
Design of Model For Restructure Transformation of
Public Sector

Ashok Kumar 1, Anil Kumar2

1.Professor, Department of Computer Science & Application
Kurukshetra University, Kurukshetra, India

2. Asst. Professor, Computer Science & Engg.
Vaish College of Engineering, Rohtak, India

Abstract
Public sector such as Govt. University composed of
many physical as well logical threads, which are
very beneficial for public to provide services. Over
times due to repeated modification of software
modules, the structure of the system deteriorates
and it become very complex to understand for
further modification whenever requirement need to
provide services to public, because it is universal
truth after specific time period there is need of
modification to fulfill the requirement for public.
And if we repeat to modify the software module,
then it is very complicated just like noodles in
chowmin plate and program structure is twisted and
tangled. Due to this program structure greatly
decrease the scalability, reliability, efficiency,
robustness and increased the complexity of software
module. And it also increased the maintenance cost
of s oftware module, therefore repeated
modification is not a good choice. Reengineering is
good choice for this.
Therefore, in this paper we will introduced a new
methodology that is known as pattern based
reengineer methodology[1], that is not only focus on
only logical thread, but also focus on ph ysical
entities - reduce overall complexity. It is proved
that the transformation[2] does not alter the semantic
of restructured program.

Keyword: Restructure Transformation,
Reengineering, Reverse Engineering, Forward
Engineering, Composition and D ecomposition
Design

Introduction
 The software communities has actively
responded to the needs of m aintenance and it is
very difficult activity, integrating of existing
software components. As we know maintenance is

not a good choice today, because it is very costly as
well as repeated modification deteriorates structure
of whole software modules.
Therefore, here we will introduce the new
methodology that is known as pattern based
reengineering methodology, that is analyzes not
only existing system, where modification require,
but also analyzes the people who are working in
organization and that are involve with software
module directly or indirectly. It will analyzes the
responsibility of these people who responsible to
provide service to public or customer.
It provides action for recommendation, and
warranty for greater success in communication
procedure.
 The main chrematistics of this paper is:

• A description of each and every modules of
public/private sector, i.e followed to
reengineering, not only reengineering, but
also complexity measurement

• It provide a framework, that resulted from
our reengineering modules and validated by
several case studies

• Detailed description of resulting
architecture, which provide benefit in other
way.

The proposed methodology based on de sign of
existing software module. As we know that the
design is silver bullet in software development and
diamond bullet during reengineering of software
modules. Even though, it has less useful throughout
the lifetime of software system, then it should be.
Design part of software modules are often large and
monolithic and structure of design quite different
from that requirement. As a result, developer tends
to discard the design, especially, as the system
evolve and due to this it is too difficult to keep the
relationship to the requirement and software module
programming, especially when both are changing.
The purposed methodology, provides flexibility to
the decomposition and composition. The existing

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 628

decomposition mechanism (class, interface, object,
method and package) are extended to includes
decomposing designs in a manner directly aligning
design and requirement specifications. Composition
mechanism for design are extended to support the
additional decomposition mechanism that is closely
align with both requirement specified and with
code.
It illustrate that how purpose methodology, permits
the benefits of design to be reengineering
throughout a system life time.

Background
 Reengineering describes a process of reverse
engineering[3,4,5], redesigning[6] and forward
engineering[7,8,9] .
Reverse engineering, involves recovering and
documenting a system for developers to understand
how system works. The abstraction can be
discovered by referring to the system experts,
system documentation or the source code. In the
legacy system the original system experts are often
no longer available and system documentation
quickly becomes out of date. Reverse Engineering
is focused on the challenging task of understanding
legacy program code without having suitable
documentation.
Redesigning, is the process of changing the system
abstraction to accommodate the system’s present
and future requirement.

Forward engineering, is the process of
implementation of the new abstraction. Forward
engineering practice informal requirements are
somehow converted into a semi-formal specification
using domain notations without underlying precise
semantics like e.g. data-flow diagrams, entity
relationship diagrams, natural language
descriptions, or other problem specific informal or
semiformal notations. The program then is
constructed manually (i.e. in an error prone way)
from the specification by a creative agent, the
programmer. Hidden in this creative construction of
the program from the specification are a s et of
obvious as well as no obvious design decisions
about how to encode certain parts of the
specification in an efficient way using available
implementation mechanisms to achieve
performance criteria (the why of the design
decisions). As an example, a specification fragment
requiring associative retrieval using numeric keys
may be implemented using hash tables, achieving

