

An efficient algorithm for the nearest neighbourhood search for
point clouds

Luca Di Angelo1 and Luigi Giaccari2

 1 Department of Industrial Engineering, University of L’Aquila
L’Aquila, 67100, Italy

2 ANSYS Germany Gmbh
Otterfing, 83624, Germany

Abstract
This paper presents a high-performance method for the k-nearest
neighbourhood search. Starting from a point cloud, first the
method carries out the space division by the typical cubic grid
partition of the bounding box; then a new data structure is
constructed. Based on these two previous steps, an efficient
implementation of the k-nearest neighbourhood is proposed. The
performance of the method here presented is compared with that
of the kd-tree and bd-tree algorithms taken from the ANN library
[1] as regards the computing time for some benchmarking point
clouds and artificially generated test cases. The results are
analysed and critically discussed.
Keywords: k-nearest neighbour, point cloud, space partition.

1. Introduction
For the last few years the use of points as the
representational primitives of geometric models has spread
out in computer graphics and geometric modelling
applications ([2], [3] and [4]). This is also due to the recent
introduction on the market of 3D scanning systems
offering high resolutions with a measuring accuracy as
high as 10 μm, which make it possible to capture the
smallest surface features. However, these devices generate
very large data sets. Some point clouds, such as those
obtained by means of 3D scanning, cannot be directly used
in the previously defined applications; they need to be
processed in order to reconstruct high-level information
starting from the only Cartesian coordinates. Typically,
point clouds are processed to remove any residual noise,
change the sampling rate, estimate the points’ normal
and/or proceed to their tessellation. All these operations
require the computation of the k-nearest neighbourhoods
(knn) for each point in the cloud. As pointed out by
Sankaranarayanan et al in [4], the correct computation of
neighbourhoods is important both for algorithms that
estimate properties that are common in the neighbourhood
and for algorithms that analyse variations in these
properties. It is evident that these neighbourhoods must be
obtained at the lowest computational cost as possible, so

that even clouds with several millions points can be easily
managed. When analysing the related literature, it seems
evident that the methods, used with the typical computing
powers, show such a performance that they constitute the
major bottleneck in the implementation of the above-
mentioned applications.
In order to make a useful contribution to this field, this
paper proposes a simple algorithm for the knn search. It is
based on a new data structure applied to the typical space
division approach, which makes possible a more efficient
search for the nearest neighbourhoods. This method is
tested for the knn search in some benchmarking point
clouds and artificially generated test cases. The results
derived from these experiments are critically discussed
hereinafter.

2. Related works
The more recent exhaustive overview of the knn search
methods are presented in [4]. In what follows we will be
considering some of the most important papers which are
related to the method here being proposed, leaving out, for
example, algorithms which work with multiple processors
CPU and GPU and for the approximation of the k–nearest
neighbourhoods.
The simplest method to construct the k–nearest neighbours
of datasets is based on the simple brute-force algorithm
[5]: first the Euclidean distances between each point and
all the other ones are calculated; then, the k-nearest
neighbours are found as those k points with the shortest
distances. This algorithm is computationally inefficient
since, for each data point, its time complexity is O(np

2),
where np is the number of points. In order to reduce this
computational cost, many methods are proposed in
literature; the most important ones can be divided into
three main categories:

- Voronoi-point based;
- space division strategy based;
- pivot – based.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 1

2.1 Voronoi point based approaches
The methods belonging to the first category are mainly
used in two-dimensional datasets and are based on the
consideration that the Voronoi diagram decomposes the
plane into cells, each of which contains a point. For a point
p contained in the cell C, the points located in the cells
sharing edges with C are the nearest to p.
The first algorithm that uses this approach in a three-
dimensional dataset is presented by Dey et al. in [6] which
proposed a method that is based on the dual of the Voronoi
graph: it determines the k–nearest neighbours in a three-
dimensional dataset by constructing a Dirichlet
triangulation. As pointed out by Li et al in [7], it takes
O(np

2log2np) time, making it impractical for use in reverse
engineering where, more and more often, the clouds have
over one million points.
In order to improve the efficiency of the search, recently
Goodsell in [8] has proposed a new method for two–
dimensional datasets, which is based on the Voronoi
points; the results reported show that the timing of the
algorithm is quadratic (O(np

2)).

2.2 Space division strategy based approaches
Typically, with the space division strategy based methods
determining whether a point is a member of the k-nearest
neighbours permits to work with a small subset of the data;
this way, computational costs are strongly reduced. Some
of the most widely used algorithms for the knn search
belonging to this category are the kd-tree and bd-tree. The
first one is based on a k – dimensional binary search tree
([9], [10]). By the kd-tree the space is hierarchically
partitioned into hyper – rectangular regions (buckets) by
using hyper – planes perpendicular to the coordinate axes
to form a tree. Once this structure is constructed, the search
for the nearest neighbour is done by descending the tree to
find the bucket containing the query point. The search for
the knn is limited to the points within that bucket or those
contained in the near buckets. Optimally, the kd-tree
requires O(nplog2np) operations for its construction and an
O(log2np) operation for the search ([10] and [12]). The
box – decomposition tree (bd-tree) ([13]) is a variant of the
kd-tree that was introduced to provide greater robustness
for highly clustered datasets. Above all, the bd-tree differs
from the kd-tree in the fact that, in addition to the splitting
operation, there is another decomposition operation called
shrinking. According to the shrinking rule, it is possible to
further divide a box containing more points than the bucket
size.
Piegl and Tiller in [14] proposed a much simple algorithm
for computing all the k-nearest neighbours in 2-D. Firstly,
the dataset is partitioned by a rectangular grid and the
points are binned in appropriate cells. If several points fall
under the same bin, they are stored in a linked list. The

