
A full featured component (object oriented) based architecture
testing tool

Sarita Singh Bhadauria 1, Abhay Kothari2 and Lalji Prasad3

 1 MITS /Department of Electronics,
GWALIOR, INDIA

2 IIST/ Computer Engineering,
INDORE, INDIA

3 Truba College of Engineering & Technology/ Computer Engineering,
INDORE, INDIA

Abstract
Object-orientation has rapidly become accepted as the
preferred paradigm for large-scale system design. The product
created during Software Development effort has to be tested
since bugs may get introduced during its development. In this
research work we 1) establish a requirement specification for a
comprehensive software testing tool. 2) This will involve
studying the feature set offered by existing software testing
tools and their limitations. This will be able to overcome the
limitations of limited feature sets of existing software tools. 3)
To propose a comprehensive architecture of a software testing
tool, this will include most of the features required for a
software testing tool. 4) The purpose is to avoid compatibility
problems which are incurred by interfacing various tools to
utilize individual tools strengths. Also, as different tools are
having different user interfaces, it takes effort to learn, how to
use them. A full featured, comprehensive tool is a solution to
all of these problems. We intend to propose the object oriented
methodology based architectures for the comprehensive tool.
Keywords: Fault-based Testing, Scenario-based Testing,
comprehensive software testing tool, Compatibility problem

1. Introduction

The testing of software is an important means of
assessing the software to determine its quality. Since
testing often consumes 40~50% of development efforts,
and consumes more effort for systems that require
higher levels of reliability, it is a significant part of the
software engineering. With the development of Fourth
generation languages (4GL), which speeds up the
implementation process, the proportion of time devoted
to testing increased. As the amount of maintenance and
upgrade of existing systems grow, significant amount of
testing will also be needed to verify systems after
changes are made [2]. Definition of testing:
“Program testing is a rapidly maturing area within
software engineering that is receiving increasing notice
both by computer science theoreticians and practitioners.
Its general aim is to affirm the quality of software
systems by systematically exercising the software in
carefully controlled circumstances.”

E. Miller \Introduction to Software Testing
Technology"[1]

The remainder of the paper is organized as follows:
Section 2 gives an idea major stage of research &
Literature survey of related to Object Oriented Software
and presents the various stages of testing. Section 3
definition of object-oriented testing. Section 4 presents
the specialized techniques available for Object Oriented
environment and architecture object oriented testing
Section 5 present objective of this Research Section 6
present Conclusion & Future work .In abstract four
features mention three feature cover here last features
cover in my next research paper.

2. The Major Stages of Research &

Development Trends (Literature survey)

Generally, we see three major stages of the research and
development of testing techniques, each with a different
trend. By trend we mean the how mainstream of
research and development activities find the problems to
solve, and how they solve the problems. As below given
“Technology Evolution” , testing technique
technologies, thus the ways of selecting test data have
developed from ad hoc, experienced implementation-
based phase, and is focusing on specification-based now.

1950 – 1970: Ad Hoc
From the years 1950 and 1970, there were few research
results on testing techniques except for the conceptual
ideas of testing goals. It’s possible that research results
before 1970 are too old to be in the reach of current
bibliography collections. To avoid being influenced by
this factor, we looked at many testing survey papers in
the 1980s, which should have had the “ancient” studies
in hand by the time they performed their study. We
suppose their surveys at least addressed the most
important technical contributes before their time, and we
can build our research for the decades before 1970 on
theirs. Based on above assumption, we define the period

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 618

mailto:Saritamits66@yahoo.co.in.%20,MITS%20/Department

between 1950 a nd 1970 a s being ad hoc. During this
period, major research interest focuses on the goal of
testing, and there are quite a few discussions on how to
evaluate if a test is good. Meanwhile, testing had
become gradually independent from part of debugging
activities, to a necessary way to demonstrate that a
program satisfies its requirements, as is seen in the
GH88 model. At the same time, if we look from Shaw’s
view, we can see that the whole world of software
engineering was in its programming-in-any-which-way
stage. It’s very natural that testing stayed in its ad hoc
stage, where test data is selected randomly and in an
unorganized, undirected way.