good system reaction time. These decisions are
usually not documented. Over time the program
code is modified to remove errors and to adapt the
system to change requirements. The requirements
may change to allow usage of alphanumeric keys
and to be able to handle large amounts of data.
Unfortunately, often these changes take place
without being reflected correctly in the
specification. The gap between the original
specification and the program becomes larger and
larger. The result is a program code without a
proper specification and with untrustworthy design
information (such as comments describing the hash
tables!). The code becomes difficult to understand
and, thus, difficult to maintain. To overcome this
deficiency, it is important to change the
specification first and then reflect the changes in the
program code. A necessary precondition for this is
to have reliable information about the relationship
between the specification and the program code.
The design and its rationale describe the how and
why of this relationship; however, they are not
documented in current practice.
Problem Description
 During reengineering of legacy system,
there is structural mismatch between requirement
specification and existing software system. Due to
this, individual requirement are scattered, across the
design and support for multiple requirements is
tangled in individual design unit. This will reduces
comprehensibility and traceability that making the
software module design or existing software module
code, difficult to understand, develop, r euse and
extends.
And usually, while you fix a bug in one place,
another bug is pop-pup somewhere else in the
system. Long rebuild time make any changes
difficult. All of these signs of software module
close to breaking point. Many systems could be
upgraded or simply thrown away, if they no longer
serve their purpose

Related Work
Design patterns were discussed by Christopher
Alexander, an architect, in order to describe
techniques for town planning, architectural designs,
and building construction
Techniques[10] each design pattern description
contains a section where relationships to other
patterns of a higher or of a lower granularity level
are presented. These relationships influence the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 629

construction process. A classification for the
patterns was
given, however their mutual relationships have not
been provided. In[11], a large collection of well
described design patterns was presented. The
relationships between design patterns are also
described, but not classified. However a clustering
of related design patterns was included. Such
clustering according to jurisdiction (class, object,
compound) and characterization (creational,
structural, behavioral) is orthogonal to the one
derived in this paper. In this context, patterns in a
specific cluster can be considered as similar to
another one which supports the selection of an
appropriate design patterns for a certain problem.
Frameworks[12,13] are also considered as high-level
design patterns, usually consisting of many
interrelated design patterns of lower levels.

In[14], it is indicated that “Patterns can be used at
many levels, and what is derived at one level can be
considered a basic pattern at another level”.
Furthermore, it is stated that
“This is probably typical of most architects; some
patterns will be generic and some will be specific to
the problem domain” which also confirms the
organization depicted in
our proposed layers. Booch[15] also discussed that
design patterns are ranging from idioms to
frameworks. In, several design patterns[16]] are
combined in an exemplary
application, but the relationships are not
investigated further.
The relationships between object-oriented design
patterns were first analyzed in [7] where three kinds
of relationships between patterns are described.
These include :
i) use - one pattern can use another pattern, ii)
variant – one pattern can be a variant of another
pattern, iii) combine - two patterns can be used in
combination to solve a problem. Similarly,
Mesazaros and Doble[[18] identified five
relationships between patterns, a pattern can use, be
used by, generalize, specialize, or provide an
alternative to another pattern.
Research Goal

• Reduction of Maintenance Costs: the
manually restructured software modules
must be tested to ensure their behavior is not
changed. This increased the cost of
maintenance. Software modules restructured
using our transformation need not be

retested, since their external semantics is
guaranteed to remain same.

• Smooth Migration of Old Software
Module Code to New Technology: due to
rapid changes of technology, there is a
constant need to migrate software developed
using one programming language or design
paradigm to another. Our transformation
may be used to restructure the old software
module code, such that it effectively use the
advantages offered by a new paradigm.

Purposed Work
 The purposed methodology is based on
Decomposition[19,20] and composition design[21,22]