search is extended to the rings (in ascending order) around
the cell containing the query point. The search stops when
the k-th shortest distance is smaller than the distance
between the query point and the closest wall of the outer
cell ring. The empirical tests show that the algorithm is
sub-linear for small k (around 1-5% of the data); it is linear
for medium k (up to about 10-20% of data) and quadric for
large k (over 20% of data). Furthermore, the algorithm
seems to not be practically affected by the topology of the
point cloud and by the grid size.
Li and Cripps in [7] proposed a method for which the
bounding box containing the points is first partitioned by a
cubic grid, whose grid size (ρ2) is estimated by the
following empirical formula:

()()()max min max min max min
32

p

x x y y z z
n

ρ α
 − − −
 =
 
 

 (1)

where:
- α is a user – defined scalar factor;
- np is the number of points.

The points are stored by using the following cube
structure:

cube[i][j][k] with i=1,….,nx; j=1,….,ny; k=1,….,nz;
 (2)

where nx, ny and nz are the number of divisions along x, y
and z directions, respectively. For each point p of the
cloud, the search for the k-nearest points is carried out
among those (candidate points) which are inside the inner
and intersecting cubes of a sphere with centre at p and a

radius r = ρ2·min(nx, ny, nz)· 3

p

k
n

. If the number of

candidate points is less than k, the search is carried out
inside a sphere of larger radius. The experimental results
show that the timings are not significantly affected by the
structure of the point clouds and that they are
approximately linear for k<0.05np.
An efficient and simple method is proposed by Franklin in
[15]. Concerning the data structure, it essentially consists
of a ragged array, containing the points belonging to each
cubical cell, and of a dope vector pointing to the first point
of the cell. The search of closest points of a query point q
is carried out inside a rectangular blocks of cells around
that containing q, by using a sorted cells list.
In order to improve the efficiency of the k-nearest
neighbourhood search, Gejun et al in [16] put forth a new
strategy for space division. After a preliminary division
where the side-length grid is chosen by the user, a
secondary division is done on the basis of an empirical
formula. The experiments' results show, if we focus only
on the knn search speed, that after the second division the
search range has been reduced and the searching efficiency
has improved.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 2

Several techniques are used in order to transform the d-
dimensional data points in 1-d values. Some solutions of
this type are based on the pyramid technique ([17], [18],
[19]). This technique, proposed by Berchtold et al. in [20],
consists in the partitioning the d-dimensional space [0,1]d
(called unit hypercube) into 2d pyramids with the tops at
(0,5; 0,5; : : : ; 0,5) and bases on each of the 2d faces of the
unit hypercube. At each point a hash value, that is the sum
between the identification number of the pyramid to which
the point belongs and the distance of the point from the
pyramid vertex, is assigned. All the points are stored,
according to hash values, in a B+-tree for optimal querying.
The reported results in [18] show that the proposed method
has a speed-up factor over the kd-tree between 1.6 and 2.9.
The previously presented approaches compute the
neighbourhood of each point of a cloud, one point at a
time. Sankaranarayanan et al. in [4] presented a more
sophisticated approach that reuses point neighbourhoods
already calculated to determine neighbourhoods of
adjacent points. Moreover, in order to manage a large
amount of points, the authors use a disk-based data
structure. The results reported show that the method’s
performance is promising, above all, in terms of capability
to elaborate clouds with 50 millions points and not in terms
of computational times.

2.3 Pivot – based approaches
Generally, the pivot based methods select some pivots
from the database and classify all the other elements
according to their distance from the pivots. The distances
d(s j, p i) between elements (s j) and pivots (p i) and between
the query qk and the pivots (d(s j, qk)) are used to filter out
elements. Typical algorithms belonging to this group are
the AESA ([16]), the LAESA ([22] and [23]) and its
variants ([24] and [25]) and the Fixed Queries Array ([26]).
These algorithms are based on the common idea that if for
some pivots p i ()j i j k(,) ,d d r− >s p s q then, by the

triangular inequality, k i(,)d r>q p without explicitly
evaluating k i(,)d q p . All the points which do not verify
the first previous inequality must be directly compared
against the query point. By increasing the number of pivots,
distance evaluations increase but so does the number of
elements being filtered out. As pointed out by Chavez et al.
in [27], the optimum value of the pivots cannot be
normally reached because it is too high in terms of space
requirements. Recently some improvements to these
algorithms have been proposed by Chavez et al. in [27]
and Fredriksson in [28].