1971 – 1985: Emphasize on Implementation (for
small program)
Beginning from the mid 1960s to the mid 1980s, the
whole software engineering research community shifted
it paradigms to the program-in-the-small stage, and then
started the program-in-the-large stage. he main changes
this migration brought to software development were
that the characteristic problems changed from small
programs, to larger programs and algorithms, and were
on the way to developing more complex problems. In
response to this significant change, researches on testing
techniques began their prosperity. On the structural side,
in 1975, 1976, 1980, and 1985, although the whole
software engineering community was facing the
challenge of switching the gear of developing from
comparably simple programs to complex large systems,
it took time for testing community to react to the change,
specifically, in approximately 5 years. From the figure
we also find that only one significant result for
functional testing appeared in this period. The reason is
obvious. Functional testing is based on requirements and
has consisted merely of heuristic criteria. It is difficult to
determine when and if such criteria are satisfied without
being able to express the requirements in an efficient,
rigorous, unambiguous way. This was in part the
motivation for developing implementation-based testing
techniques; they have the advantage that their
application can be automated and their satisfaction
determined. Fortunately the research appeared during
this period set up a very good tone of successive
researches, since it moved emphasis from the simple
input/output specifications that testers often used in this
period to a higher level – the design of the system. In
this period, how to test a “program”, instead of a
“system”, still drew the attention of researchers and
practitioners. However the whole software engineering
had begun to get ready for moving from the stage of
programming-in-the-large to a higher level.

1986 – Current: Emphasize on Specification and
System
As software become more and more pervasive, the
engineering for this area experienced the shift from
programming-in-the-large to programming-in-the-world,
starting from the mid 1980s. The characteristic problems
changed from algorithms, to system structures, and

component interfaces. Systems have been specified in
more complex ways. Studies in software architecture
and formal methods have brought a lot of facilities as
well as inspiration to the way people specifying their
systems. Based on these studies, software system now
can be specified in more rigorous, understandable,
automatable ways, which has brought great chances to
improve functional testing techniques. Meanwhile,
software development is no longer limited to standalone
systems, in reality, there have been more and more needs
to develop distributed, object-oriented, and component
based systems. The researchers in testing community
have responded this trend and move their emphasis
accordingly. Starting from the late 1980s, many
researchers have made use of the achievements of
formal methods and logical analysis. There is still
limitation in the specification capabilities so that
researchers have been calling for better specification
methods to improve their results. Both functional and
structural testing techniques have benefited from the
enhancement of software specification technologies. The
widespread developing and using of object-oriented
technologies, COTS software and component based
systems has brought a great density of testing researches
on these kinds of systems. The earliest OO testing
studies appeared in the early 1990s. Most of them use
traditional functional and/or structural techniques on the
components, i.e. classes and so on. Researchers have
proposed new problems and solutions on testing the
connections and inheritances among components. Both
structural and functional techniques are hired in their
approaches, and it has proven to be an effective method
to integrate the two techniques for testing complex
systems.

2.1. Literature Survey

[1] G. Bernet, L. Bouaziz, and P. LeGall, “A Theory of
Probabilistic Functional Testing,” Proceedings of the
1997 International Conference on Software Engineering,
1997, pp. 216 –226
[BBL97] A framework for probabilistic functional
testing is proposed in this paper. The authors introduce
the formulation of the testing activity, which guarantees
a certain level of confidence into the correctness of the
system under test. They also explain how one can
generate appropriate distributions for data domains
including most common domains such as intervals of
integers, unions, Cartesian products, and inductively
defined sets. A tool assisting test case generation
according to this theory is proposed. The method is
illustrated on a small formal specification.

[2] B. Beizer, “Software Testing Techniques,” Second
Edition, Van Nostrand Reinhold Company
Limited,1990, ISBN 0-442-20672-0
[Beizer90] This book gives a fairly comprehensive
overview of software testing that emphasizes formal
models for testing. The author gives a general overview
of the testing process and the reasons and goals for

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 619

testing. In the second chapter of this book, the author
classifies the different types of bugs that could arise in
program development. The notion of path testing,
transaction flow graphs, data-flow testing, domain
testing, and logic-based testing are introduced in detail
in the chapters followed. The author also introduces
several attempts to quantify program complexity, and
more abstract discussion involving paths, regular
expression, and syntax testing. How to implement
software testing based on the strategies is also discussed
in the book.

