
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 641

Intelligent Optimization Techniques for Industrial applications

E. Raj Kumar1

 1 School of mechanical and building science, VIT University
Vellore, Tamil nadu,632014, India

Abstract

 Product recovery and waste management techniques are in
popular demand as important elements of environmentally
conscious manufacturing. Once a product is received at a
recovery facility, it is analyzed to determine its recovery option
(i.e., recycling or remanufacturing). Disassembly is considered a
key step to retrieving the desired parts and/or subassembly is a
systematic product (i.e. partial disassembly); or separating a
product into all of its parts (i.e. complete disassembly) for a
given purpose. Performing disassembly in an optimized way is
properties of the product and the limitations set by the
disassembly system. In this paper optimal disassembly sequence
can be attained by means of implying Genetic Algorithm and
Simulated Annealing technique. A genetic algorithm that
generates and evaluates disassembly plans is proposed. This
algorithm is able to generate near – optimal disassembly plans
through purposely-developed crossover and mutation operators
starting from a randomly initialized population of disassembly
sequences.
Keywords: Genetic Algorithm, Disassembly plan, simulated
annealing,

1. Introduction

Most traditional optimization methods used in engineering
applications can be divided into two broad classes: direct
search methods requiring only the objective function
values and gradient search methods requiring gradient
information either exactly or numerically. One common
characteristic of most of these methods is that they all
work by point-by-point basis. An algorithm starts with an
initial point (usually supplied by the user) and depending
on the transition rule used in the algorithm a new point is
determined. Essentially, algorithms vary according to the
transition rule used to update a point.
 Thus, we observe that most of the
traditional optimization methods are apt for well-behaved,
unimodal, simple objective functions. When applied to
multimodal problems or problems where gradient
information is not available, most of these methods either
can not be used or not very efficient. This suggests that in
order to solve complex, multimodal, discrete or
discontinuous problems, better methods are required. In

general, we may be interested in robust search techniques
that can be applied to wide variety of problems with ease.
As seen from the above discussions that most of the
traditional methods are not robust, because each of them is
specialized to solve a particular class of problems. That is
why there are so many different types of optimization
methods each suitable for a particular class of problems.
For different problems different algorithms need to be
applied.
 However, it is to be mentioned here that this
discussion is not to say that these traditional algorithms are
useless, in fact they have been extensively used in many
engineering optimization problems. The suggestion here
is that if the solutions obtained by some traditional
methods are satisfactory, there is no problem. But if the
solutions obtained are not satisfactory or some known
methods can not be applied, then the user either has to
learn and use some other optimization suitable to solve
that problem (which is by no means an easy) matter) or the
user has to know some robust search algorithm which can
be applied to a wide variety of problems without much
problem.
 In this chapter, the following intelligent
optimization techniques which have been reportedly
successful in solving a wide variety of search and
optimization problems in sciences, engineering, and
commerce are described:

 1) Genetic Algorithm (GA)
 2) Simulated Annealing (SA)

2.1. Genetic Algorithm (GA)

 Genetic algorithms (GAs) are adaptive search and
optimization algorithms that mimic the principles of
natural genetics. Gas are very different from traditional
search and optimization methods used in engineering
design problems. Because of their simplicity, ease of
operation, minimal requirements and global perspective,
GAs have been successfully used in a wide variety of
problem domains. Gas were developed by John Holland
of University of Michigan in 1965.
2.2. WORKING PRINCIPLE OF GA

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 642

 Genetic algorithms are search and optimization
procedures that are motivated by the principles of natural
genetics and natural selection. Some fundamental ideas of
genetics are borrowed and used artificially to construct
search algorithms that are robust and require minimal
problem information. The working principles of GAs are
very different from that of most of traditional optimization
techniques. A list of them is outlined later. Here, we first
describe the working principles of GAs. Unconstrained,
single-variable optimization problem given below:
 Maximize f(x)
 Variable bound Xmin  X  Xmax

