means that instances of Actor and instances of Use
case communicate with a multiplicity Mul in the
association Ass numbered Id.
A generalization between actors is represented by:
<Actor1, Actor2, Gen, φ, Id>
It expresses that Actor2 inherits (Gen) from Actor1 in
the relationship numbered Id.

3.2.2 Modeling use case relationships
We express a generalization between use cases by:
<Use case1, Use case2, Gen, φ, Id>
It means that Use case2 inherits (Gen) from Use case1
in the relationship numbered Id.
An include relationship is expressed by: < Use case1,
Use case2, Inc, φ, Id>
It indicates that an instance of the Use case1 will also
contain the behavior as specified by Use case2 in the
relationship numbered Id.
An extend relationship is expressed by: <Use case1,
Use case2, Ext, φ, Id>
It means that an instance of Use case2 may be
augmented (Ext) by the behavior specified by Use
case1 in the relationship numbered Id.
In order to illustrate our approach Figure 1 presents the
use case of an ordering system and the corresponding
internal form (Table1).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 194

Salesperson

Part time Fulltime

<<extends>>
1 *

Supply
customer data

Order
product

Arrange
payment

Request
catalogue

Cash Credit

<<include>>

Place
Order

<<include>><<in
clu

de>
>

Fig. 1. Use case of an ordering system and its internal form of use case.

Table 1. Internal form of ordering system use case

4. Identification of changes

Use case changes can be syntactic or semantic.
Syntactic changes concern changes of actors, use cases,
and relationship names. Semantic changes concern
semantic changes of actors, use cases, and
relationships.
Semantic changes of actors/use cases can be
adding/deleting actors/use cases. Semantic changes of
relationships not only occur with previous changes but
also with redirecting edges or changing type of
relationships.
In order to illustrate this approach, we propose to apply
it in the following example. According to use case

model Base of figure 1, two variants are proposed. In
variant A (figure 2), we add a new actor "Trainee",
change the multiplicity (1..*) by (1..5), and change
"Salesperson" by "Salesperson Team". In other words
we make two semantic changes and one syntactic
change, namely adding new actor changing the
multiplicity and renaming "Salesperson" by
"Salesperson Team" Table 2 gives the internal form of
variant A. In variant B (figure 3), we add a new use
case "Log in", redirect use case "Request catalogue" to
actors and make syntactic change of "cash" and
"credit" by "cash payment" and "credit payment".
Table 3 gives the internal form of variant B.

Salesperson Team

Part time Fulltime

<<
in

cl
ud

e>
>

<<extends>>
1 5

Supply
customer data

Order
product

Arrange
payment

Request
catalogue

Cash Credit

<<include>>

Place
Order

<<include>>

Trainee

Fig. 2. Variant A of use case Base.

< Salesperson, Part time, Gen, φ, 1>,
< Salesperson, Full time, Gen, φ, 2>,
< Salesperson, Place Order, Ass, (1, *), 3>,
<Place Order, Supply Customer Data, Inc, φ, 4>,
<Place Order, Order Product, Inc, φ, 5>,
<Place Order, Arrange Payment, Inc, φ, 6>,
<Place Order, Request Catalogue, Ext, φ, 7>,
<Cash, Arrange Payment, Gen, φ, 8>,
<Credit, Arrange Payment, Gen, φ, 9>.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 195

Table 2. Internal form of Variant A.

Salesperson

Part time Fulltime

<<
in

clu
de

>>

1 *

Supply
customer data Order

product

Arrange
payment

Cash
payment

Credit
payment

Place
Order

<<include>>

Log in

Request
Catalogue

<<include>>

Fig. 3. Variant B of use case Base

Table 3. Internal form of Variant B.

4.1. Actors changes

Actor changes concern the change of name (syntactic)
or the behavior (semantic) of a given actor. Semantic
changes can be adding, deleting actors, and/or
redirecting the relationships from these actors. By
comparing actors of each variant according to actors of
use case Base, we can identify actor changes. Changes
are grouped in four sets: UA, ACN, ACB, and ACNB.