3. Algorithm description

In this section we describe our algorithm in detail.
Generally speaking, it consists of two main steps:

- the data structure construction;
- the nearest-neighbourhood search.

3.1 The data structure construction
Efficient k-nearest neighbourhood search requires an
efficient data structure which prevents from searching the
entire dataset for each candidate point. For this purpose,
when using SDS (acronym of Search Data Structure), the
points are first indexed as {1, ..., np}, where np is the
number of points. Then, similarly to the methods based on
the space division strategy, the axes-aligned bounding box
of the points is partitioned by a cubic grid. The box edge
size (step) is then evaluated by the density parameter ρ of

the points (p

box

n
n

ρ = , where np is the number of points and

nbox is the number of boxes), by using the formula (1)
proposed by Li and Cripps in [7]. Every point is assigned
to its corresponding box by the following hashing function
which performs a double to integer conversion:

id x x y

x y zbox n n n
d d d

= + ⋅ + ⋅ ⋅ (3)

where:
- x, y and z are the point coordinates;
- nx, ny are the number of divisions along x and y

directions, respectively.
The boxid is the attribute to each data point that performs
the assignment of a point to a box. All the points in a box
are implicitly sorted by the index (from 1 to np).
The new data structure consists of two different arrays
(First and Next). First has dimension nboxx1, where nbox is
the number of boxes partitioning the point cloud. In the i-
th row of First, of all the points contained in the i-th box,
the point having the lowest index is recorded. The flag -1
is used for an empty box. Next has dimension npx1, where
np is the number of points. In the j-th row of Next, the
point contained in the i-th box and having an index value
immediately higher than j is recorded. The flag -1 is used
for the last point in the box.
By using this structure, it is possible to access all the points
in one box with the following simple and fast operation:

idPoint=Next[IdPoint] (4)
Figure 1 shows an example of decomposition of a cubic
box (figure 1a) and also reports the corresponding data
structure (figure 1b) for six 3D points.
In the case of very large scanned point clouds, this data
structure produces a great number of empty boxes which
occupy a lot of memory space and may cause the search in
many useless boxes. In order to overcome this problem, a
modified data structure is also proposed (henceforth
SDS_m). In particular, the first_m is an associative
container in which the key value is the number of non –

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 3

empty box and the mapped value is the corresponding first
point included within (figure 1c). In this case, the access to
the first point of the box is obtained by a binary search:

idPoint=BynarySearch(first, boxid) (5)
This access is intrinsically slower than that in Eq. (4);
SDS_m is convenient, as opposed to the previous version,
in cases of a very small percentage of non–empty boxes.

Figure 1. An example of decomposition of a cubic box (a) and the

corresponding data structures (b) and (c) for six 3D points

3.2 The nearest-neighbourhood search
In order to better explain the algorithm for the nearest
neighbourhood search, figure 2 proposes the pseudo –
code for the SDS data structure and the 2D case. The
reported considerations are easily extendible to the 3D
space and the SDS_m.
The first box to be analysed is the one including the query
point (q); for each point contained in that box the distance
from q is evaluated. Then, the distances between q and the
walls of the box are calculated (figure 3b). These distances
are concerned with which boxes need to be further
analysed (figure 3c). Contrary to the
algorithm proposed by Piegl and Tiller in [14] and by
Franklin in [15], this strategy prevents that all the cells
belonging to the i-th ring of the cell containing the query
point are explored. The search is performed until the k-th
shortest distance is smaller than that existing between the
query point and the closest wall of the outer box being
considered. In a similar way to the typical methods
presented in literature, k distances are stored in a priority

queue with standard insertion, a structure suited for small
values of k. The algorithm has also some controls to
prevent any search attempts outside the axes-aligned
bounding box of the points.

3.3 The input parameter of the method
The proposed method requires that the box size parameter
should be set. The box size parameter affects the
performance of the query operations of the SDS. Generally
speaking, the ideal box size identifies boxes with just one
point (no “overloaded boxes”). The number of boxes
affects memory usage, and the number of points inside a
box affects the number of distances which need to be
computed during the nearest point search time. In practical
cases, the optimal box size minimises empty and
overloaded boxes. In what follows specific
experimentations are carried out so as to investigate, in
different typical applications, the values that best satisfy
these conflicting constraints.

4. Performance of SDS
As pointed out by Hoppe et al. in [29], it is difficult to
analyse analytically the time complexity of the search for
the k-nearest neighbourhood since it strongly depends on
the input data. For this reason, we have empirically
analysed the performance of the SDS in the data structure
construction and in the nearest neighbour search for some
benchmarking scanned point clouds and artificially
generated test cases Furthermore, in order to qualify how
the proposed method compares with the state-of-art, its
performances are compared with that of the kd-tree and the
bd-tree algorithms taken from the ANN library [1]. Any
other methods have not been analysed because their
implementations were not available. Obviously, all the
methods which have been analysed perform the same
identification of the nearest points but they show different
time complexity. All the tests have been run on a
WorkStation with 3.0 GHz Intel Xeon processor and 16.0
Gb RAM.