 In order to use GA to solve the above problem,
the variable x is typically coded in some string structures.
Binary coded strings are mostly used. The length of the
string is usually determined according to the accuracy of
the solution desired. For example, if five bit binary strings
are used to code the variable x then the string (0 0 0 0 0) is
decoded to the value xmin, the string (1 1 1 1 1) is
decoded to the value xmix and any other string is decoded
to a value in the range (xmin, xmax) uniquely. It is
worthwhile to mention here that with five bits in a string
there could be only 2 or 32 different strings possible,
because each bit position can take a value 0 or a 1. In
practice, strings of size hundred or a few hundreds are
common, recently a coding with string size equal to
16,384 has also been used. Thus with five bit strings used
to code the variable x, the accuracy between two
consecutive strings is only (Xmax - Xmin)/32. If more
accuracy is desired, longer strings may be used. It is also
noteworthy that as the string length increases the
minimum possible accuracy in the solution increases
exponentially. With a known coding, any string can be
decoded to an x value, which can then be used to find the
objective function value. A string’s objective function
value (f(x)) is known as the string’s fitness.
2.3A pseudo-code for a simple Genetic
algorithm.

Begin
Initialize population;
Evaluate population;
Repeat
Reproduction;
Crossover;
Mutation;
Until (termination criteria);
End.
 GAs begin with a population of string structures
created at random. Thereafter, each string in the
population is evaluated. The population is then operated
by three main operators’ reproduction, crossover and
mutation to create a hopefully better population. The

population is further evaluated and tested for termination.
If the termination criteria are not met, the population is
again operated by above three operators and evaluated.
This procedure is continued until the termination criteria
are met. One cycle of these operators and the evaluation
procedure is known as a generation in GA terminology.

 Reproductions usually the first operator applied
on a population. Reproduction selects good strings in a
population and forms a mating pool. There exist a number
of reproduction operators in GA literature, but the
essential idea is that above average strings are picked from
the current population and duplicates of them are inserted
in the mating pool. The commonly used reproduction
operator is the proportionate selection operator, where a
string in the current population is selected with a
probability proportional to the string’s fitness. Thus, the i-
th string in the population is selected with a probability
proportional to f. Since the population size is usually kept
fixed in a simple GA, the cumulative probability for all
strings in the population must be one. Therefore, the
probability for selecting i-th string is f i/f avg
 where N is the population size. One way to
achieve this proportionate selection is to use a roulette
wheel with the circumference marked for each string
proportionate to the string’s fitness. The roulette wheel
pointer in the mating pool. Since the circumference of the
wheel is marked according to a string’s fitness, this
roulette wheel mechanism is expected to make copies of
the i-th string, where f is the average fitness of the
population. Even though this version of roulette wheel
selection is somewhat noisy, it is usually used. There
exists other more stable versions of this roulette wheel
selection.

 Crossover operator is applied next to the strings
of the mating pool. Like reproduction operator. There
exists a number of crossover operators in GA literature but
in almost all crossover operators, two strings are picked
from the mating pool at random and some portion of the
stings are exchanged between the strings. In a single point
crossover operator, this is performed by randomly
choosing a crossing site among the string and by
exchanging all bits on the right side of the crossing site as
shown.

0 0 0 0 0 0
1 1 1 1 1 1

 It is intuitive from this construction is that good
substrings from either parent string can be combined to
form a better child string if an appropriate site is chosen.
Since the knowledge of an appropriate site is usually not
known, a random site, the children strings produced may