UA set contains Unaltered Actors in all use cases. This
concerns actors keeping the same name and the same
behavior in all variants. Informally, it is interpreted by

the same internal form (5-tuples) of actors all in
variants.
Let A= (A11, A12,…, Aij, …, Anm) to denote actor i in
the use case model j
UA = { Aij / <Aij , Akj , Rel ij , Typij , Id ij >Base =
<Ai'j' , Ak'j' , Rel i'j' , Typ i'j' , Id i'j'>variant }
In our example, this set is concerned by the following
actors: "Full Time" and "Part Time".

ACN is the set of Actors with Changed Names, but
keeping the same behavior. Informally, it is interpreted
by changing only the name of actor in the specific 5-
tuples.

< Salesperson Team, Part time, Gen, φ, 1>,
< Salesperson Team, Full time, Gen, φ, 2>,
< Salesperson, Place Order, Ass, (1, 5), 3>,
<Place Order, Supply Customer Data, Inc, φ, 4>,
<Place Order, Order Product, Inc, φ, 5>,
<Place Order, Arrange Payment, Inc, φ, 6>,
<Place Order, Request Catalogue, Ext, φ, 7>,
<Cash, Arrange Payment, Gen, φ, 8>,
<Credit, Arrange Payment, Gen, φ, 9>
< Salesperson Team, Trainee, Gen, φ, 10>.

< Salesperson, Part time, Gen, φ, 1>,
< Salesperson, Full time, Gen, φ, 2>,
< Salesperson, Place Order, Ass, (1, *), 3>,
<Place Order, Supply Customer Data, Inc, φ, 4>,
<Place Order, Order Product, Inc, φ, 5>,
<Place Order, Arrange Payment, Inc, φ, 6>,
<Cash Payment, Arrange Payment, Gen, φ, 8>,
<Credit Payment, Arrange Payment, Gen, φ, 9>
< Salesperson, Log in, Ass, (φ), 10>,
< Salesperson, Request Catalogue, Ass, (φ), 11>.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 196

ACN = { Aij / <Aij , Akl , Rel ij , Typij , Id ij >Base =
<Ai'j' , Ak'l' , Rel i'j' , Typ i'j' , Id i'j'>variant ∧ "A" ij≠ "A" i'j'}
In our example, ACN is concerned by actors:
Salesperson replaced by Salesperson Team in variant
A.

ACB is the set of Actors with Changed Behaviors but
keeping the same names. As stated previously this
concerns redirecting relationships or changing the
relationship types.
ACB = {∀ Aij / <Aij , Akl , Rel ij , Typ ij , Id ij >Base ≠
<Ai'j' , Ak'l' , Rel i'j' , Typ i'j' , Id i'j'>variant ∧ " A" ij =
"A"i'j'"}
In variant A, ACB is concerned by a new inheritance
between "Salesperson" and the new actor "Trainee",
while in variant B we have added two associations
(with "Request catalogue" and "Log in").

ACNB (Actors with Changed Names and Behavior) set
is concerned by adding/deleting actors.
ACNB = {∀ Aij / <Aij , Akl , Rel ij , Typij , Id ij >Base ≠
<Ai'j' , Ak'l' , Rel i'j' , Typ i'j' , Id i'j'>variant }
In our example, ACB is concerned by adding a new
actor "Trainee".
We note that Akl and Ak'j' can be actor or use case.