[3] S. Beydeda and V. Gruhn, “An integrated testing
technique for component-based software,” ACS/IEEE
International Conference on Computer Systems and
Applications, June 2001, pp 328 – 334
[BG01] Testing is made complicated with features, such
as the absence of component source code, that are
specific to component-based software. The paper
proposes a technique combining both black-box and
white-box strategies. A graphical representation of
component software, called component-based software
flow graph (CBSFG), which visualizes information
gathered from both specification and implementation, is
described. It can then be used for test case identification
based on well-known structural techniques.

[4] A. Bertolino, P. Inverardi, H. Muccini, and A.
Rosetti, “An approach to integration testing based on
architectural descriptions,” Proceedings of the IEEE
ICECCS- 97, pp. 77-84
 [BIMR97] In this paper the authors propose to use
formal architectural descriptions (CHAM) to model the
behavior of interest of the systems. Graph of all the
possible behaviors of the system in terms of the
interactions between its components is derived and
further reduced. A suitable set of reduced graphs
highlights specific architectural properties of the system,
and can be used for the generation of integration tests
according to a co verage strategy, analogous to the
control and data flow graphs in structural testing.

[5] J.B. Good Enough and S. L. Gerhart, “Toward a
Theory of Test Data Selection,” IEEE Transactions on
Software Engineering, June 1975, pp. 156-173
[GG75] This paper is the first published paper, which
attempted to provide a theoretical foundation for testing.
The “fundamental theorem of testing” brought up by the
authors characterizes the properties of a completely
effective test selection strategy. The authors think a test
selection strategy is completely effective if it is
guaranteed to discover any error in a program. As an
example, the effectiveness of branch and path testing in
discovering errors is compared. The use of decision table
(a mixture of requirements and design-based functional
testing) as an alternative method is also proposed.

[6] D. Gelperin and B. Hetzel, “The Growth of Software
Testing”, Communications of the ACM, Volume 31
Issue 6, June 1988, pp. 687-695

[GH88] In this article, the evolution of software test
engineering is traced by examining changes in the
testing process model and the level of professionalism
over the years. Two phase models, the demonstration
and destruction models, and two life cycle models, the
evolution and prevention models are given to
characterize the growth of software testing with time.
Based on the models a prevention oriented testing
technology is introduced and analyzed in detail.

[7] J. Hartmann, C. Imoberdorf, and M.Meisinger,
“UML-Based Integration Testing,” Proceedings of the
International Symposium on Software Testing and
Analysis, ACM SIGSOFT Software Engineering Notes,
August 2000
[HIM00] Unified Modeling Language (UML) is widely
used for the design and implementation of distributed,
component-based applications. In this paper, the issue of
testing components by integrating test generation and
test execution technology with commercial UML
modeling tools such as Rational Rose is addressed. The
authors present their approach to modeling components
and interactions, describe how test cases are derived
from these component models and then executed to
verify their conformant behavior. The TnT environment
of Siemens is used to evaluate the approach by examples

[8] W. E. Howden, “Reliability of the Path Analysis
Testing Strategy”, IEEE Transactions on Software
Testing, September 1976, pp. 208-215
[Howden76] The reliability of path testing provides an
upper bound for the testing of a subset of a program’s
paths, which is always the case in reality. This paper
begins by showing the impossibility of constructing a
test strategy that is guaranteed to discover all errors in a
program. Three commonly occurring classes of errors,
computations, domain, and sub case, are characterized.
The reliability properties associated with these errors
affect how path testing is defined.

[9] W. E. Howden, “Functional Testing and Design
Abstractions,” The Journal of System and Software,
Volume 1, 1980, pp. 307-313
[Howden80] The usual practice of functional testing is
to identify functions that are implemented by a system or
program from requirements specifications. In this paper,
the necessity of testing design as well as requirement
functions is discussed. The paper indicates how
systematic design methods, such as structured design
and the Jackson design can be used to construct
functional tests. Structured design can be used to
identify the design functions that must be tested in the
code, while the Jackson method can be used to identify
the types of data which should be used to construct tests
for those functions.

[10] J. C. Huang, “An Approach to Program Testing,”
ACM Computing Surveys, September 1975, pp.113-128
[Huang75] This paper introduces the basic notions of
dynamic testing based on detailed path analysis in which

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 620

full knowledge of the contents of the source program
being tested is used during the testing process. Instead of
the common test criteria by which to have every
statement in the program executed at least once, the
author suggested and demonstrated by an example, that a
better criterion is to require that every edge in the
program diagraph be exercised at least once. The process
of manipulating a program by inserting probes along
each segment in the program is suggested in this paper.