4.1 Scanned point clouds
The test cases being considered are the typical benchmarks
used in the related literature to evaluate the knn search
methods (table 1). They consist of 16 point clouds
acquired with different sampling rate from objects having
different number of points and geometries ([30], [31] and
[32]). Some of these point clouds are very large datasets
(Amphora, Neptune, Asian Dragon and Thai Statue).

boxid = 1 boxid = 2

boxid = 4
boxid = 3 4

2

3

1 6

5

a)

value
1
-1
2
4

First

b)

row
1st
2nd
3th
4th

value
5
3
-1
-1

Next
row
1st
2nd
3th
4th

6 5th
-1 6th

First_m
key

value
mapped

value
1
2
4

Next
row value
1st 5
2nd 3

-1 3th
4th -1
5th 6

6th -1

1
3
4

c)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 4

Figure 2. The nearest-neighbourhood search algorithm

Let q(xq, y) be the query point;
Let k be the number of the nearest points to q being needed;
Let d(q,p[i]) be the distance between q and i-th point of the dataset;
Let dmin [1:k] be the sorted list in ascending order containing the k-smallest distances between q and the data points;
Let indices[1:k] be pointers to the k-nearest points from q;
Let dx_left be the distance between q and the vertical left wall of the box containing q;
Let dx_right be the distance between q and the vertical right wall of the box containing q;
Let dy_up be the distance between q and the horizontal upper wall of the box containing q;
Let dy_down be the distance between q and the horizontal bottom wall of the box containing q;
Let r be the ring level;
Let rx_max, rx_min, ry_max, ry_min be the offset reached by the ring;
Let nx and ny be the number of divisions along x and y directions;
Let step be the cell dimensions;
Let BoxSearch be the function to calculate the distances between the points contained in a box and q and to upgrade the
dmin[1:k]:
 void BoxSearch(ix ,iy)
 {

 id= ix+ iy*ny; /* get box id from coordinates */
 idPoint=First[id]; /* first point of the box */

 while (idPoint>-1) /* loop all the points in the box */
 {
 dist = d(q,p[idPoint]);
 if (dist < dmin[k]) /* compute squared distance between query points and reference point idp */
 { insertion of dist in dmin; /* update the array of the smallest distances between q and the data points */
 insertion of idPoint in indices; /* update nearest neighbour pointer*/}

 idPoint = Next[idPoint];} /* get the next reference point in the box */
 }

initialise r=1, dmin[1:k] = big number;
initialise rx_max, rx_min, ry_max, ry_min = 0;
evaluation of dx_left, dx_right, dy_up, dy_down;
evaluation of ix = (xq /d) and iy = (yq /d)
BoxSearch(ix, iy);
goon=true;
while (goon=true)
{ goon=false;

 if ((dmin[k] > dx_left) AND (ix-r)>=0)
 { // dx_left upgrade
 goon = true;
 rx_min=-r;
 for j=ry_min to ry_max
 { BoxSearch(ix-r ,iy+j);}
 dx_left = dx_left + step;
 }

 if ((dmin[k] > dx_right) AND (ix+r)< nx)
 { // dx_right upgrade
 goon = true;
 rx_max=r;
 for j=ry_min to ry_max
 { BoxSearch(ix+r ,iy+j);}
 dx_right = dx_right + step;
 }

 if ((dmin[k] > dy_up) AND (iy+r)< ny)
 { // dx_up upgrade
 goon = true;
 ry_max=r;
 for i=rx_min to rx_max
 { BoxSearch(ix+i ,iy+r);}
 dy_up = dy_up + step;
 }

 if ((dmin[k] > dy_down) AND (iy+r)< ny)
 { dy_ up upgrade
 goon = true;
 ry_min=-r;
 for i=rx_min to rx_max
 { BoxSearch(ix+i ,iy-r);}
 dy_down = dy_down + step;
 }

 r=r+1; */ go to the next ring */
} /* end while*/

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 5

Figure 3. Explanation of the strategy for the k-nearest neighbourhood search

A first experiment is carried out in order to verify the
influence on SDS of the density parameter ρ by varying the
number of nearest points (k) needed. As it was to be
expected, as the value of ρ decreases, the computational
time for the data structure construction and the amount of
memory usage increase. But, on the other hand, when
analysing the total computational time it is possible to
verify that, for each k, the best results are obtained when
the density value decreases as the number of points in the

cloud increases. The obtained results show that ρ can be
successfully approximated as a function of np, according to
the following expression:

()()max 0.0618 ln 0.969;0.05pnρ = − ⋅ + (6)
The coefficient of determination of the logarithmic
regression approximating the 16 scanned point clouds is R2
= 0.8618. No explicit dependence has been noticed on the
k value. The choice to keep down the value of ρ to 0.05

x

y

query point
dataset point

a)

dx_left dx_right

dy_up

dy_down

b)

dx_left<dmin and r=1

dx_right<dmin and r=1

dy_up<dmin and r=1

dy_down<dmin and r=1

dx_left<dmin and r=2

dx_right<dmin and r=2

dy_up<dmin and r=2

dy_down<dmin and r=2

c)

dx_left<dmin and r=3

dx_right<dmin and r=3

dy_up<dmin and r=3

dy_down<dmin and r=3

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 6

comes from the necessity to contain memory usage in the
case of very large datasets. Eq. (6) has proved to be
effective for ρ estimation also in the case of point clouds
whose results are not here reported since they have
not been used to build the previous regression. Thus, in
what follows, the experiment is carried out by using the
value of ρ resulting from (6).
Table 1: Scanned point clouds used to evaluate the knn search methods