4.2. Use cases changes
Use case changes is concerned by syntactic change or
semantic of a given use case. Semantic changes can be
adding, deleting use cases, and/or redirecting the
relationships from these use cases. By comparing use
cases of each variant according to use cases of Base,
we can identify use cases changes. Changes are
grouped in four sets: UUC, UUCN, UUCB, and
UUCNB.
UUC set contains Unaltered Use Cases. This concerns
use cases keeping the same name and the same
behavior in all variants. Informally, it is interpreted by
the same internal form (5-tuples) of this use case in
variants.
Let UU= (UU11, UU12,…, UUij, …, UUnm) to denote
use case i in the use case model j
UUC = {Uij / <Uij , Ukj , Rel ij , Typ ij , Id ij>Base =
<Ui'j' , Uk'j' , Rel i'j' , Typ i'j' , Id i'j'>variant }
In our example, this set is concerned by the following
use cases: "Place Order", "Supply customer data",
"Order Product", and "Arrange payment".

UUCN is the set of Use Cases with Changed Names,
but keeping the same behavior. Informally, it is
interpreted by changing only the name of actor in the
specific 5-tuples.
UUCN = {Uij / <Uij , Ukl , Rel ij , Typ ij , Id ij >Base =
<Ui'j' , Uk'l' , Rel i'j' , Typ i'j' , Id i'j'>variant ∧ "U" ij ≠ "U" ij}
In our example, UUCN is concerned by use cases Cash
and Credit replaced by Cash payment and Credit
payment in variant B.

UUCB is the set of use cases with Changed Behaviors
but keeping the same names, this concerns redirecting
relationships or changing the relationship types.

UUCB = { Uij / <Uij , Ukl , Rel ij , Typ ij , Id ij>Base ≠
<Ui'j' , Uk'l' , Rel i'j' , Typ i'j' , Id i'j'>variant ∧ " "Uij"=
"Uij"}.

In variant B, use case "Request Catalogue" is
redirected to "Salesperson" instead of "Place Order"
and the type of relationship (<<include>>) is changed
into a normal association.

UUCNB (Use Cases with Changed Names and
Behavior) set is concerned by adding/deleting use
cases.
UUCNB = {Uij / <Uij , Ukl , Rel ij , Typij , Id ij >Base ≠
<Ui'j' , Uk'l' , Rel i'j' , Typ i'j' , Id i'j'>variant}
In our example, UUCNB is concerned by adding a new
use case: "Log in" in variant B.
We note that Ukl and Uk'j' can be actor or use case.

4.3 Relationships changes

Also relationship changes concern the syntactic change
or semantic of a given relationship. Semantic changes
can be adding, deleting, and/or redirecting
relationships. By comparing relationships of each
variant according to relationships of use case Base, we
can identify relationship changes. Changes are grouped
in four sets: UR, RCN, RCB, and RCNB.

UR set contains Unaltered Relationships in all use
cases. This concerns actors keeping the same name and
the same behavior in all variants. Informally, it is
interpreted by the same internal form (5-tuples) of this
relationship in variants.
Let R= (R11, R12,…, Rij, …, Rnm) to denote
relationship i in the use case model j.
UR= {Rij / <Aij , Akl , Rel ij , Typ ij , Id ij >Base = <Ai'j' ,
Ak'l' , Rel i'j' , Typ i'j' , Id i'j'>variant}

In the example, this set is concerned by an inheritance
from "Part time" and "Full time" to "Salesperson",
<<include>> associations from "Supply customer
data", "Order Product", and "Arrange payment" to
"Place Order", and an inheritance from "Cash" and
"Credit" to "Arrange payment".

RCN is the set of Relationships with Changed Names,
but keeping the same behavior. Informally, it is
interpreted by changing only the name of relationship
in the specific 5-tuples.
RCN = {Aij / <Aij , Akl , Rel ij , Typ ij , Id ij >Base =
<Ai'j' , Ak'l' , Rel i'j' , Typ i'j' , Id i'j'>variant ∧ "Rel" ij≠
"Rel" i'j'}

RCB is the set of Relationships with Changed
Behaviors but keeping the same names. As stated
previously this concerns redirecting relationships or
changing the relationship types.
RCB = {Aij / <Aij , Akl , Rel ij , Typ ij , Id ij >Base ≠
<Ai'j' , Ak'l' , Rel i'j' , Typ i'j' , Id i'j'>variant ∧ "Rel" ij=
"Rel" I'j'}

In variant A there is a change of multiplicity with use
case "Place Order" (1..5 instead of 1..*). In variant B

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 197

we have three new relationships: two associations with
use cases "Log in" and "Request catalogue", and an
inheritance with a new actor "Trainee".