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 643

or may not have a combination of good substrings from
parent string depending on whether the crossing site falls
in the appropriate place or not. But we do not worry about
this aspect very much, because if good strings are created
by crossover, there will be more copies of them in the next
mating pool generated by the reproduction operator. But
if good strings are not created by crossover, they will not
survive beyond next generation, because reproduction will
not select those strings for the next mating pool. In a two-
point crossover operator, two random sites are chosen and
the contents bracketed by these sites are exchanged
between two parents. This idea can be extended by these
sites are exchanged between two parents. This idea can be
extended to create a multi-point crossover operator and the
extreme of this extension is what is known as a uniform
crossover operator. In a uniform crossover for binary
strings, each bit from either parent is selected with a
probability of 0.5. It is worthwhile to note that the
purpose of the crossover operator space. Other aspect is
that the search needs to be performed in a way that the
information stored in the parent strings are maximally
preserved, because these parent strings are instances of
good selected using the reproduction operator. In the
single-point crossover operator, the search is not
extensive, but the maximum information is preserved from
parent to children. On the other hand, in the uniform
crossover, the search is very extensive but minimum
information is preserved between parent and children
strings. Even though there exists some studies to find an
optimal crossover operator, considerable doubts prevail
whether those results can be generalized to be used in all
problems. Before any results from theoretical studies are
obtained, it is still a matter of personal preference on the
choice of crossover operator. However, in order to
preserve some good found in the mating pool, not all
strings in the population are used in crossover. If a
crossover probability of Pc-1 is used then 100% of the
population are simply copied to the new population.
 Crossover operator is mainly responsible for the
search aspect of genetic algorithms, even though mutation
operator is also used for this purpose sparingly. Mutation
operator changes a 1 to a 0 and vice versa with a small
mutation probability, Pm. The need for mutation is to
keep diversity in the population. For example, if a
particular position along the string length all strings in the
population have a value 0, and a 1 is needed in that
position to obtain the optimum then neither reproduction
nor crossover operator described above will be able to
create a 1 in that position. The inclusion of mutation
introduces some probability of turning that 0 into a 1.
Furthermore, for local improvement of a solution,
mutation may be found useful.

 These three operators are simple and straight
forward. Reproduction operator selects good strings and
crossover operator recombines good substrings from two
good strings together to hopefully form a better substring.
Mutation operator alters a string locally to hopefully create
a better string. Even though none of these claims are
guaranteed and/or tested while creating a string, it is
expected that if bad strings are created they will be
eliminated by the reproduction operator in the next
generation and if good strings are created, they will be
emphasized.

2.4 GA PARAMETERS

 The building block hypothesis give an intuitive
and qualitative reasoning to what might cause GAs to
work. But it tells nothing about for what values of various
GA parameters would work. In this subsection, we
present some guidelines to determine values for some GA
parameters.
 The choice of the string length is the first
decision to be made. The string length is usually chosen
depending on the accuracy needed in the solution. For
example, if binary strings of length 1 are used, then the
search space would contain 21 strings. The minimum
accuracy in the solution that may be expected using GAs
would then be of order.
 Apparently, the building block hypothesis may
seem to suggest that the problems that can be solved
successfully using GAs must be linearly separable in terms
of clusters of bits. But this is not the case. The above
hypothesis can also be applied in problems having higher
order nonlinearities with one requirement that either all
competing building blocks are supplied in the initial
population (by means of biased initial population) or by
making the initial random large so that high order scheme
competitions can take place in the population. Other
important aspect is that even if the building blocks are
supplied blocks. Messy GAs were developed to supply
building blocks without stray bits and found to be
successful in solving many difficult problems.
 The other important issue is the balance between
the exploitation and exploration aspects of GA operators.
Reproduction is responsible for exploring the current
population by making many duplicates of good strings and
crossover and mutation are responsible for exploring a set
of good strings for better strings. GA’s success is,
therefore, depends on a nice balance between the two. If
too many copies of the good strings are allocated in the
mating pool then the diversity of the mating pool reduces
which in turn reduces the extent of search that can be
accomplished using crossover and mutation operators.
Even though it has been discussed earlier that this aspect
of GAs provide flexibility in their design, this may cause

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 644

some potential problem if GA operators are not properly
designed to have a proper balance between the two.
Recently, a control map is available for values of the
selection pressure, S (the number of copies allocated to the
best string in the population) versus the crossover
probability, (the extent of search) for bit wise linear
problems using a computational model that equates the
degree of characteristic time of convergence of the
selection and the crossover operators alone.

3.1 The optimization procedure using Genetic
algorithm
 The genetic search process used here in is outlined
below :
Step1: Generate a random initial population of
chromosomes of size p.
Step 2: decode all chromosomes and evaluate the objective
function of their corresponding candidate solutions.
Step 3: if the elitism policy is employed , insert the best
chromosomes in to the new generation pool.
Step 4. choose a pair of parent chromosomes from the
current population without replacement , apply the
crossover and mutation operators to yield a pair Of new
chromosomes.
Step 5. Insert the new chromosomes into the new
population . If the new population is smaller than p, return
to step4.
Step 6. If the pre- specified stopping criterion has been
met, then stop the search Process. Select and decode the
overall best chromosome to be the final solution.
Otherwise, proceed to the next generation and replace the
population with the new one, and return to step 2.
3.2. The optimization procedure using SA
Step 1: Choose an initial point x1, a termination criteria
Set T a sufficiently high value, number of iterations to be
performed at a particular temperature n, and set t =0.
Step 2: Calculate a neighbouring point x2. Usually, a
random point in the neighbourhood is created.
Step 3: If ΔE = E(x2)-E(x1) <0, set t = t+1; Else create a
random number ‘r’ in the range (0,1). If r exp (-ΔE/T) set
t = t+1;Else go to step 2.
Step 4: If x2-x1 < and T is small, Terminate. Else if (t
mod n) = 0 then lower T according to a cooling schedule.
Go to step 2;
Else go to step 2.

