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Abstract 

  Product recovery and waste management techniques are in 
popular demand as important elements of environmentally 
conscious manufacturing. Once a product is received at a 
recovery facility, it is analyzed to determine its recovery option 
(i.e., recycling or remanufacturing). Disassembly is considered a 
key step to retrieving the desired parts and/or subassembly is a 
systematic product (i.e. partial disassembly); or separating a 
product into all of its parts (i.e. complete disassembly) for a 
given purpose. Performing disassembly in an optimized way is 
properties of the product and the limitations set by the 
disassembly system. In this paper optimal disassembly sequence 
can be attained by means of implying Genetic Algorithm and 
Simulated Annealing technique. A genetic algorithm that 
generates and evaluates disassembly plans is proposed. This 
algorithm is able to generate near – optimal disassembly plans 
through purposely-developed crossover and mutation operators 
starting from a randomly initialized population of disassembly 
sequences. 
Keywords: Genetic Algorithm, Disassembly plan, simulated 
annealing, 

1. Introduction 

Most traditional optimization methods used in engineering 
applications can be divided into two broad classes: direct 
search methods requiring only the objective function 
values and gradient search methods requiring gradient 
information either exactly or numerically.  One common 
characteristic of most of these methods is that they all 
work by point-by-point basis.  An algorithm starts with an 
initial point (usually supplied by the user) and depending 
on the transition rule used in the algorithm a new point is 
determined.  Essentially, algorithms vary according to the 
transition rule used to update a point. 
  Thus, we observe that most of the 
traditional optimization methods are apt for well-behaved, 
unimodal, simple objective functions.  When applied to 
multimodal problems or problems where gradient 
information is not available, most of these methods either 
can not be used or not very efficient.  This suggests that in 
order to solve complex, multimodal, discrete or 
discontinuous problems, better methods are required.  In  
 
 

general, we may be interested in robust search techniques 
that can be applied to wide variety of problems with ease.  
As seen from the above discussions that most of the 
traditional methods are not robust, because each of them is 
specialized to solve a particular class of problems.  That is 
why there are so many different types of optimization 
methods each suitable for a particular class of problems.  
For different problems different algorithms need to be 
applied. 
 However, it is to be mentioned here that this 
discussion is not to say that these traditional algorithms are 
useless, in fact they have been extensively used in many 
engineering optimization problems.  The suggestion here 
is that if the solutions obtained by some traditional 
methods are satisfactory, there is no problem.  But if the 
solutions obtained are not satisfactory or some known 
methods can not be applied, then the user either has to 
learn and use some other optimization suitable to solve 
that problem (which is by no means an easy) matter) or the 
user has to know some robust search algorithm which can 
be applied to a wide variety of problems without much 
problem. 
 In this chapter, the following intelligent 
optimization techniques which have been reportedly 
successful in solving a wide variety of search and 
optimization problems in sciences, engineering, and 
commerce are described: 
 
 1) Genetic Algorithm (GA) 
 2) Simulated Annealing (SA) 
 

2.1. Genetic Algorithm (GA) 

 Genetic algorithms (GAs) are adaptive search and 
optimization algorithms that mimic the principles of 
natural genetics.  Gas are very different from traditional 
search and optimization methods used in engineering 
design problems.  Because of their simplicity, ease of 
operation, minimal requirements and global perspective, 
GAs have been successfully used in a wide variety of 
problem domains.  Gas were developed by John Holland 
of University of Michigan in 1965. 
2.2. WORKING PRINCIPLE OF GA 
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 Genetic algorithms are search and optimization 
procedures that are motivated by the principles of natural 
genetics and natural selection.  Some fundamental ideas of 
genetics are borrowed and used artificially to construct 
search algorithms that are robust and require minimal 
problem information.  The working principles of GAs are 
very different from that of most of traditional optimization 
techniques.  A list of them is outlined later.  Here, we first 
describe the working principles of GAs.  Unconstrained, 
single-variable optimization problem given below: 
                Maximize f(x) 
               Variable bound    Xmin    X    Xmax 
 
 In order to use GA to solve the above problem, 
the variable x is typically coded in some string structures.  
Binary coded strings are mostly used.  The length of the 
string is usually determined according to the accuracy of 
the solution desired.  For example, if five bit binary strings 
are used to code the variable x then the string (0 0 0 0 0) is 
decoded to the value xmin, the string (1 1 1 1 1) is 
decoded to the value xmix and any other string is decoded 
to a value in the range (xmin, xmax) uniquely.  It is 
worthwhile to mention here that with five bits in a string 
there could be only 2 or 32 different strings possible, 
because each bit position can take a value 0 or a 1.  In 
practice, strings of size hundred or a few hundreds are 
common, recently a coding with string size equal to 
16,384 has also been used.   Thus with five bit strings used 
to code the variable x, the accuracy between two 
consecutive strings is only (Xmax - Xmin)/32.  If more 
accuracy is desired, longer strings may be used.  It is also 
noteworthy that as the string length increases the 
minimum possible accuracy in the solution increases 
exponentially.  With a known coding, any string can be 
decoded to an x value, which can then be used to find the 
objective function value.  A string’s objective function 
value (f(x)) is known as the string’s fitness. 
2.3A pseudo-code for a simple Genetic 
algorithm. 
  