RCNB (Relationships with Changed Names and
Behavior) set is concerned by adding/deleting
relationships.
RCNB = {Aij / <Aij , Akl , Rel ij , Typ ij , Id ij >Base ≠
<Ai'j' , Ak'l' , Rel i'j' , Typ i'j' , Id i'j'>variant}
In our example, RCNB is concerned by (1) adding new
association from "Log in" to "Salesperson" redirecting
and changing the <<include>> association between
"Request Catalogue" and "Salesperson" into a normal
association.

5. Generation of the new version of use case
We generate the new version of use case according
changes identified previously. Unaltered actors, use
cases, and relationships sets (UA, UUC, and UR) are
kept. Actors, use cases, and relationships with changed
names in variants replace corresponding actors, use
cases, and relationships of Base (from ACN, UUCN,
and RCN). Actors, use cases, and relationships with
changed behavior of variants replace corresponding
actors, use cases, and relationships of Base (from ACB,
UUCB, and RCB). Actors, use cases, and relationships

with changed names and behaviors of variants,
interpreted by insertions or deletions, are inserted or
deleted (from ACNB, UUCNB, and RCNB). Finally
we obtain an internal form corresponding to the new
use case (Table 4).
However there is a possible way in which we can fail
to represent a satisfactory merged use case model. In
Software merging [15, 16] these are referred as "Type I
and Type II interference". Type I occurs when we
make the same changes to the same actor, use case,
relationship or multiplicity in different variants. In this
case what is the change handled in the new version?
Type II interference occurs when reconstituting the
merged use case diagram from the internal form, it can
be an infeasible graph.
If there are no interferences we can reconstitute the
new use case diagram. Figure 4 illustrates a
reconstitution of use case diagram from the internal
form of Table 4.

Table 4. Internal form of the new version of use case

Salesperson

Part time Fulltime

<<
in

clu
de

>>

1 5

Supply
customer data

Order
product

Arrange
payment

Cash
payment

Credit
payment

<<
include>>

Place
Order

<<include>>

Log in

Request
Catalogue

Trainee

Fig. 4. The new version of use case diagram

< Salesperson, Part time, Gen, φ, 1>,
< Salesperson, Full time, Gen, φ, 2>,
< Salesperson, Place Order, Ass, (1, *), 3>,
<Place Order, Supply Customer Data, Inc, φ, 4>,
<Place Order, Order Product, Inc, φ, 5>,
<Place Order, Arrange Payment, Inc, φ, 6>,
<Cash Payment, Arrange Payment, Gen, φ, 8>,
<Credit Payment, Arrange Payment, Gen, φ, 9>
< Salesperson Team, Trainee, Gen, φ, 10>,
< Salesperson, Log in, Ass, (φ), 11>,
< Salesperson, Request Catalogue, Ass, (φ), 12>.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 198

6. Automation of Proposed Approach

The automated support of the proposed approach
passed through a number of rationales. Examples
include: what type of automation should be supported?,
what development approach should be adopted?
The main debate that faced the research team is related
to the software development approach. Two options
were available: 1) develop limited capabilities stand
alone CASE tool, and 2) develop an integrated shell for
an already existing CASE tool. The 4+1 architectural
views [17] suggest that any system has five views:
design, implementation, process, deployment and use
case. Activities within a view require information from
other views. Elements from one view depend on or be
driven by those of another. Moreover, the views may
need to be ordered so that the information shared
between two or more views remains consistent. An
exception to this rule occurs with the use case view
which is defined to drive the development of other
system views. As the main output of the proposed

approach is the use case model of the anticipated
system and being a core model in software
development, it was decided to go with the second
development approach to support development of other
system models using facilities of underlying CASE
tool.