Figure 1 : Disassembly Sequence

Figure 2: Disassembly Sequence Planner

4. Conclusion

 In this paper, optimization techniques for
handling of mechanical components in disassembly
sequence planning presented. It is an efficient approach of
dealing with mechanical components interactively during
disassembly process. Optimal solution using GA and SA
for Valve Assembly is :1572649381.
Path which is used to find the optimal soln
is:AEGBFDICHA. Future work will
focus on the application of this methodology to complex
products with a large number of parts. We are currently
working on a methodology to identify the best way of
performing disassembly for the products with large
number of parts so as to satisfy some optimization criteria,
e.g., minimization of the cost of material.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 645

References

[1] Gupta, S.M and K.Taleb, “Scheduling disassembly,”
International journal of Production Research,
Vol.32,No.8,pp.1857-866,1994.

[2] F. Bonneville, C Perrard, J. M. Henrioud. A genetic
algorithm to generate and evaluate Disassembly
plans. Proc. of IEEE Symposium on Emerging
Technologies and Factory Automation, Paris, 1995,
pp. 231-239.

[3] K.Taleb and S.M Gupta,”Environmental concerns
and recycling/disassembly efforts in the electronic
industry,” Journal of Electronic Manufacturing,
vol.32,No.4,pp.949-961,1997.

[4] A. Mahanti and A. Bagchi. AND/OR Graph Heuristic
Search Methods. Journal of the Association for
Computing Machinery, Vol. 32, No. I, January 1985,
pp. 28-5 I.

[5] Homem de Mello, L.S. and A.C. Sanderson. A
Correct and Complete Algorithm for the Generation
of Mechanical Assembly Sequences. IEEE Trans. on
Robotics and Automat. Vol. 7, No. 2, 1991, pp.228-
240.

[6] Luiz. S. Homem de Mello and A. C. Sanderson.
Planning Repair Sequences Using the And/Or Graph
Representation of Assembly Plans. Proceedings of
IEEE Int. Conference Robotics Automat, April 1988,
pp.1861-1862.

[7] Luiz.S.Homem de Mello and A.C.Sanderson.
Representations of Mechanical Assembly Sequences
IEEE Transactions on Robotics and Automation ,Vol
7, No. 2, April 1991, pp.211-227.

[8] N.Boneschanscher, Delft University of Technology.
Task Assignment for a Small Batch Flexible
Assembly Cell Incorporating Multiple Robots. IEEE
1990, pp.746-750.

[9] Xining Li and Wei Fan. An Object-Oriented And/Or
Graph Inference Engine. IEEE 1993, pp. 615- 618.

[10] Michael H. Goldwasser and Rajeev Motwani.
Complexity Measures for Disassembly Sequences.
International Journal of Computational Geometry &
Applications Vol. 9, Nos. 4 & 5 (1999) 371-417.

[11] S. Balakrishnan, N. Popplewell, M. Thomlinson.
Intelligent Robotic Assembly. International Journal
of Computers and Industrial Engineering. 38(2000)
pp. 467-478.

About the authors

E. Raj Kumar is working as Assistant
Professor (Senior) Design division,
School of Mechanical and Building
Science, VIT UNIVERSITY,
Vellore. Tamil nadu, INDIA. He has
received B.E. Mechanical
Engineering, M.E. CAD/CAM from
Anna University, and currently

pursuing Ph.D at VIT UNIVERSITY. His main research
interest includes CAD/CAM, Optimization Techniques,
Virtual Reality and Application of Evolutionary
Algorithms in Engineering Applications.