[11] P. Jalote and Y. R. Muralidhara, “A coverage based
model for software reliability estimation, “Proceedings
of First International Conference on Software Testing,
Reliability and Quality Assurance, 1994, pp. 6 –10
(IEEE)
[JM94] There exist many models for estimating and
predicting the reliability of software systems, most of
which consider a s oftware system as a b lack box and
predict the reliability based on the failure data observed
during testing. In this paper a reliability model based on
the software structure is proposed. The model uses the
number of times a particular module is executed as the
main input. A software system is modeled as a graph,
and the reliability of a node is assumed to be a function
of the number of times it gets executed during testing –
the larger the number of times a node gets executed, the
higher its reliability. The reliability of the software
system is then computed through simulation by using the
reliabilities of the individual nodes.

[12] J. J. Marciniak, “Encyclopedia of software
engineering”, Volume 2, New York, NY: Wiley, 1994,
pp.1327-1358
[Marciniak94] A book intended for software engineers,
this book gives introductions, overviews, and technical
outlines of the major areas in software engineering. A
review in to test generators is given where the major
types of test case generators are given and their intended
purpose and principles are discussed. A review on the
testing process is given where the entire process of
testing is discussed from planning to execution to
achieving to maintenance retesting. All the common
terms and ideas are discussed. A review of testing tools
is given where the testing tool for each purpose is
discussed and a co uple for state of the art systems is
given.

[13] E. F. Miller, “Introduction to Software Testing
Technology,” Tutorial: Software Testing & Validation
Techniques, Second Edition, IEEE Catalog No. EHO
180-0, pp. 4-16
[Miller81] This article serves as the one of the
introductory sections of the book Tutorial: Software
Testing & Validation Techniques. A cross section of
program testing technology before and around the year
1980 is provided in this book, including the theoretical
foundations of testing, tools and techniques for static
analysis and dynamic analysis, effectiveness assessment,
management and planning, and research and
development of soft ware testing and validation. The

article briefly summarizes each of the major sections.
The article also gives good view of the motivation
forces, the philosophy and principles of testing, and the
relation of testing to software engineering.

[14] D. Richardson, O. O’Malley and C. Title,
“Approaches to specification-based testing”, ACM
SIGSOFT Software Engineering Notes, Volume 14 ,
Issue 9, 1989, pp. 86 – 96
[ROT89] This paper proposes one of the earliest
approaches focusing on utilizing specifications in
selecting test cases. In traditional specification-based
functional testing, test cases are selected by hand based
on a requirement specification, thus makes functional
testing consist merely heuristic criteria. Structural testing
has the advantage of that the applications can be
automated and the satisfaction determined. The authors
propose approaches to specification-based testing by
extending a wide variety of implementation-based
testing techniques to be applicable to formal
specification languages, and demonstrate these
approaches for the Anna and Larch specification
languages.

[15] S. Redwine & W. Riddle, “Software technology
maturation,” Proceedings of the Eighth International
Conference on Software Engineering, May 1985, pp.
189-200
[RR85] In this paper, a variety of software technologies
are reviewed. The technology maturation process by
which a p iece of technology first gets the idea
formulated and preliminarily used, then is developed and
extended into a broader solution, and finally is enhanced
to product-quality applications and marketed to the
public. The time required for a piece of technology to
mature is studied, and the actions that can accelerate the
maturation process are addressed. This paper serves as a
very good framework for technology maturation study.

[16] S. Rapps and E. J. Weyuker, “Selecting Software
Test Data Using Data Flow Information,” IEEE
Transactions on Software Engineering¸ April 1985, pp.
367-375
[RW85] A family of test data selection criteria based on
data flow analysis is defined in this paper. The authors
contend that data flow criteria are superior to currently
path selection criteria being used in that using the latter
strategy program errors can go undetected.
Definition/use graph is introduced and compared with a
program graph based on the same program. The
interrelationships between these data flow criteria are
also discussed.