A survey on available CASE tools identified a number
of commercial [18,19,20] and open source [21,22,23]
CASE tools. Commercial tools (e.g. Rational Rose)
ruled out of the candidate tools list due to expensive
licensing cost which will inhibit accessibility of our
approach to large number of users who are unable or
unwilling to pay licensing cost. Therefore, three open
source tools were short listed: StarUML [21],
ArgoUML [22], and Netbeans Plug-ins [23]. Table 5
compares the features of the three tools. StarUML, as
can be concluded from table 5, supersedes the other
two tools in a number of factors. Hence, it was selected
as a platform for the automation of the proposed
approach

.

Table 5. CASE Tools Comparisons Summary.

Tool

U
M

L

Supported
V

ersion

H
elp

and
U

ser
Support
A

vailable

A
ll

D
iagram

s
Supported

Portable?

M
aintainable,

U
sable,

and
E

xtensible?

Support
to

R
ecent T

rends in
Softw

are
M

odelling
(e.g.

M
D

A
, N

X
)

StarUML 2.0 Yes Yes Yes High Yes
ArgoUML 1.4 No Yes Yes Med. No
Netbeans 1.4 No No No Low No

7. The Proposed Approach in Operation

TestWarehouse is a medium size software house. The
main unit of software development projects is a team.
Each team consists of up to 18 resources of different
roles: project manager(s), IT technical support
officer(s), system and business analysts, developers,
and software quality engineers.

The adopted software development process in
TestWarehouse projects differs from one project to
another according to project context including project
type, technical experience, application domain,
delivery constraints, resources, and surrounding risks.
However, the software development processes recently
used in TestWarehouse are: eXtreme Programming,
Scrum, and Rational Unified Process (RUP). These
software process models are use case based and
embrace frequent requirements changes which make
them good test bed for the proposed use case evolution
approach.

The proposed approach has been in operation for 8
months and utilized by TestWarehouse’s business and
system analysts in six projects. Table 6 demonstrates
projects demographics in relation to project size, type,
application domain, number of use cases, and number
of requirements changes.

The main reported advantage of using the catalogue
was the noticeable time saving in requirement
engineering phase. This is attributed to reusability of
use cases. Reported time saving percentages varied
between 8% and 25% of the total software
development project time. Analyzing the reasons
behind the high fluctuation in reported time saving
percentages, it was found that this is attributed to a
number of factors including: (1) number of use cases in
the project, and (2) use case complexity. In addition,
users reported that models generated using the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 199

proposed approach possess better completeness and
comprehensiveness characteristics.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 200

Table 6. Demographics of Experimental Projects.

Project Size Type Application Domain Number of
Use Cases

Number of
Requirements

Changes
1 Small In house development Human Resources 20 10
2 Medium Product Financial 45 18
3 Medium Custom Development e-Commerce 42 21
4 Medium Outsourcing Financial 50 20
5 Large Support Project CRM Software 80 35
6 Large Custom Development Insurance 71 40

8. Conclusion and future work

Use case model is subject to changes sometimes later in
software life cycle. Impacts of these changes affect directly
the requirements and consequently the resulted system.
Scrapping and replacing use case is expensive; in this
paper we have proposed an original solution to integrate
changes in old use case in requirement phase.

This solution is based on (1) an internal form to represent
formally dependencies between concepts of use cases, (2)
identification of changes from this internal form, and (3)
merging old use cases diagrams in order to obtain a new
version that takes account all modifications if there is no
conflict.

The proposed approach has been implemented on top of an
open source CASE tool. Actual experimental work of the
automated proposed approach showed its ability to save up
to 25% of software development time with better
completeness and comprehensiveness characteristics.

As a future work, we plan to incorporate this technique of
modification to the next diagrams of Object Oriented
Analysis and Design (interaction diagrams, state diagrams,
activity Diagrams, etc.). In addition, further testing using
further projects and users is planned to take place for this
approach.

