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Abstract 
This paper presents a high-performance method for the k-nearest 
neighbourhood search. Starting from a point cloud, first the 
method carries out the space division by the typical cubic grid 
partition of the bounding box; then a new data structure is 
constructed. Based on these two previous steps, an efficient 
implementation of the k-nearest neighbourhood is proposed. The 
performance of the method here presented is compared with that 
of the kd-tree and bd-tree algorithms taken from the ANN library 
[1] as regards the computing time for some benchmarking point 
clouds and artificially generated test cases. The results are 
analysed and critically discussed. 
Keywords: k-nearest neighbour, point cloud, space partition. 

1. Introduction 
For the last few years the use of points as the 
representational primitives of geometric models has spread 
out in computer graphics and geometric modelling 
applications ([2], [3] and [4]). This is also due to the recent 
introduction on the market of 3D scanning systems 
offering high resolutions with a measuring accuracy as 
high as 10 μm, which make it possible to capture the 
smallest surface features. However, these devices generate 
very large data sets. Some point clouds, such as those 
obtained by means of 3D scanning, cannot be directly used 
in the previously defined applications; they need to be 
processed in order to reconstruct high-level information 
starting from the only Cartesian coordinates. Typically, 
point clouds are processed to remove any residual noise, 
change the sampling rate, estimate the points’ normal 
and/or proceed to their tessellation. All these operations 
require the computation of the k-nearest neighbourhoods 
(knn) for each point in the cloud. As pointed out by 
Sankaranarayanan et al in [4], the correct computation of 
neighbourhoods is important both for algorithms that 
estimate properties that are common in the neighbourhood 
and for algorithms that analyse variations in these 
properties. It is evident that these neighbourhoods must be 
obtained at the lowest computational cost as possible, so 

that even clouds with several millions points can be easily 
managed. When analysing the related literature, it seems 
evident that the methods, used with the typical computing 
powers, show such a performance that they constitute the 
major bottleneck in the implementation of the above-
mentioned applications.   
In order to make a useful contribution to this field, this 
paper proposes a simple algorithm for the knn search. It is 
based on a new data structure applied to the typical space 
division approach, which makes possible a more efficient 
search for the nearest neighbourhoods. This method is 
tested for the knn search in some benchmarking point 
clouds and artificially generated test cases. The results 
derived from these experiments are critically discussed 
hereinafter. 

2. Related works 
The more recent exhaustive overview of the knn search 
methods are presented in [4]. In what follows we will be 
considering some of the most important papers which are 
related to the method here being proposed, leaving out, for 
example, algorithms which work with multiple processors 
CPU and GPU and for the approximation of the k–nearest 
neighbourhoods.  
The simplest method to construct the k–nearest neighbours 
of datasets is based on the simple brute-force algorithm 
[5]: first the Euclidean distances between each point and 
all the other ones are calculated; then, the k-nearest 
neighbours are found as those k points with the shortest 
distances. This algorithm is computationally inefficient 
since, for each data point, its time complexity is O(np

2), 
where np is the number of points. In order to reduce this 
computational cost, many methods are proposed in 
literature; the most important ones can be divided into 
three main categories:  

- Voronoi-point based; 
- space division strategy based; 
- pivot – based. 
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2.1 Voronoi point based approaches 
The methods belonging to the first category are mainly 
used in two-dimensional datasets and are based on the 
consideration that the Voronoi diagram decomposes the 
plane into cells, each of which contains a point. For a point 
p contained in the cell C, the points located in the cells 
sharing edges with C are the nearest to p.  
The first algorithm that uses this approach in a three-
dimensional dataset is presented by Dey et al. in [6] which 
proposed a method that is based on the dual of the Voronoi 
graph: it determines the k–nearest neighbours in a three-
dimensional dataset by constructing a Dirichlet 
triangulation. As pointed out by Li et al in [7], it takes 
O(np

2log2np) time, making it impractical for use in reverse 
engineering where, more and more often, the clouds have 
over one million points. 
In order to improve the efficiency of the search, recently 
Goodsell in [8] has proposed a new method for two–
dimensional datasets, which is based on the Voronoi 
points; the results reported show that the timing of the 
algorithm is quadratic (O(np

2)). 