[17] M. Shaw, “Prospects for an engineering discipline
of software,” IEEE Software, November 1990, pp.15-24
[Shaw90] Software engineering is still on its way of
being a true engineering discipline. This article studies
the model for the evolution of an engineering discipline
and applies it to software technology. Five basic steps
are suggested to the software profession to take towards

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 621

a true engineering discipline: to understand the nature of
expertise, to recognize different ways to get information,
to encourage routine practice, to expect professional
specializations, and to improve the coupling between
science and commercial practice. The significant shifts
in research attention of software engineering since the
1960s are also given in this article.

[18] L. J. White and E. I. Cohen, “A Domain Strategy
for Computer Program Testing,” IEEE Transactions on
Software Engineering, May 1980, pp. 247-257
[WC80] Domain errors are in the subset of the program
input domain, and can be caused by incorrect predicates
in branching statements or incorrect computations that
affect variables in branching statements. In this paper a
set of constraints under which it’s possible to reliably
detect domain errors is introduced. The paper develops
the idea of linearly bounded domains. The practical
limitations of the approach are also discussed, of which
the most severe is that of generating and then developing
test points for all boundary segments of all domains of
all program paths.

[19] J. A. Whittaker, “What is Software Testing? And
Why Is It So Hard?” IEEE Software, January 2000,
pp. 70-79
[Whit00] Being a practical tutorial article, the paper
answers questions from developers how bugs escape
from testing. Undetected bugs come from executing
untested code, difference of the order of executing,
combination of untested input values, and untested
operating environment. A four-phase approach is
described in answering to the questions. By carefully
modeling the software’s environment, selecting test
scenarios, running and evaluating test scenarios, and
measuring testing progress, the author offers testers a
structure of the problems they want to solve during each
phase.

[20] Poston (2005), Williams (2002), Hareton (1998)
(Poston, 2005), Robert M. Poston “ Testing tool
combine best of new and old,” IEEE Software. March
2005. (Williams. 2002) Williams et. Al., “The STCL
Test Tool Architecture,” IBM Systems Journal, Vol. 41,
No. 1, 2002. (Hareton, 1998) Hareton K., N. Leung”Test
tools for the year 2000 challenges” 1998 IEEE.
Here we summarized their work.

-Integration of all the data across tools and
repositories.

- Integration of control across the tools
-Integration to provide a single graphical interface
into test tool set.

Limitation: its emphasize only integration tool (usability
&portability)

[21].Rosenberg (2008), Dr. Linda H. Rosenberg,
“Applying & interpreting object oriented Metrics,”
2008.

The approach to software metric for object oriented
program must be different from the standard metric
sets. Some metrics, such as, line of code & cyclomatic
complexity, have became accepted as standard for
traditional functional / procedural programs, but for
object oriented scenario, there are many proposed object
oriented metrics in the literature
Limitation: this provides only conceptual framework for
measurement

[22] Agrawal (2007),K. K. Agarwal, Yogesh Sinha,
Arvinder Kaur, Ruchika Malhotra “ Exploring
Relationships among coupling metrics in object oriented
systems. Journal of CSI vol. 37, no.1, January March
2007.
As per this paper the importance of software
measurement is increasing leading to development of
new measurement techniques.
 Limitation:

a) It’s not provide any relationship between requirement

& testing attribute.
b) It cannot evaluate for large data sets.

“Software quality is another focus of our research.
Metrics fall into two categories the productivity and the
quality. Most of our object oriented metrics are quality
related. We wish to achieve good maintainability,
reusability, flexibility and portability in the architecture
of the software testing tool under construction”.

[23] Anderson (2005), John L. Anderson Jr. “How to
Produce Better Quality Test Software”, IEEE
Instrumentation & Measurement Magazine, August
2005.
 They emphasize that the software industry has
performed a s ignificant amount of research on
improving software quality using software tools &
metrics will improve the software quality and reduce the
overall development time. Good quality code will also
be easier to write understand, maintain and upgrade.

 Limitation:
a) It’s not providing any relationship between

requirement testing attribute.
b) Its not provide full featured testing tool (only

Complexity & cohesion measure).
c) Here provide only conceptual framework for

measurement.