Decomposition Design: matching the structure of
requirements, during reengineering of software
module by dividing up into separate module, that
match the change structure. And each separate
module, separately describes that part of a system or
component that relates to a p articular requirement,
encapsulating its design and separating it f rom the
design of rest of the system. It support with the
requirement specification is to have a one-to-one
match of requirement with modules. It is supported,
while multiple requirements with single module.
The detailed process of decomposition
consists of the following steps: 1) generation of
functional-level component descriptions in
Component from the source tree, 2) analysis of
functional-level components in terms of
modularity factors and modification of the
descriptions to enhance modularity, 3)
modification of actual source tree based on the
refined component descriptions and generation
of build-level component descriptions along
with verification of the builds, 4) verification of
the refined source tree against the component
descriptions, and 5) testing the components.
Composition Design: decomposition of module
design brings many benefits relating to
comprehensibility, traceability, evolution and reuse.
However, the design that have been decomposed
must also be integrated later stage, in order to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 630

understand the design of the system as a w hole.
This required for the reasons such as verification or
to support a developer to understand the semantics
of the design and the impact of composition on the
design.
Composition of module design, help to understand
relationship between designed module to be
composed. This will compare the specification of
behavior of module to another.
The composition process consists of the
following steps: 1) selection of components
from the component repository, 2) construction
of a source tree that combines the source trees
of the selected components, and 3) generation
of build scripts that build the combined source
tree.
Purposed Methodology, Pattern Based
Reengineering methodology(PBRM), helpful to
software engineering, software analyst, software
designer and software programmer to understand
the existing software modules where reengineering
required, just like a doctor examine patient, to know
which type treatment is given to patient.
PBRM, examine existing software system just like a
doctor examine patient. E.g
First of all while doctor examine the patient, he/she
try to know which type of infection/disease infected
to patient, then examine nervous system, heart beat,
blood circulation and finally make a case history
and the start its medicine, once case history is
prepared that is used for further check up p atient.
And time to time checkup of patient takes place to
know either there is need to change medicine or
guide for physical exercise to recover. This
recovering process of patient just like reengineering
of software modules.
In case of PBRM, first of all try to understand what
is the actual requirement of services that is need to
be implemented in existing software modules. Here,
requirement engineering is helpful for this purpose.
Then, decomposition design and composition
design takes place to design the software module,
then verification and validation of software modules
takes place, through examine the flow of control in
software modules.

PBRM, support restructuring transformation of
software modules, restructuring is based on
decomposition and composition. While restructure

transformation of software module takes place
PBRM, software module is change its internal
structure without affecting its external behavior.
This transformation should separate the inter wined
logical threads of an old program, to reduce its
complexity.
PBRM provides a model that is known as a model,
that is helpful for restructuring transformation of
software modules. This model is iterative model,
where each and every task is performed iteratively,
until or unless it is not requirement of reengineering
and depending upon requirement, it help full to
assign priority, depending upon requirement need.
A Model has following activities:

1. Identify each task
2. Identify the ‘depend on’ relations between

each pairs of task
3. Determine the order in which the task are to

be restructured
4. Assign priorities among task, according to

requirement
5. Restructured each task

i. Identify the computation that
influence the given task

ii. Collect all these computation
in a new module and create a
function call to the new
function in the appropriate
position of the original
procedure.

Each step in the above model may be considered to
be independent of other step.
This model is used for two purpose : Sketch and
Blueprint
Sketch is used as a thinking tool, which help
developer to communicate some aspects of a system
and alternatives about, what are to be done.
Blueprint is used for guiding for implementation.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 631

‘Pattern Based Reengineering Model’

PBRM, provides following type of metrics, that is
used to determine complexity of software module
during reengineering.

1. Number of Attributes of Pattern of
class/interface: measure the ratio of the total
number attribute of pattern of class in a
model to be implemented

2. Size of Attribute of pattern of
Class/interface: measure ratio of attributes
of pattern with a signature to the total
number of attribute of pattern of class

3. Number of Operation of class/interface:
measure the ratio of total number of
operation of a class/interface in a model to
be implemented

4. Operation with Parameter of class/interface:
measure the ratio of operation with
parameter of a cl ass in a m odel to that
implemented

5. Operation with Return of Class/interface:
measure the ratio of operation which return
value of a class in a model to that in the
implementation

6. Association Label of Class/interface:
measure total number of association of
class/interface

7. Association Rule of Class/interface: measure
total number of association attached to a
class/interface

Conclusion
 Pattern based reengineering methodology, is
successful technique in planning where
reengineering are takes place, what is actual
requirement, which one activity performed first
according to need. It also helpful in problem
detection, migration strategies and software
redesign. PBRM, provide suitable documentation
i.e. helpful to understand the system, in future, after
reengineering is completed.
The proposed methodology helps software
engineers to
: i) better understand the complex relationships
between design patterns,
 ii) organizes existing design patterns as well as
categorizing and describing new design patterns,
 iii) build a model which supports the application of
design patterns during restructuring transformation
and complexity measurement.