2.2 Space division strategy based approaches  
Typically, with the space division strategy based methods 
determining whether a point is a member of the k-nearest 
neighbours permits to work with a small subset of the data; 
this way, computational costs are strongly reduced. Some 
of the most widely used algorithms for the knn search 
belonging to this category are the kd-tree and bd-tree. The 
first one is based on a k – dimensional binary search tree 
([9], [10]). By the kd-tree the space is hierarchically 
partitioned into hyper – rectangular regions (buckets) by 
using hyper – planes perpendicular to the coordinate axes 
to form a tree. Once this structure is constructed, the search 
for the nearest neighbour is done by descending the tree to 
find the bucket containing the query point. The search for 
the knn is limited to the points within that bucket or those 
contained in the near buckets. Optimally, the kd-tree 
requires O(nplog2np) operations for its construction and an 
O(log2np) operation for the search ([10] and [12]). The 
box – decomposition tree (bd-tree) ([13]) is a variant of the 
kd-tree that was introduced to provide greater robustness 
for highly clustered datasets. Above all, the bd-tree differs 
from the kd-tree in the fact that, in addition to the splitting 
operation, there is another decomposition operation called 
shrinking. According to the shrinking rule, it is possible to 
further divide a box containing more points than the bucket 
size.  
Piegl and Tiller in [14] proposed a much simple algorithm 
for computing all the k-nearest neighbours in 2-D. Firstly, 
the dataset is partitioned by a rectangular grid and the 
points are binned in appropriate cells. If several points fall 
under the same bin, they are stored in a linked list. The 

search is extended to the rings (in ascending order) around 
the cell containing the query point. The search stops when 
the k-th shortest distance is smaller than the distance 
between the query point and the closest wall of the outer 
cell ring. The empirical tests show that the algorithm is 
sub-linear for small k (around 1-5% of the data); it is linear 
for medium k (up to about 10-20% of data) and quadric for 
large k (over 20% of data). Furthermore, the algorithm 
seems to not be practically affected by the topology of the 
point cloud and by the grid size.  
Li and Cripps in [7] proposed a method for which the 
bounding box containing the points is first partitioned by a 
cubic grid, whose grid size (ρ2) is estimated by the 
following empirical formula: 

( )( )( )max min max min max min
32

p

x x y y z z
n

ρ α
 − − −
 =
 
 

 (1) 

where: 
- α is a user – defined scalar factor; 
- np is the number of points. 

The points are stored by using the following cube 
structure: 

cube[i][j][k] with i=1,….,nx; j=1,….,ny; k=1,….,nz;
 (2) 

where nx, ny and nz are the number of divisions along x, y 
and z directions, respectively. For each point p of the 
cloud, the search for the k-nearest points is carried out 
among those (candidate points) which are inside the inner 
and intersecting cubes of a sphere with centre at p and a 

radius r = ρ2·min(nx, ny, nz)· 3

p

k
n

. If the number of 

candidate points is less than k, the search is carried out 
inside a sphere of larger radius. The experimental results 
show that the timings are not significantly affected by the 
structure of the point clouds and that they are 
approximately linear for k<0.05np.  
An efficient and simple method is proposed by Franklin in 
[15]. Concerning the data structure, it essentially consists 
of a ragged array, containing the points belonging to each 
cubical cell, and of a dope vector pointing to the first point 
of the cell. The search of closest points of a query point q 
is carried out inside a rectangular blocks of cells around 
that containing q, by using a sorted cells list.  
In order to improve the efficiency of the k-nearest 
neighbourhood search, Gejun et al in [16] put forth a new 
strategy for space division. After a preliminary division 
where the side-length grid is chosen by the user, a 
secondary division is done on the basis of an empirical 
formula. The experiments' results show, if we focus only 
on the knn search speed, that after the second division the 
search range has been reduced and the searching efficiency 
has improved.  
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Several techniques are used in order to transform the d-
dimensional data points in 1-d values. Some solutions of 
this type are based on the pyramid technique ([17], [18], 
[19]). This technique, proposed by Berchtold et al. in [20], 
consists in the partitioning the d-dimensional space [0,1]d 
(called unit hypercube) into 2d pyramids with the tops at 
(0,5; 0,5; : : : ; 0,5) and bases on each of the 2d faces of the 
unit hypercube. At each point a hash value, that is the sum 
between the identification number of the pyramid to which 
the point belongs and the distance of the point from the 
pyramid vertex, is assigned. All the points are stored, 
according to hash values, in a B+-tree for optimal querying. 
The reported results in [18] show that the proposed method 
has a speed-up factor over the kd-tree between 1.6 and 2.9. 
The previously presented approaches compute the 
neighbourhood of each point of a cloud, one point at a 
time. Sankaranarayanan et al. in [4] presented a more 
sophisticated approach that reuses point neighbourhoods 
already calculated to determine neighbourhoods of 
adjacent points. Moreover, in order to manage a large 
amount of points, the authors use a disk-based data 
structure. The results reported show that the method’s 
performance is promising, above all, in terms of capability 
to elaborate clouds with 50 millions points and not in terms 
of computational times.  