Name n. of points
Rocker-arm 10,044
Stanford Bunny 35,947
Horse 48,485
Armadillo 172,975
Pulley 293,672
Dragon 435,545
Bimba 502,694
Happy Buddha 543,652
Rolling Stage 596,903

Chinese Dragon 655,980
Turbine Blade 882,954
Nicolò da Uzzano 946,760
Amphora 1,317,152
Neptune 2,003,933
Asian Dragon 3,609,601
Thai Statue 4,999,997

The table 2 reports the ratio between the number of empty
boxes and the number of boxes (empty boxes boxesn n−) and also
the average computational time per query point for the
scanned point clouds of table 1. The value of the ratio can
be considered to increase with the number of points,
reaching a maximum value of 0.9940. Except for the three
largest datasets (namely, Neptune, Asian Dragon and Thai
Statue), the value of the average computational time for
each k remains almost constant for the different clouds.
The last result verifies that the SDS is not practically
affected by the topology of the point cloud. Furthermore,
by analysing separately the two contributions of the
computational time, it is found that the SDS structure
provides a time complexity O(np) for the data structure
construction and O(np•log2(np)) for the nearest neighbour
search, versus the time complexity O(np•log2(np)) for both
phases provided by the two other methods. The table 3
reports the mean values of the speed-ups obtained by
comparing the total computational time (structure
construction and nearest neighbour search) of the SDS with
those of the kd-tree and the bd-tree, for the different k
values. It is evident that the SDS is always computationally
convenient, but the gain value decreases as the value of k
increases. This is due to the fact that when the k value is
increased the three methods tend toward the brute search.
If we use expression (6) in the case of very large datasets,
the best value of ρ decreases to values which require a
great amount of memory. Therefore, a further
experimentation is carried out in order to verify the

effectiveness of the SDS_m in these cases. The table 4
reports, by way of an example, the performance
comparison between the SDS and the SDS_m in the cases
of Neptune, Asian Dragon and Thai Statue with varying ρ
and for k = 8. With equal ρ, an average decrease of 19% of
speed-ups produces an average decrease of 86% in
memory usage by the data structure. Very similar
conclusions are reached when analysing the results for the
other values of k considered.

4.2 Uniform point clouds
The test cases analysed in this section consist of different
clouds whose np points are randomly generated with a
uniform probability density and are contained in a cube.
All the time values reported further down have been
obtained as the mean time values of 30 cases analysed.
On analysing the influence of the density parameter ρ when
varying the number of nearest points (k) needed, obtained
results show that ρ can be approximated as a function of
k/np, according to the following expressions:

0.1021 log 1.99 for 0.04

0.1609 log 1.51 for 0.04

p p

p p

k k
n n

k k
n n

ρ

ρ

  
= ⋅ + ≤     


 

= ⋅ + >     

 (7)

The coefficient of determination of the two logarithmic
regressions are R2 = 0.5312 and R2 = 0.6842 respectively.
In what follows, the experiment is performed by using the
value of ρ resulting from Eq. (7). After analysing
separately the two contributions of the computational time,
it is found that, similarly to what happens with scanned
point clouds, the SDS provides a time complexity O(np)
for the data structure construction and O(np•log2(np)) for
the nearest neighbour search, versus the time complexity
O(np•log2(np)) for both phases provided by the two other
methods. The table 5 reports the speed-ups mean value
obtained by comparing the total computational time
(structure construction and nearest neighbour search) of
the SDS with those of the kd-tree and the bd-tree, for some
k values. As it has been previously highlighted, the
structure of SDS and the expression of ρ, as proposed in
Eq. (7), make the method being proposed particularly
efficient in the knn search for small values of k.
With a view to verifying the efficiency of the data structure
and the knn search method which is here presented, a
further experimentation is carried out so as to compare the
time performance of SDS, kd-tree and bd-tree with that of
the brute search in the case of a small number of points.
The table 6 shows the mean value of the speed up for
different k. It is evident that the use of SDS is convenient
also for uniform point clouds with few points.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 7

4.3 Very pathological cases
There are cases in which the SDS, like the rest of methods
based on a cubic grid partition of the bounding box, cannot
be used because it turns out to be strongly inefficient as
opposed to the kd-tree and the bd-tree. A typical example
is a scanned point cloud with one point that is very distant
from the others. By using in this case the value of ρ
obtained according to expression (6), both empty boxes boxesn n−
and the maximum number of points contained in a box
strongly increase. In the worst case, all the points, except
for the outlier, are within a
single box: SDS degenerates into the brute-search
algorithm with a computational time complexity of O(np