Begin  
Initialize population; 
Evaluate population; 
Repeat 
Reproduction; 
Crossover; 
Mutation; 
Until (termination criteria); 
End. 
 GAs begin with a population of string structures 
created at random.  Thereafter, each string in the 
population is evaluated.  The population is then operated 
by three main operators’ reproduction, crossover and 
mutation to create a hopefully better population.  The 

population is further evaluated and tested for termination.  
If the termination criteria are not met, the population is 
again operated by above three operators and evaluated.  
This procedure is continued until the termination criteria 
are met.  One cycle of these operators and the evaluation 
procedure is known as a generation in GA terminology. 
 
 Reproductions usually the first operator applied 
on a population.  Reproduction selects good strings in a 
population and forms a mating pool.  There exist a number 
of reproduction operators in GA literature, but the 
essential idea is that above average strings are picked from 
the current population and duplicates of them are inserted 
in the mating pool.  The commonly used reproduction 
operator is the proportionate selection operator, where a 
string in the current population is selected with a 
probability proportional to the string’s fitness.  Thus, the i-
th string in the population is selected with a probability 
proportional to f.  Since the population size is usually kept 
fixed in a simple GA, the cumulative probability for all 
strings in the population must be one.  Therefore, the 
probability for selecting i-th string is f i/f avg 
 where N is the population size.  One way to 
achieve this proportionate selection is to use a roulette 
wheel with the circumference marked for each string 
proportionate to the string’s fitness.  The roulette wheel 
pointer in the mating pool.  Since the circumference of the 
wheel is marked according to a string’s fitness, this 
roulette wheel mechanism is expected to make copies of 
the i-th string, where f is the average fitness of the 
population.  Even though this version of roulette wheel 
selection is somewhat noisy, it is usually used.  There 
exists other more stable versions of this roulette wheel 
selection. 
 
 Crossover operator is applied next to the strings 
of the mating pool.  Like reproduction operator.  There 
exists a number of crossover operators in GA literature but 
in almost all crossover operators, two strings are picked 
from the mating pool at random and some portion of the 
stings are exchanged between the strings.  In a single point 
crossover operator, this is performed by randomly 
choosing a crossing site among the string and by 
exchanging all bits on the right side of the crossing site as 
shown. 
 

0 0 0 0 0 0 
1 1 1 1 1 1 

 
 It is intuitive from this construction is that good 
substrings from either parent string can be combined to 
form a better child string if an appropriate site is chosen.  
Since the knowledge of an appropriate site is usually not 
known, a random site, the children strings produced may 
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or may not have a combination of good substrings from 
parent string depending on whether the crossing site falls 
in the appropriate place or not.  But we do not worry about 
this aspect very much, because if good strings are created 
by crossover, there will be more copies of them in the next 
mating pool generated by the reproduction operator.  But 
if good strings are not created by crossover, they will not 
survive beyond next generation, because reproduction will 
not select those strings for the next mating pool.  In a two-
point crossover operator, two random sites are chosen and 
the contents bracketed by these sites are exchanged 
between two parents.  This idea can be extended by these 
sites are exchanged between two parents.  This idea can be 
extended to create a multi-point crossover operator and the 
extreme of this extension is what is known as a uniform 
crossover operator.  In a uniform crossover for binary 
strings, each bit from either parent is selected with a 
probability of 0.5.  It is worthwhile to note that the 
purpose of the crossover operator space.  Other aspect is 
that the search needs to be performed in a way that the 
information stored in the parent strings are maximally 
preserved, because these parent strings are instances of 
good selected using the reproduction operator.  In the 
single-point crossover operator, the search is not 
extensive, but the maximum information is preserved from 
parent to children.  On the other hand, in the uniform 
crossover, the search is very extensive but minimum 
information is preserved between parent and children 
strings.  Even though there exists some studies to find an 
optimal crossover operator, considerable doubts prevail 
whether those results can be generalized to be used in all 
problems.  Before any results from theoretical studies are 
obtained, it is still a matter of personal preference on the 
choice of crossover operator.  However, in order to 
preserve some good found in the mating pool, not all 
strings in the population are used in crossover.  If a 
crossover probability of Pc-1 is used then 100% of the 
population are simply copied to the new population. 
 Crossover operator is mainly responsible for the 
search aspect of genetic algorithms, even though mutation 
operator is also used for this purpose sparingly.  Mutation 
operator changes a 1 to a 0 and vice versa with a small 
mutation probability, Pm.  The need for mutation is to 
keep diversity in the population.  For example, if a 
particular position along the string length all strings in the 
population have a value 0, and a 1 is needed in that 
position to obtain the optimum then neither reproduction 
nor crossover operator described above will be able to 
create a 1 in that position.  The inclusion of mutation 
introduces some probability of turning that 0 into a 1.  
Furthermore, for local improvement of a solution, 
mutation may be found useful. 
 