2.3 Pivot – based approaches  
Generally, the pivot based methods select some pivots 
from the database and classify all the other elements 
according to their distance from the pivots. The distances 
d(s j, p i) between elements (s j) and pivots (p i) and between 
the query qk and the pivots (d(s j, qk)) are used to filter out 
elements. Typical algorithms belonging to this group are 
the AESA ([16]), the LAESA ([22] and [23]) and its 
variants ([24] and [25]) and the Fixed Queries Array ([26]). 
These algorithms are based on the common idea that if for 
some pivots p i ( )j i j k( ,  ) ,d d r− >s p s q  then, by the 

triangular inequality, k i( ,  )d r>q p  without explicitly 
evaluating k i( ,  )d q p . All the points which do not verify 
the first previous inequality must be directly compared 
against the query point. By increasing the number of pivots, 
distance evaluations increase but so does the number of 
elements being filtered out. As pointed out by Chavez et al. 
in [27], the optimum value of the pivots cannot be 
normally reached because it is too high in terms of space 
requirements. Recently some improvements to these 
algorithms have been proposed by Chavez et al. in [27] 
and Fredriksson in [28]. 

3. Algorithm description 

In this section we describe our algorithm in detail. 
Generally speaking, it consists of two main steps:  

- the data structure construction; 
- the nearest-neighbourhood search. 

3.1 The data structure construction 
Efficient k-nearest neighbourhood search requires an 
efficient data structure which prevents from searching the 
entire dataset for each candidate point. For this purpose, 
when using SDS (acronym of Search Data Structure), the 
points are first indexed as {1, ..., np}, where np is the 
number of points. Then, similarly to the methods based on 
the space division strategy, the axes-aligned bounding box 
of the points is partitioned by a cubic grid. The box edge 
size (step) is then evaluated by the density parameter ρ of 

the points ( p

box

n
n

ρ = , where np is the number of points and 

nbox is the number of boxes), by using the formula (1) 
proposed by Li and Cripps in [7]. Every point is assigned 
to its corresponding box by the following hashing function 
which performs a double to integer conversion: 

id x x y

x y zbox n n n
d d d

= + ⋅ + ⋅ ⋅    (3) 

where: 
- x, y and z are the point coordinates; 
- nx, ny are the number of divisions along x and y 

directions, respectively. 
The boxid is the attribute to each data point that performs 
the assignment of a point to a box. All the points in a box 
are implicitly sorted by the index (from 1 to np). 
The new data structure consists of two different arrays 
(First and Next). First has dimension nboxx1, where nbox is 
the number of boxes partitioning the point cloud. In the i-
th row of First, of all the points contained in the i-th box, 
the point having the lowest index is recorded. The flag -1 
is used for an empty box. Next has dimension npx1, where 
np is the number of points. In the j-th row of Next, the 
point contained in the i-th box and having an index value 
immediately higher than j is recorded. The flag -1 is used 
for the last point in the box.  
By using this structure, it is possible to access all the points 
in one box with the following simple and fast operation: 

idPoint=Next[IdPoint]   (4) 
Figure 1 shows an example of decomposition of a cubic 
box (figure 1a) and also reports the corresponding data 
structure (figure 1b) for six 3D points. 
In the case of very large scanned point clouds, this data 
structure produces a great number of empty boxes which 
occupy a lot of memory space and may cause the search in 
many useless boxes. In order to overcome this problem, a 
modified data structure is also proposed (henceforth 
SDS_m). In particular, the first_m is an associative 
container in which the key value is the number of non – 
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empty box and the mapped value is the corresponding first 
point included within (figure 1c). In this case, the access to 
the first point of the box is obtained by a binary search: 

idPoint=BynarySearch(first, boxid)  (5) 
This access is intrinsically slower than that in Eq. (4); 
SDS_m is convenient, as opposed to the previous version, 
in cases of a very small percentage of non–empty boxes. 