3),
as opposed to the O(np•log2(np)) of the worst case with
the kd-tree and bd-tree.
The final experiment is carried out in order to find a
parameter that efficiently measures (without affecting the
computational time) the dataset uniformity and its limit
value for which SDS is not convenient as opposed to the
other methods. The test cases here considered are
artificially generated starting from the 16 scanned point
clouds reported in table 1 by adding, to each cloud, a point
at the minimum distance from the others for which
the SDS is inconvenient, for each k, as opposed to the other
two methods. The results show that the ratio

empty boxes boxesn n− is a satisfactory parameter that does not
affect the computational time; furthermore, the obtained
value made it possible to define the limit values according
to the following expressions:

()

5

5

 (2*10) 0.996 OR

(2*10) 0,0021 ln 0.97

 switch to - or -

empty boxes
p

boxes

empty boxes
p p

boxes

n
if n AND

n

n
n AND n

n

kd tree bd tree

−

−

   > ≥   
   

   ≤ ≥ +   
     
⇒



 (8)
Since in this paper we have demonstrated that the
construction of its data structure is very efficient, the SDS
can be used to measure the uniformity of the dataset; if np
and empty boxes boxesn n− satisfy any of the two conditions in (8),
then the knn search needs to be done by the kd-tree or the
bd-tree.

4. Conclusion
This paper has presented a high performance method for
the k-nearest neighbourhood search. Said method is based
on a data structure founded on the typical cubic grid
partition of the bounding box. Like the principal methods
presented in literature, also SDS requires that a parameter
(p boxn nρ =) should be empirically set; expressions which

furnish its best value are proposed in typical applications.
The performance of the SDS is verified by a
comprehensive experiment which analyses both typical
scanned and uniform point clouds. The results obtained
show that the SDS structure provides, for both types of
clouds, a time complexity O(np) for the data structure
construction and O(np•log2(np)) for the nearest neighbour
search. Furthermore, for the scanned point clouds, the
results verify that the SDS is not practically affected by the
topology of point cloud.
When comparing the performance of the SDS with that of
the kd-tree and the bd-tree algorithms taken from the ANN
library [1], it is evident that the SDS is always
computationally convenient; the gain value decreases as
the value of k increases. This is due to the fact that when
the k value is increased, the three methods tend toward the
brute search.
Finally, the use of the SDS is also convenient, as opposed
to the brute search algorithm, for uniform point clouds
with few points.

References
[1] http://www.cs.umd.edu/~mount/ANN/
[2] M. Andersson, J. Giesen, M. Pauly, B. Speckmann,

“Bounds on the k-neighbourhood for locally uniformly
sampled surfaces”. In Proceedings of the Euro – graphics
symposium on point-based graphics, June 2-4, 2004,
Zurich, Switzerland, pp. 167–171.

[3] M. Pauly, R. Keiser, L. P. Kobbelt, M. Gross, “Shape
modelling with point-sampled geometry”, ACM
Transactions on Graphics, Vol. 22, No. 3, 2003, pp. 641–
50.

[4] J. Sankaranarayanan, H. Samet, A. Varshney, “A fast all
nearest neighbour algorithm for applications involving
large point-clouds”, Comp. & Graphics, Vol. 31, No. 2,
2007, pp. 157–174.

[5] M. Sarkar and T. Leong, “Application of k-nearest
neighbours algorithm on breast cancer diagnosis problem”,
In Proceedings of the 2000 AMIA Annual Symposium,
November 4–8, 2000, Los Angeles, California, USA.

[6] T. Dey, C. Bajaj, and K. Sugihara, “On good triangulation
in three dimensions”, In Proceedings of the ACM
Symposium on Solid modelling and application, 1991
(ACM Press, New York), pp. 431–441.

[7] X. Li and R. J. Cripps, “Algorithm for finding all k-nearest
neighbours in three dimensional scattered data points and
its application in reverse engineering”, Proceedings of the
Institution of Mech. Engineers, Part B: Journal of
Engineering Manufacture, Vol. 221, No. 9, 2007, 1467-
1472.

[8] G. Goodsell, “On finding p-th nearest neighbours of
scattered points in two dimensions for small p”, Computer
Aided Geometric Design, Vol. 17, No. 4, 2000, pp. 387–
392.

[9] J.L. Bentley, “Multidimensional Binary Search Trees Used
for Associative Searching”, Communications of the ACM,
Vol. 18, No. 9, 1975, pp. 509-517.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 8

http://www.cs.umd.edu/~mount/ANN/

Table 2. Percentage of the number of empty boxes and average computational time per query point for the 16 scanned point clouds of Table 1