References

1. K. Beck. Patterns and software development.
Dr. Dobbs Journal, 19(2):18–23, 1993.

2. H.A. Partsch. SpecGcation and
Transformation of Programs: A Formal
Approach to Software Development.
Springer, 1990.

3. H. Muller, M. Orgun, S. Tilley, and J. Uhl. A
reverse engineering approach to subsystem
identification. Software Maintenance and
Practice, 5:181–204, 1993.

4. 4 H. Muller. Rigi as a reverse engineering
tool. Technical Report DCS-160-IR,
University of Victoria, Victoria, BC,
Canada, 1991

5. H. Muller, M. Orgun, S. Tilley, and J. Uhl. A
reverse engineeringapproach to subsystem
identification. Software Maintenance and
Practice, 5:181–204, 1993.

6. P. Tollena and G. Antoniol. Object oriented
design patterns inference. In Proceedings of
the IEEE International Conference on
Software Maintenance (ICSM), pages 230–
238, September 1999

7. H.A. Partsch. Specification and
Transformation of Programs: A Formal
Approach to Software Development.
Springer, 1990.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 632

8. S. Rugaber, K. Stirewalt, and L. Wills. The
Interleaving Problem in Program
Understanding In: Working Conference on
Reverse Engineering, pp. 166-175, 1995

9. S. Rugaber. White Paper on Reverse
Engineering. Georgia Institute of
Technology, 1994.

10. C.Alexander. A Pattern Language.Oxford
University Press, 1977

11. E. Gamma, R. Helm, R. Jahnson, and J.
Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software.
Addison-Wesley, 1995.

12. R. E. Johnson and V. F. Russo. Reusing
object-oriented designs. Technical report
uiucdcs 91- 1696, University of Illinois,
May 1991.

13. R. J. Wirfs-Brock and R. E. Johnson.
Surveying current research in object-
oriented design. Communications of ACM
(CACM), 33(9):105–123, September 1990

14. K. Beck. Patterns and software
development. Dr. Dobbs Journal, 19(2):18–
23, 1993.

15. G. Booch. Patterns. Object Magazine, 3(2),
1993.

16. P. Coad. Object-oriented patterns.
Communications of ACM (CACM),
35(9):153–159, September 1993.

17. F. Buschmann et al. Pattern-Oriented
Software Architecture : A System of
Patterns. JohnWiley and Sons, 1999.

18. G. Meszaros and J. Doble. A pattern
language for pattern writing. In R. Martin,
D. Riehle, and B. F., editors, Pattern
Languages of Program Design, volume 3,
pages 529–574. Addison-Wesley, 1998.

19. R.J. R. Back and K. Sere, “Stepwise
refinement of parallel algorithms,” Sci.
Comput. Programming, vol. 13, pp. 133-
180, 1990.

20. Y. Liu, A. K. Singh, and R. L. Bagrodia, “A
decompositional approach to the design of
efficient parallel programs,” Dep. Comput.
Sci., Univ. Califomia at Santa Barbara,
Tech. Rep., Sept. 1994.

21. M. Abadi and L. Lamport, “Composing
specifications,” in Stepwise Refrnement of
Distributed Systems, J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, Eds., LNCS
430, Berlin: Springer-Verlag, 1990.

22. M. D. Jonge, “Multi-level Component
Composition,” 2nd Groningen Workshop on
Software Variability Modeling (SVM'04),
Reseach Institute of Computer Science and
Mathematics, University of Groningen, Dec.
2004.

Dr. Ashok Kumar has received his
Ph.D degree from Agra University, Agra, India. He
has joined as a Professor in the Department of
Computer Science & Application, Kurukshetra
University, Kurukshetra – 1361199 (Haryana),
India, in June 1982. He has published more than 60
national and international papers. He has attended
more than 30 na tional and international seminars.
His area of interests are software engineering,
operational research, networking and operating
system.

 Anil Kumar received his Master
degree from IGNOU, India and M.Tech in
Computer Science & Eng. From Kurukshetra
University, Kurukshetra, India in year 2002 a nd
2006. He is pursuing Ph.D in Computer Science
from the Department of Computer Science &
Application – Kurukshetra University, Kurukshetra,
India. Currently he is working as an Asst. Professor
in Computer Science & Engineering Department in
Vaish Engineering College, Rohtak, Haryana, India
since September, 2006. He has also worked in
software industries for more than three years . His
research area includes Software engineering,
Reengineering, Software Metrics, Object Oriented
analysis and design, Reusability, Reliability.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 633