 
Figure 1. An example of decomposition of a cubic box (a) and the 

corresponding data structures (b) and (c) for six 3D points 

3.2 The nearest-neighbourhood search 
In order to better explain the algorithm for the nearest 
neighbourhood search, figure 2 proposes the pseudo – 
code for the SDS data structure and the 2D case. The 
reported considerations are easily extendible to the 3D 
space and the SDS_m. 
The first box to be analysed is the one including the query 
point (q); for each point contained in that box the distance 
from q is evaluated. Then, the distances between q and the 
walls of the box are calculated (figure 3b). These distances 
are concerned with which boxes need to be further 
analysed (figure 3c). Contrary to the 
algorithm proposed by Piegl and Tiller in [14] and by 
Franklin in [15], this strategy prevents that all the cells 
belonging to the i-th ring of the cell containing the query 
point are explored. The search is performed until the k-th 
shortest distance is smaller than that existing between the 
query point and the closest wall of the outer box being 
considered. In a similar way to the typical methods 
presented in literature, k distances are stored in a priority 

queue with standard insertion, a structure suited for small 
values of k. The algorithm has also some controls to 
prevent any search attempts outside the axes-aligned 
bounding box of the points. 

3.3 The input parameter of the method 
The proposed method requires that the box size parameter 
should be set. The box size parameter affects the 
performance of the query operations of the SDS. Generally 
speaking, the ideal box size identifies boxes with just one 
point (no “overloaded boxes”). The number of boxes 
affects memory usage, and the number of points inside a 
box affects the number of distances which need to be 
computed during the nearest point search time. In practical 
cases, the optimal box size minimises empty and 
overloaded boxes. In what follows specific 
experimentations are carried out so as to investigate, in 
different typical applications, the values that best satisfy 
these conflicting constraints. 

4. Performance of SDS  
As pointed out by Hoppe et al. in [29], it is difficult to 
analyse analytically the time complexity of the search for 
the k-nearest neighbourhood since it strongly depends on 
the input data. For this reason, we have empirically 
analysed the performance of the SDS in the data structure 
construction and in the nearest neighbour search for some 
benchmarking scanned point clouds and artificially 
generated test cases Furthermore, in order to qualify how 
the proposed method compares with the state-of-art, its 
performances are compared with that of the kd-tree and the 
bd-tree algorithms taken from the ANN library [1]. Any 
other methods have not been analysed because their 
implementations were not available. Obviously, all the 
methods which have been analysed perform the same 
identification of the nearest points but they show different 
time complexity. All the tests have been run on a 
WorkStation with 3.0 GHz Intel Xeon processor and 16.0 
Gb RAM. 

4.1 Scanned point clouds 
The test cases being considered are the typical benchmarks 
used in the related literature to evaluate the knn search 
methods (table 1). They consist of 16 point clouds 
acquired with different sampling rate from objects having 
different number of points and geometries ([30], [31] and 
[32]). Some of these point clouds are very large datasets 
(Amphora, Neptune, Asian Dragon and Thai Statue). 

boxid = 1 boxid = 2 

boxid = 4 
boxid = 3 4 

2 

3 

1 6 

5 

a) 

value 
1 
-1 
2 
4 
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b) 

row 
1st 
2nd 
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5 
3 
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-1 
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row 
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First_m 
key  

value 
mapped  

value 
1 
2 
4 
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Figure 2. The nearest-neighbourhood search algorithm  