Name

empty boxes

boxes

n
n

−
Average computational time per query point [μs]

k
1 2 4 8 16 32 64 128 256

Rocker-arm 0.8636 0.45 0.79 1.04 1.19 2.12 4.10 8.34 18.66 41.83
Stanford Bunny 0.9304 0.46 0.51 0.69 1.21 2.08 3.97 8.02 17.81 42.31
Horse 0.9551 0.52 0.54 0.76 1.32 2.30 4.20 8.30 18.75 40.70
Armadillo 0.9690 0.39 0.54 0.71 1.19 2.25 3.98 8.03 17.81 40.27
Pulley 0.9445 0.35 0.58 0.81 1.41 2.37 4.57 9.38 21.37 48.83
Dragon 0.9681 0.37 0.51 0.76 1.24 2.23 4.01 8.14 19.19 41.65
Bimba 0.9747 0.38 0.60 0.81 1.37 2.41 4.33 8.82 19.21 42.49
Happy Buddha 0.9687 0.37 0.53 0.78 1.28 2.27 4.24 8.68 19.72 45.83
Rolling Stage 0.9781 0.37 0.49 0.74 1.18 2.09 3.81 7.83 18.23 39.35

Chinese Dragon 0.9702 0.37 0.64 0.85 1.45 2.54 4.62 9.43 21.07 46.91
Turbine Blade 0.9597 0.33 0.46 0.72 1.15 1.98 4.04 8.53 19.84 45.48
Nicolò da Uzzano 0.9871 0.43 0.72 0.89 1.44 2.66 5.02 10.52 22.01 48.09
Amphora 0.9802 0.36 0.49 0.75 1.21 2.09 3.88 7.99 19.05 41.81
Neptune 0.9926 0.54 0.84 1.09 1.71 2.91 5.57 11.69 26.12 59.07
Asian Dragon 0.9940 0.45 0.74 0.93 1.57 2.86 5.40 11.81 24.83 114.04
Thai Statue 0.9922 0.45 0.73 1.05 1.76 3.22 6.47 13.87 38.81 173.23

Table 3. Speed-up mean value obtained for the scanned point clouds used to evaluate the knn search methods
 k

1 2 4 8 16 32 64 128 256

SDS kd tree SDStime time− 6.84 5.98 4.87 3.72 2.88 2.38 2.03 1.88 1.94

bd tree SDStime time− 11.28 9.69 7.89 5.90 4.55 3.72 3.12 2.71 2.66

Table 4. Performance comparison between the SDS and the SDS_m in the case of very large datasets.

Name ρ

Memory usage by the
data structure [Mb] Speed ups

SDS SDS_m timekd-tree/timeSDS timebd-tree/timeSDS timekd-

tree/timeSDS m timebd-tree/timeSDS_m

Neptune

0.05 160,53 8,64 4,05 6,56 3,26 5,29
0.1 84,09 8,30 3,73 6,05 2,98 4,83

0.15 58,61 8,15 3,50 5,68 2,78 4,52
0.2 45,87 8,07 3,30 5,36 2,62 4,24

0.25 38,22 8,01 3,13 5,07 2,45 3,97

Asian
Dragon

0.05 289,16 15,43 4,26 6,85 3,53 5,68
0.1 151,46 14,84 4,06 6,52 3,32 5,33

0.15 105,57 14,60 3,90 6,27 3,16 5,07
0.2 82,62 14,46 3,70 5,94 2,98 4,79

0.25 68,85 14,37 3,52 5,66 2,85 4,59

Thai Statue

0.05 400,54 22,04 5,21 8,36 4,31 6,91
0.1 209,81 21,02 4,91 7,87 4,01 6,43

0.15 146,23 20,59 4,62 7,41 3,72 5,97
0.2 114,44 20,34 4,34 6,96 3,57 5,72

0.25 95,37 20,17 4,13 6,62 3,42 5,48

Table 5. Speed-up mean value obtained for the uniform point clouds used to evaluate the knn search methods
 np

k Speed-ups 100 1,00
0

10,00
0

100,00
0

250,00
0

500,00
0

1,000,00
0

1
kd tree SDStime time− 11.

4 7.3 7.4 8.9 9.3 9.3 12.2

bd tree SDStime time− 14.
8 12.6 13.9 14.8 14.8 14.7 19.1

16 kd tree SDStime time− 3.6 2.4 2.3 5.5 3.3 2.8 2.8

bd tree SDStime time− 5.1 3.5 3.4 7.8 4.5 3.7 3.6

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 9

25
6

kd tree SDStime time− -- 1.7 1.9 3.3 2.6 2.2 2.1

bd tree SDStime time− -- 2.1 2.2 4.4 3.2 2.7 2.5
Table 6. Speed-up mean value obtained for the scanned point clouds used to evaluate the knn search methods

 Speed ups
np brute search SDStime time− brute search kd treetime time− − brute search bd treetime time− −
10 1.16 0.12 0.11
25 1.19 0.14 0.12
50 1.29 0.26 0.21
100 1.70 0.39 0.27

[10] J.L. Bentley, “Multidimensional Binary Search Trees in

Database Applications”, IEEE Transactions on Software
Engineering, Vol. 5, No. 4, 1979, pp. 333-340.

[11] J. L. Bentley, B.W. Weide, “Optimal Expected-Time
Algorithms for Closest Point Problems”, ACM
Transactions on. Mathematical Software, Vol. 6, No. 4,
1980, pp. 563-580.