[24] Briand (1999), Lionel C. Briand, John Daly “A
Comprehensive Empirical Validation of Design
Measures for Object-Oriented Systems”, Fraunhfer
IESE, 1999.
 This paper aims is that empirically the relationships
between most of the existing coupling & Cohesion
measures for object oriented (OO) system & fault
proneness of object oriented system classes can be
studied
Limitation: a) Only emphasis on cohesion & coupling
metrics

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 622

[25] Bitman(1997),William R. Bitman, “ Balancing
software co mposition & i nheritance t o i mprove
reusability co st & error rate,” Johns H opkins APL
Technical Digest, Volume 18 November 1997.

 This research defines a key problem in software
development of changing software development
complexity and the method to reduce complexity.
Limitation: a) Its provide only complexity measurement
technique.

[26] Krauskopf(1990), Harrison(1998), R. Harrison, S.

Counsell, R. Nitin, “Coupling metrics for object oriented
design,” Radical eye software, 1998.(Juan) Juan Carlos
Esteva, “Learning to Recognize” (Krauskopf, 1990) Jan
Krauskopf, “The cohesive highs and the coupling lows

of good software design”, IEEE, 1990.

 Coupling is the degree of interdependence between
two modules. In a good design coupling is kept
minimum. Coupling should be low in large and complex
system. No coupling is highly is desirable but practically
it is not possible. The good & bad points of different
types of coupling are discussed
Limitation : a) Only emphasis on cohesion & coupling
metrics

[27] The coupling between object (CBO) metric of
Chidambaram & kemerer are evaluated for five object
oriented systems & compared with alternative design
metric called NAS which measure the number of
association between class & its peers (Harrison R.S).
The NAS metric is directly collectible from design
documents such as object model.
Limitation:
a) it’s not provide any relationship between requirement

& testing attribute.
b) it’s not provide some basic idea for size & effort

estimation.
c) Measuring complexity of a class is subject to bias.

3. Object Oriented Testing

Within the last decade, the object-oriented paradigm
(OOP) has been established as is programming method
with great possibilities. Object-orientation has rapidly
become accepted as the preferred paradigm for large-
scale system design, it has many features. An object is
an entity composed of data and procedures. The
procedures, referred to as methods, implement the
operations on the object's data. Each object has a state,
an identity, and a behavior. The definition of the type of
object is a description of its capabilities. OO testing
concentrates on the states of the objects and their
interactions. In object orientation testing system classes
play important role, classes are the smallest testable unit,
its provide an excellent structuring mechanism. They
allow a system to be divided into well defined units
which may then be implemented separately. Second,

classes support information-hiding. A class can export a
purely procedural interface and the internal structure of
data may be hidden. This allows the structure to be
changed without affecting users of the class, thus
simplifying maintenance. Third, object-orientation
encourages and supports software reuse. This may be
achieved either through the simple reuse of a class in a
library, or via inheritance, whereby a new class may be
created as an extension of an existing one behavior of
inherited methods can be changed because of methods
that are called within methods have to be tested per class
. The object-oriented paradigm has numerous other
powerful features including inheritance, data abstraction,
and dynamic binding. These testing features not possible
in traditional testing. If a fault in an inherited function is
encountered only in the context of the derived class, then
this fault cannot be detected without the selected testing
technique forcing an invocation of this function in an
object, which binds to this derived class. Our study [3]
suggests that traditional testing techniques, such as
functional testing, statement testing and branch testing,
are not viable for detecting OO faults. To overcome
these deficiencies, it is necessary to adopt an object-
oriented testing technique that takes these features into
account. However, the extent to which the cost and
benefit we can balance by adopting an object oriented
testing depends on how the program under test has been
implemented.

Test case design methods for OO software are still
evolving. However, an overall approach to OO test case
design has been defined by Berard [8]:

1. Each test case should be uniquely identified and

explicitly associated with the class to be tested.
2. The purpose of the test should be stated.
3. A list of testing steps should be developed for each

test and should contain [8]:
a. A list of specified states for the object that is to be

tested.
b. A list of messages and operations that will be

exercised as a consequence of the test.
c. A list of exceptions that may occur as the object is

tested.
d. A list of external conditions.
e. Supplementary information that will aid in

understanding or implementing the test.

Unlike conventional test case design, which is driven by
an input-process-output view of software or the
algorithmic detail of individual modules, object-oriented
testing focuses on designing appropriate sequences of
operations to exercise the states of a cl ass. Object-
oriented Software is developed incrementally with
iterative and recursive cycles of planning, analysis,
design, implementation and testing .testing plays a
special role here, since it is done after each increment
[4].