Let q(xq, y) be the query point; 
Let k be the number of the nearest points to q being needed; 
Let d(q,p[i]) be the distance between q and i-th point of the dataset; 
Let dmin [1:k] be the sorted list in ascending order containing the k-smallest distances between q and the data points; 
Let indices[1:k] be pointers to the k-nearest points from q; 
Let dx_left be the distance between q and the vertical left wall of the box containing q; 
Let dx_right be the distance between q and the vertical right wall of the box containing q; 
Let dy_up be the distance between q and the horizontal upper wall of the box containing q; 
Let dy_down be the distance between q and the horizontal bottom wall of the box containing q; 
Let r be the ring level; 
Let rx_max, rx_min, ry_max, ry_min be the offset reached by the ring; 
Let nx and ny be the number of divisions along x and y directions; 
Let step be the cell dimensions; 
Let BoxSearch be the function to calculate the distances between the points contained in a box and q and to upgrade the 
dmin[1:k]: 
 void BoxSearch(ix ,iy) 
 { 

 id= ix+ iy*ny; /* get box id from coordinates */ 
 idPoint=First[id]; /* first point of the box */ 

 while (idPoint>-1) /* loop all the points in the box */ 
 { 
  dist = d(q,p[idPoint]); 
  if (dist < dmin[k]) /* compute squared distance between query points and reference point idp */ 
  {  insertion of dist in dmin; /* update the array of the smallest distances between q and the data points */ 
      insertion of idPoint in indices; /* update nearest neighbour pointer*/} 

  idPoint = Next[idPoint];} /* get the next reference point in the box */ 
 } 

initialise r=1, dmin[1:k] = big number; 
initialise rx_max, rx_min, ry_max, ry_min = 0; 
evaluation of dx_left, dx_right, dy_up, dy_down; 
evaluation of ix = (xq /d) and iy = (yq /d) 
BoxSearch(ix, iy); 
goon=true; 
while (goon=true)  
{  goon=false; 
 
    if ((dmin[k] > dx_left) AND (ix-r)>=0) 
     {  // dx_left upgrade 
         goon = true; 
         rx_min=-r; 
         for j=ry_min to ry_max  
         {   BoxSearch(ix-r ,iy+j);} 
         dx_left = dx_left + step;  
     } 
 
    if ((dmin[k] > dx_right) AND (ix+r)< nx) 
     {  // dx_right upgrade 
         goon = true; 
         rx_max=r; 
         for j=ry_min to ry_max  
         {   BoxSearch(ix+r ,iy+j);} 
         dx_right = dx_right + step; 
     } 

    if ((dmin[k] > dy_up) AND (iy+r)< ny) 
     {  // dx_up upgrade 
         goon = true; 
         ry_max=r; 
         for i=rx_min to rx_max  
         {   BoxSearch(ix+i ,iy+r);} 
         dy_up = dy_up + step; 
     } 
 
    if ((dmin[k] > dy_down) AND (iy+r)< ny) 
     {  dy_ up upgrade 
         goon = true; 
         ry_min=-r; 
         for i=rx_min to rx_max  
         {   BoxSearch(ix+i ,iy-r);} 
         dy_down = dy_down + step; 
     } 
 
   r=r+1; */ go to the next ring */ 
} /* end while*/ 
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Figure 3. Explanation of the strategy for the k-nearest neighbourhood search 

A first experiment is carried out in order to verify the 
influence on SDS of the density parameter ρ by varying the 
number of nearest points (k) needed. As it was to be 
expected, as the value of ρ decreases, the computational 
time for the data structure construction and the amount of 
memory usage increase. But, on the other hand, when 
analysing the total computational time it is possible to 
verify that, for each k, the best results are obtained when 
the density value decreases as the number of points in the 

cloud increases. The obtained results show that ρ can be 
successfully approximated as a function of np, according to 
the following expression: 

( )( )max 0.0618 ln 0.969;0.05pnρ = − ⋅ +   (6) 
The coefficient of determination of the logarithmic 
regression approximating the 16 scanned point clouds is R2 
= 0.8618. No explicit dependence has been noticed on the 
k value. The choice to keep down the value of ρ to 0.05 

x 

y 

query point 
dataset point 

a) 
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dy_down 

b) 

dx_left<dmin and r=1 

dx_right<dmin and r=1 
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dy_down<dmin and r=1 

dx_left<dmin and r=2 

dx_right<dmin and r=2 

dy_up<dmin and r=2 

dy_down<dmin and r=2 

c) 

dx_left<dmin and r=3 

dx_right<dmin and r=3 

dy_up<dmin and r=3 

dy_down<dmin and r=3 
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comes from the necessity to contain memory usage in the 
case of very large datasets. Eq. (6) has proved to be 
effective for ρ estimation also in the case of point clouds 
whose results are not here reported since they have 
not been used to build the previous regression. Thus, in 
what follows, the experiment is carried out by using the 
value of ρ resulting from (6). 
Table 1: Scanned point clouds used to evaluate the knn search methods 