9. References
1. Nguyen L, Swatman PA (2003) Managing Requirement

Engineering Process. Requirement Engineering Journal
Volume 8 No 1: pp. 55-68.

2. Lamsweerde VA (2000) Requirements engineering in the year
00: A research perspective. ICSE'2000 pp. 519 Ireland.

3. Rolland C, Salinesi C, Etien A (2004) Eliciting gaps in
Requirements Change. Requirement Engineering Journal
Volume 9 Number 1 pp. 1-15.

4. Anderson S, Felici M (2000) Requirements changes risk/cost
analyses: An avionics case study. SRA-EUROPE Annual
Conference, Volume 2 pp. 921-925 Scotland.

5. PROTEUS Project (1996) Meeting the challenge of changing
requirements. Deliverable 1.3, Centre for Software
Reliability, University of Newcastle.

6. Ghose A (1999) Managing Requirements Evolution: Formal
Support for Functional and Non-functional Requirement.
IWPSE'1999 pp. 118-124 Japan.

7. Anderson S, Felici M (2001) Requirements evolution: From
process to product oriented management. PROFES'2001.

8. Lascio L (2002) Towards an inspection technique for use case
models. S E K E ' 0 2 pp. 127-134.

9. Zhang L, Xie D, Zou W (2001) Viewing use cases as active
objects. ACM SIGSOFT Software Engineering Notes,
Volume 26 Issue 2.

10. Khammaci T, Bouras Z.E (2002) Versions of program
integration. In World Scientific (eds). Handbook of Software
Engineering and Knowledge Engineering No 2, Pittsburg
(USA), pp. 495-516. 2002.

11. Bouras Z.E, Khammaci T, Ghoul S (2000) A new approach
for program Integration. The South African Computer
Journal, No. 25, pp.3-11.

12. Cockburn A (1997) Structuring Use Cases with Goals.
Journal of Object-Oriented Programming, Sep-Oct 1997.

13. Biddle R, Noble J, Tempero E (2002) Essential use cases and
responsibility in object-oriented development. CRPITS'02
Volume 24 Issue 1.

14. Unified Modeling Language, Version 1.5,
http://www.rational.com/uml

15. Horwitz S, Reps T (1992) The Use of Program Dependence
Graphs in Software Engineering. ICSE'92, Australia.

16. Binkley D, Horwitz S, Reps T (1995) Program integration
for languages with procedure calls". ACM Trans. on Soft.
Eng. and Meth. Volume 4 No 1 pp. 310-354.

17. Kruchten, P.: ‘Architectural Blueprints - The 4 + 1 View
Model of Software Architecture’, IEEE Software, 1995, 12,
(6), pp. 42-50.

18.Kruchten, P.: ‘The Rational Unified Process: an Introduction’
(Swedish edition, Boston, Mass., London: Addison-Wesley,
2002).

19. Nicolas, J. and Toval, A.: ‘On the Generation of
Requirements Specifications From Software Engineering
Models: A Systematic Literature’, Information and Software
Technology, 2009, 51, (9), pp. 1291-1307.

20. Jackson, M.: ‘Automated Software Engineering: Supporting
Understanding’, Automated Software Engineering, 2008, 15,
(3), pp. 275-281.

21. StarUML Project Team.: ‘StarUML: User Guide’ [online].
Available from: http://staruml.sourcefo rge.net/docs/user-
guide(en)/toc.html [Accessed 15/1/2009].

22. ArgoUML Project Team: ‘ArgoUML: User Manual’ [online].
Available from: http://argouml-
stats.tigris.org/documentation/manual-0.28/ [Accessed
15/1/2009].

23. NetBeans UML Plugin Team: ‘NetBeans UML Plugin’
[online]. Available from:
http://netbeans.org/features/uml/index.html [Accessed
15/1/2009].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 201

http://www.rational.com/uml