[12] J. L. Bentley, “Multidimensional Divide-and-Conquer”,
Communications of the ACM, Vol. 23, No. 4, 1980, pp.
214-229.

[13] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A.
Wu, “An optimal algorithm for approximate nearest
neighbour searching”, Journal of the ACM, Vol. 45, No. 6,
1998, pp. 891–923.

[14] L. A. Piegl and W. Tiller, “Algorithm for finding all k
nearest neighbours”, Computer Aided Design, Vol. 34, No.
2, 2002, pp. 167-172.

[15] W. R. Franklin, “NearPt3: Nearest Point Query on 184M
Points in E3 with a Uniform Grid”, In Proceedings of the
17th Canadian Conference on Computational Geometry
(CCCG), 2005, pp. 239-242.

[16] Z. Gejun, M. Changsheng, X. Feng, “The K-nearest
neighbour fast searching algorithm of scattered data”, In
proceedings of the Intern. Conf. on Future Information
Technology and Management Engineering (FITME),
October 9-10, 2010, Changzhou, China, pp. 125 – 128.

[17] D. H .Lee and H. J .Kim, “An efficient technique for
nearest-neighbour query processing on the SPY-TEC”,
IEEE Transactions on Knowledge and Data Engineering,
Vol. 15, No 6, 2003, pp. 1472-1486.

[18] B. G. Nickerson and Q. Shi, “K-nearest neighbour search
using the pyramid technique”, In Proceedings of the 18th
Canadian Conference on Computational Geometry
(CCCG), 2006, pp. 155-158.

[19] R. Zhang, P. Kalnis, B. C. Ooi, and K. L. Tan,
“Generalized multidimensional data mapping and query
processing”, ACM Transactions on Database Systems, Vol.
30, No 3, 2005, pp. 661-697.

[20] S. Berchtold, C. Böhm, and H. P. Kriegel, “The pyramid-
technique: towards breaking the curse of dimensionality”,
In Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, 1998, pp. 142-153.

[21] E. Vidal, “An algorithm for finding nearest neighbours in
(approximately) constant average time”, Pattern
Recognition Letters, Vol. 4, No. 3, 1986, pp. 145–157.

[22] L. Mico’, J. Oncina, E. Vidal, “A new version of the
nearest-neighbour approximating and eliminating search
(AESA) with linear pre-processing-time and memory

requirements”, Pattern Recognition Letters, Vol. 15, No. 1,
1994, pp. 9–17.

[23] L. Mico’, J. Oncina, R. C. Carrasco, “A fast branch and
bound nearest neighbour classifier in metric spaces”,
Pattern Recognition Letters, Vol. 17, No. 7, 1996, pp. 731–
739.

[24] S. Nene and S. Nayar, “A simple algorithm for nearest
neighbour search in high dimensions”, IEEE Trans. on
Pattern Analysis and Machine Intel., Vol. 19, No. 9, 1997,
989–1003.

[25] E. Chavez, J. Marroquìn, R. Baeza-Yates, “Spaghettis: an
array based algorithm for similarity queries in metric
spaces”, In Proceedings of String Processing and
Information Retrieval Symposium, September 21 – 24,
1999, Cancun, Mexico.

[26] E. Chavez, J. L. Marroquìn, G. Navarro, “Fixed queries
array: A fast and economical data structure for proximity
searching”, Multimedia Tools and Applications, Vol. 14,
No. 2, 2001, pp. 113– 135.

[27] E. Chávez, G. Navarro, “A compact space decomposition
for effective metric indexing”, Pattern Recognition Letters,
Vol. 26, No. 9, 2005, pp. 1363–1376.

[28] K. Fredriksson, “Engineering efficient metric indexes”,
Pattern Recognition Letters, Vol. 28, No.1, 2007, pp. 75-
84.

[29] H. Hoppe, T. Derose, T. Duchamp, J. McDonald, W.
Stuetzle, “Surface reconstruction from unorganized point
clouds”, In ACM SIGGRAPH, 1992, pp. 71-78.

[30] http://www.graphics.stanford.edu/data/3Dscanrep/
[31] http://shapes.aimatshape.net/
[32] http://www.lodbook.com/models/

Dr Luca Di Angelo obtained his degree in Mechanical
Engineering in 1999 at the Faculty of Engineering of L’Aquila and
his PhD in Mechanical Engineering in 2002 at the University of
‘Tor Vergata’ in Rome. Since the 2005, he has been a researcher
at Faculty of Engineering of L’Aquila, Italy. His research interests
include: computational geometry, geometric modelling of
functional geometric shape, shape errors modelling and simulation
and features based CAD technology. Dr. Luca Di Angelo is co-
author over fifty papers in international journals and international
conferences.

Luigi Giaccari received B.S degree and M.S degree in
Mechanical Engineering at the Faculty of Engineering of L’Aquila,
in 2007 and 2009. Since May 2011, he has been a software
developer at ANSYS Germany Gmbh. His research interests
include computational geometry and mesh generation. Giaccari is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 10

http://shapes.aimatshape.net/
http://www.lodbook.com/models/

co-author of two papers in international journals and international
conferences.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 11