Name n. of points 
Rocker-arm 10,044 
Stanford Bunny 35,947 
Horse 48,485 
Armadillo 172,975 
Pulley 293,672 
Dragon 435,545 
Bimba 502,694 
Happy Buddha 543,652 
Rolling Stage 596,903 

Chinese Dragon 655,980 
Turbine Blade  882,954 
Nicolò da Uzzano 946,760 
Amphora 1,317,152 
Neptune 2,003,933 
Asian Dragon 3,609,601 
Thai Statue 4,999,997 

The table 2 reports the ratio between the number of empty 
boxes and the number of boxes ( empty boxes boxesn n− ) and also 
the average computational time per query point for the 
scanned point clouds of table 1. The value of the ratio can 
be considered to increase with the number of points, 
reaching a maximum value of 0.9940. Except for the three 
largest datasets (namely, Neptune, Asian Dragon and Thai 
Statue), the value of the average computational time for 
each k remains almost constant for the different clouds. 
The last result verifies that the SDS is not practically 
affected by the topology of the point cloud. Furthermore, 
by analysing separately the two contributions of the 
computational time, it is found that the SDS structure 
provides a time complexity O(np) for the data structure 
construction and O(np•log2(np)) for the nearest neighbour 
search, versus the time complexity O(np•log2(np)) for both 
phases provided by the two other methods. The table 3 
reports the mean values of the speed-ups obtained by 
comparing the total computational time (structure 
construction and nearest neighbour search) of the SDS with 
those of the kd-tree and the bd-tree, for the different k 
values. It is evident that the SDS is always computationally 
convenient, but the gain value decreases as the value of k 
increases. This is due to the fact that when the k value is 
increased the three methods tend toward the brute search.  
If we use expression (6) in the case of very large datasets, 
the best value of ρ decreases to values which require a 
great amount of memory. Therefore, a further 
experimentation is carried out in order to verify the 

effectiveness of the SDS_m in these cases. The table 4 
reports, by way of an example, the performance 
comparison between the SDS and the SDS_m in the cases 
of Neptune, Asian Dragon and Thai Statue with varying ρ 
and for k = 8. With equal ρ, an average decrease of 19% of 
speed-ups produces an average decrease of 86% in 
memory usage by the data structure. Very similar 
conclusions are reached when analysing the results for the 
other values of k considered. 

4.2 Uniform point clouds 
The test cases analysed in this section consist of different 
clouds whose np points are randomly generated with a 
uniform probability density and are contained in a cube. 
All the time values reported further down have been 
obtained as the mean time values of 30 cases analysed.  
On analysing the influence of the density parameter ρ when 
varying the number of nearest points (k) needed, obtained 
results show that ρ can be approximated as a function of 
k/np, according to the following expressions: 

0.1021 log 1.99      for 0.04

0.1609 log 1.51      for 0.04

p p

p p

k k
n n

k k
n n

ρ

ρ

  
= ⋅ + ≤     


 

= ⋅ + >     

 (7) 

The coefficient of determination of the two logarithmic 
regressions are R2 = 0.5312 and R2 = 0.6842 respectively. 
In what follows, the experiment is performed by using the 
value of ρ resulting from Eq. (7). After analysing 
separately the two contributions of the computational time, 
it is found that, similarly to what happens with scanned 
point clouds, the SDS provides a time complexity O(np) 
for the data structure construction and O(np•log2(np)) for 
the nearest neighbour search, versus the time complexity 
O(np•log2(np)) for both phases provided by the two other 
methods. The table 5 reports the speed-ups mean value 
obtained by comparing the total computational time 
(structure construction and nearest neighbour search) of 
the SDS with those of the kd-tree and the bd-tree, for some 
k values. As it has been previously highlighted, the 
structure of SDS and the expression of ρ, as proposed in 
Eq. (7), make the method being proposed particularly 
efficient in the knn search for small values of k.  
With a view to verifying the efficiency of the data structure 
and the knn search method which is here presented, a 
further experimentation is carried out so as to compare the 
time performance of SDS, kd-tree and bd-tree with that of 
the brute search in the case of a small number of points. 
The table 6 shows the mean value of the speed up for 
different k. It is evident that the use of SDS is convenient 
also for uniform point clouds with few points. 
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4.3 Very pathological cases 
There are cases in which the SDS, like the rest of methods 
based on a cubic grid partition of the bounding box, cannot 
be used because it turns out to be strongly inefficient as 
opposed to the kd-tree and the bd-tree. A typical example 
is a scanned point cloud with one point that is very distant 
from the others. By using in this case the value of ρ 
obtained according to expression (6), both empty boxes boxesn n−  
and the maximum number of points contained in a box 
strongly increase. In the worst case, all the points, except 
for the outlier, are within a 
single box: SDS degenerates into the brute-search 
algorithm with a computational time complexity of O(np