3.1. Artifacts of Object Oriented Software

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 623

A. Attributes which plays important role makers of OO
Software [5].

a) Encapsulation
A wrapping up of data and functions into a single unit is
known as encapsulation. This restricts visibility of object
states and also restricts observability of intermediate test
results. Fault discovery is more difficult in this case.

b) Inheritance
The mechanism of deriving a new class from an old one
is called inheritance. The old class is referred to as the
base class and the new one is called the derived class or
the subclass. Inheritance results in invisible
dependencies between super/sub-classes. Inheritance
results in reduced code redundancy, which results in
increased code dependencies. If the function is
erroneous in the base class, it will be inherited in the
derived class too. A subclass can’t be tested without its
super classes. Abstract classes can’t be tested at all
c) Polymorphism
Polymorphism is one of the crucial features of OOP. It
simply means one name multiple forms. Because of
polymorphism, all possible bindings have to be tested.
All potential execution paths and potential errors have to
be tested. Testing begins by evaluating the OOA and
OOD models. Object Oriented Analysis models can be
tested using the collected requirements and use cases.
Object Oriented Design can be tested by using the class
and sequence diagrams. Structured walkthrough, reviews
should be conducted to ensure correctness, completeness
and consistency

Object – Oriented programming is centered on concepts
like Object, Class, Message, Interfaces, Inheritance,
Polymorphism etc., Traditional testing techniques can be
adopted in Object Oriented environment by using the
following techniques:
− Function based
− Class testing
− Integration testing
− Fault-Based testing
− Scenario Based testing

A. Function Based Testing
Function based testing is just like conventional
(Traditional) testing is based on product requirement and
specification.

B. Class Testing:
Class testing is performed on the smallest testable unit in
the encapsulated class. Each operation as part of a class
hierarchy has to be tested because its class hierarchy
defines its context of use. New methods, inherited
methods and redefined methods within the class have to
be tested. This testing is performed using the following
approaches:

• Test each method (and constructor) within a class

• Test the state behavior (attributes) of the class between
methods

Class testing is different from conventional testing in
that Conventional testing focuses on input-process-
output, whereas class testing focuses on each method. In
addition to testing methods within a class (either glass
box or black box). Test cases should be designed so that
they are explicitly associated with the class and/or
method to be tested. The purpose of the test should be
clearly stated. Each test case should contain:

1. A list of messages and operations that will be

exercised as a consequence of the test
2. A list of exceptions that may occur as the object is

tested.
3. A list of external conditions for setup (i.e., changes in

the environment external to the software that must
exist in order to properly conduct the test)

4. Supplementary information that will aid in
understanding or implementing the test

Some challenge in class testing [6].

1. Encapsulation:
− Difficult to obtain a snapshot of a class without

building extra methods which display the classes’
state

2. Inheritance and polymorphism:
− Each new context of use (subclass) requires re-

testing because a method may be implemented
differently (polymorphism).

− Other unaltered methods within the subclass may
use the redefined method and need to be tested

3. White box tests:
− Basis path, condition, data flow and loop tests can

all apply to individual methods, but don’t test
interactions between methods

Class level testing classified into following parts:

1. Random class testing
Identify methods applicable to a cl ass. Define
constraints on their use – e.g. the class must always be
initialized first. Identify a minimum test sequence – an
operation sequence that defines the minimum life history
of the class. Generate a variety of random (but valid) test
sequences – this exercises more complex class instance
life histories

2. Partitioned Based Testing
Reduces the number of test cases required to test a class
in much the same way as equivalence partitioning for
conventional software following type of partitioned
based testing:

− state-based partitioning:
Tests designed in way so that operations that cause
state changes are tested separately from those that do
not

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 624

− attribute-based partitioning:
For each class attribute, operations are classified
according to those that use the attribute, modify the
attribute & do not use or modify the attribute.

− category-based partitioning:
Operations are categorized according to the function
they perform:
i. Initialization.
ii. Computation
iii. Query
iv. Termination

C. Integration Testing:
OO does not have a hierarchical control structure so
conventional top-down and bottom up integration tests
have little meaning. Integration testing can be applied in
three different incremental strategies:

• Thread-based testing, which integrates classes

required to respond to one input or event.
• Use-based testing, which integrates classes required

by one use case.
• Cluster testing, this integrates classes required to

demonstrate one collaboration.