 These three operators are simple and straight 
forward.  Reproduction operator selects good strings and 
crossover operator recombines good substrings from two 
good strings together to hopefully form a better substring.  
Mutation operator alters a string locally to hopefully create 
a better string.  Even though none of these claims are 
guaranteed and/or tested while creating a string, it is 
expected that if bad strings are created they will be 
eliminated by the reproduction operator in the next 
generation and if good strings are created, they will be 
emphasized. 
 
2.4 GA PARAMETERS  
 
 The building block hypothesis give an intuitive 
and qualitative reasoning to what might cause GAs to 
work.  But it tells nothing about for what values of various 
GA parameters would work.  In this subsection, we 
present some guidelines to determine values for some GA 
parameters. 
 The choice of the string length is the first 
decision to be made.  The string length is usually chosen 
depending on the accuracy needed in the solution.  For 
example, if binary strings of length 1 are used, then the 
search space would contain 21 strings.  The minimum 
accuracy in the solution that may be expected using GAs 
would then be of order. 
 Apparently, the building block hypothesis may 
seem to suggest that the problems that can be solved 
successfully using GAs must be linearly separable in terms 
of clusters of bits.  But this is not the case.  The above 
hypothesis can also be applied in problems having higher 
order nonlinearities with one requirement that either all 
competing building blocks are supplied in the initial 
population (by means of biased initial population) or by 
making the initial random large so that high order scheme 
competitions can take place in the population.  Other 
important aspect is that even if the building blocks are 
supplied blocks.  Messy GAs were developed to supply 
building blocks without stray bits and found to be 
successful in solving many difficult problems. 
 The other important issue is the balance between 
the exploitation and exploration aspects of GA operators.  
Reproduction is responsible for exploring the current 
population by making many duplicates of good strings and 
crossover and mutation are responsible for exploring a set 
of good strings for better strings.  GA’s success is, 
therefore, depends on a nice balance between the two.  If 
too many copies of the good strings are allocated in the 
mating pool then the diversity of the mating pool reduces 
which in turn reduces the extent of search that can be 
accomplished using crossover and mutation operators.  
Even though it has been discussed earlier that this aspect 
of GAs provide flexibility in their design, this may cause 
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some potential problem if GA operators are not properly 
designed to have a proper balance between the two.  
Recently, a control map is available for values of the 
selection pressure, S (the number of copies allocated to the 
best string in the population) versus the crossover 
probability, (the extent of search) for bit wise linear 
problems using a computational model that equates the 
degree of characteristic time of convergence of the 
selection and the crossover operators alone. 
 
3.1 The optimization procedure using Genetic 
algorithm 
      The genetic search process used here in is outlined 
below : 
Step1: Generate a random initial population of 
chromosomes of     size p. 
Step 2: decode all chromosomes and evaluate the objective 
function of their corresponding candidate solutions.  
Step 3: if the elitism policy is employed , insert the best  
chromosomes in to the new  generation pool. 
Step 4. choose a pair of parent chromosomes from the 
current population without replacement , apply the 
crossover and mutation operators to yield a pair Of new 
chromosomes. 
Step 5. Insert the new chromosomes into the new 
population . If the new population is smaller than p, return 
to step4. 
Step 6. If the pre- specified stopping criterion has been 
met, then stop the search Process. Select and decode   the 
overall best chromosome to be the final solution. 
Otherwise, proceed to the next generation and replace the 
population with the new one, and return to step 2.   
3.2. The optimization procedure using SA 
Step 1: Choose an initial point x1, a termination criteria 
Set T a sufficiently high value, number of iterations to be 
performed at a particular temperature n, and set  t =0. 
Step 2: Calculate a neighbouring point x2.  Usually, a 
random point in the neighbourhood is created. 
Step 3:  If ΔE = E(x2)-E(x1) <0, set t = t+1; Else create a 
random number ‘r’ in the range (0,1).  If r exp (-ΔE/T) set 
t = t+1;Else go to step 2. 
Step 4: If  x2-x1 < and T is small, Terminate. Else if (t 
mod n) = 0 then lower T according to a cooling schedule. 
Go to step 2; 
Else go to step 2.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1 : Disassembly Sequence  

 

 

 
Figure 2: Disassembly Sequence Planner 

 

4. Conclusion 

                   In this paper, optimization techniques for 
handling of mechanical components in disassembly 
sequence planning presented. It is an efficient approach of 
dealing with mechanical components interactively during 
disassembly process. Optimal solution using GA and SA 
for Valve Assembly is :1572649381. 
Path which is used to find the optimal soln 
is:AEGBFDICHA. Future work will 
focus on the application of this methodology to complex 
products with a large number of parts. We are currently 
working on a methodology to identify the best way of 
performing disassembly for the products with large 
number of parts so as to satisfy some optimization criteria, 
e.g., minimization of the cost of material. 
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