3), 
as opposed to the O(np•log2(np)) of the worst case with 
the kd-tree and bd-tree. 
The final experiment is carried out in order to find a 
parameter that efficiently measures (without affecting the 
computational time) the dataset uniformity and its limit 
value for which SDS is not convenient as opposed to the 
other methods. The test cases here considered are 
artificially generated starting from the 16 scanned point 
clouds reported in table 1 by adding, to each cloud, a point 
at the minimum distance from the others for which 
the SDS is inconvenient, for each k, as opposed to the other 
two methods. The results show that the ratio 

empty boxes boxesn n−  is a satisfactory parameter that does not 
affect the computational time; furthermore, the obtained 
value made it possible to define the limit values according 
to the following expressions: 

( )

5

5

 ( 2*10 )  0.996  OR 

( 2*10 )  0,0021 ln 0.97  

  switch to -  or -  

empty boxes
p

boxes

empty boxes
p p

boxes

n
if n AND

n

n
n AND n

n

kd tree bd tree

−

−

   > ≥   
   

   ≤ ≥ +   
     
⇒



      (8) 
Since in this paper we have demonstrated that the 
construction of its data structure is very efficient, the SDS 
can be used to measure the uniformity of the dataset; if np 
and empty boxes boxesn n−  satisfy any of the two conditions in (8), 
then the knn search needs to be done by the kd-tree or the 
bd-tree. 

4. Conclusion 
This paper has presented a high performance method for 
the k-nearest neighbourhood search. Said method is based 
on a data structure founded on the typical cubic grid 
partition of the bounding box. Like the principal methods 
presented in literature, also SDS requires that a parameter 
( p boxn nρ = ) should be empirically set; expressions which 

furnish its best value are proposed in typical applications. 
The performance of the SDS is verified by a 
comprehensive experiment which analyses both typical 
scanned and uniform point clouds. The results obtained 
show that the SDS structure provides, for both types of 
clouds, a time complexity O(np) for the data structure 
construction and O(np•log2(np)) for the nearest neighbour 
search. Furthermore, for the scanned point clouds, the 
results verify that the SDS is not practically affected by the 
topology of point cloud.  
When comparing the performance of the SDS with that of 
the kd-tree and the bd-tree algorithms taken from the ANN 
library [1], it is evident that the SDS is always 
computationally convenient; the gain value decreases as 
the value of k increases. This is due to the fact that when 
the k value is increased, the three methods tend toward the 
brute search.  
Finally, the use of the SDS is also convenient, as opposed 
to the brute search algorithm, for uniform point clouds 
with few points. 
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Table 2. Percentage of the number of empty boxes and average computational time per query point for the 16 scanned point clouds of Table 1 

Name 

empty boxes

boxes

n
n

−  
Average computational time per query point [μs] 

k 
1 2 4 8 16 32 64 128 256 

Rocker-arm 0.8636 0.45 0.79 1.04 1.19 2.12 4.10 8.34 18.66 41.83 
Stanford Bunny 0.9304 0.46 0.51 0.69 1.21 2.08 3.97 8.02 17.81 42.31 
Horse 0.9551 0.52 0.54 0.76 1.32 2.30 4.20 8.30 18.75 40.70 
Armadillo 0.9690 0.39 0.54 0.71 1.19 2.25 3.98 8.03 17.81 40.27 
Pulley 0.9445 0.35 0.58 0.81 1.41 2.37 4.57 9.38 21.37 48.83 
Dragon 0.9681 0.37 0.51 0.76 1.24 2.23 4.01 8.14 19.19 41.65 
Bimba 0.9747 0.38 0.60 0.81 1.37 2.41 4.33 8.82 19.21 42.49 
Happy Buddha 0.9687 0.37 0.53 0.78 1.28 2.27 4.24 8.68 19.72 45.83 
Rolling Stage 0.9781 0.37 0.49 0.74 1.18 2.09 3.81 7.83 18.23 39.35 

Chinese Dragon 0.9702 0.37 0.64 0.85 1.45 2.54 4.62 9.43 21.07 46.91 
Turbine Blade  0.9597 0.33 0.46 0.72 1.15 1.98 4.04 8.53 19.84 45.48 
Nicolò da Uzzano 0.9871 0.43 0.72 0.89 1.44 2.66 5.02 10.52 22.01 48.09 
Amphora 0.9802 0.36 0.49 0.75 1.21 2.09 3.88 7.99 19.05 41.81 
Neptune 0.9926 0.54 0.84 1.09 1.71 2.91 5.57 11.69 26.12 59.07 
Asian Dragon 0.9940 0.45 0.74 0.93 1.57 2.86 5.40 11.81 24.83 114.04 
Thai Statue 0.9922 0.45 0.73 1.05 1.76 3.22 6.47 13.87 38.81 173.23 

Table 3. Speed-up mean value obtained for the scanned point clouds used to evaluate the knn search methods 
 k 

1 2 4 8 16 32 64 128 256 

SDS kd tree SDStime time−  6.84 5.98 4.87 3.72 2.88 2.38 2.03 1.88 1.94 

bd tree SDStime time−  11.28 9.69 7.89 5.90 4.55 3.72 3.12 2.71 2.66 

Table 4. Performance comparison between the SDS and the SDS_m in the case of very large datasets. 

Name ρ 

Memory usage by the 
data structure [Mb] Speed ups 

SDS SDS_m timekd-tree/timeSDS timebd-tree/timeSDS timekd-

tree/timeSDS m timebd-tree/timeSDS_m 

Neptune 

0.05 160,53 8,64 4,05 6,56 3,26 5,29 
0.1 84,09 8,30 3,73 6,05 2,98 4,83 

0.15 58,61 8,15 3,50 5,68 2,78 4,52 
0.2 45,87 8,07 3,30 5,36 2,62 4,24 

0.25 38,22 8,01 3,13 5,07 2,45 3,97 

Asian 
Dragon 

0.05 289,16 15,43 4,26 6,85 3,53 5,68 
0.1 151,46 14,84 4,06 6,52 3,32 5,33 

0.15 105,57 14,60 3,90 6,27 3,16 5,07 
0.2 82,62 14,46 3,70 5,94 2,98 4,79 

0.25 68,85 14,37 3,52 5,66 2,85 4,59 

Thai Statue 

0.05 400,54 22,04 5,21 8,36 4,31 6,91 
0.1 209,81 21,02 4,91 7,87 4,01 6,43 

0.15 146,23 20,59 4,62 7,41 3,72 5,97 
0.2 114,44 20,34 4,34 6,96 3,57 5,72 

0.25 95,37 20,17 4,13 6,62 3,42 5,48 

Table 5. Speed-up mean value obtained for the uniform point clouds used to evaluate the knn search methods 
  np 

k Speed-ups 100 1,00
0 

10,00
0 

100,00
0 

250,00
0 

500,00
0 

1,000,00
0 

1 
kd tree SDStime time−  11.

4 7.3 7.4 8.9 9.3 9.3 12.2 

bd tree SDStime time−  14.
8 12.6 13.9 14.8 14.8 14.7 19.1 

16 kd tree SDStime time−  3.6 2.4 2.3 5.5 3.3 2.8 2.8 

bd tree SDStime time−  5.1 3.5 3.4 7.8 4.5 3.7 3.6 
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25
6 

kd tree SDStime time−  -- 1.7 1.9 3.3 2.6 2.2 2.1 

bd tree SDStime time−  -- 2.1 2.2 4.4 3.2 2.7 2.5 
Table 6. Speed-up mean value obtained for the scanned point clouds used to evaluate the knn search methods 

 Speed ups 
np brute search SDStime time−  brute search kd treetime time− −  brute search bd treetime time− −  
10 1.16 0.12 0.11 
25 1.19 0.14 0.12 
50 1.29 0.26 0.21 
100 1.70 0.39 0.27 
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