Test cases should be designed so that they are explicitly
associated with the class and/or method to be tested. The
purpose of the test should be clearly stated. Each test
case should contain:

• A list of messages and operations that will be

exercised as a consequence of the test
• A list of exceptions that may occur as the object is

tested
• A list of external conditions for setup (i.e., changes in

the environment external to the software that must
exist in order to properly conduct the test)

• Supplementary information that will aid in
understanding or implementing the test

D. Fault – Based Testing
Any product must conform to Customer requirements.
Hence, testing should begin with the analysis model
itself to uncover errors. Fault – Based testing is the
method used to design tests that have a high probability
finding probable errors of the software [7]. Fault –
Based testing should begin with the analysis and design
models. This type of testing can be based on the
specification (user's manuals, etc.) or the code. It works
best when based on both.

E. Scenario – Based Testing this new type of testing

concentrates on what the customer does, not what the
product does. It means capturing the tasks (use cases,
if you will) the customer has to perform, then using
them and their variants as tests. Of course, this
design work is best done before you've implemented

the product. It's really an offshoot of a car eful
attempt at "requirements elicitation". These scenarios
will also tend to flush out interaction bugs. They are
more complex and more realistic than fault based
tests often are. They tend to exercise multiple
subsystems in a s ingle test, exactly because that's
what users do. The tests won't find everything, but
they will at least cover the higher visibility
interaction bugs [7].

4. Objective Of Research

In this research work consists of:

• Design object oriented of testing architecture

Template at class diagram.
• Using this architecture we r epresents different

operation of each testing technique and associated
different attribute, using some o peration of testing
technique with others testing operation (has set of
operations it is capable of performing to change its
attribute values which may cause changes to attribute
values of other objects) .

• Here we try providing framework for comprehensive
object –oriented testing tool.

In figure1 object oriented testing divide into three parts
based on their functionality.
First category consists of functional testing, class testing
and its derived classes in this category directly based on
requirement and specification of software products

1. Input the functional specification for function level

testing any testing tool.
2. According functional specification constructs class

level testing.
3. Class level testing divide into two parts partitioning

class testing and random testing.

Partitioning based testing & random testing are derived
from class level testing its use some properties of class
testing.

Second category Integration based testing its further
divide into three parts thread, cluster and used based
testing.

1. Thread-based testing, integrates the set of classes

required to respond to one input or event for the
system. Each thread is integrated and tested
individually.

2. Use-based testing, begins the construction of the
system by testing those classes (called independent
classes) that use very few (if any) of server classes.
After the independent classes are tested, the next
layers of classes, called dependent classes, that use
the independent classes are tested. This sequence of
testing layers of dependent classes continues until the
entire system is constructed.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 625

3. Cluster testing is one step in the integration testing of
OO software. Here, a cluster of collaborating classes
(determined by examining the C RC and object-
relationship model) is exercised by designing test
cases that attempt to uncover errors in the
collaborations.

Third parts consist of fault based testing and scenario
based testing.
1. The object of fault-based testing within an OO

system is to design tests that have a high likelihood
of uncovering plausible faults. Because the product
or system must conform to customer requirements,
the preliminary planning required to perform fault
based testing begins with the analysis model. The
tester looks for plausible faults (i.e., aspects of the
implementation of the system that may result in
defects). To determine whether these faults exist, test
cases are designed to exercise the design or code.

2. Fault-based testing misses two main types of errors:
(1) incorrect specifications and (2) interactions
among subsystems. When errors associated with
incorrect specification occur, the product doesn't do
what the customer wants. Scenario-based testing
concentrates on what the user does, not what the
product does. This means capturing the tasks (via
use-cases) that the user has to perform, then applying
them and their variants as tests. Scenarios uncover
interaction errors. But to accomplish this, test cases
must be more complex and more realistic than fault-
based tests. Scenario-based testing tends to exercise
multiple subsystems in a single test.

5. Conclusion
The maturation of testing techniques has been fruitful,
but not adequate. Pressure to produce higher-quality
software at lower cost is increasing and existing
techniques used in practice are not sufficient for this
purpose. Fundamental research that addresses the
challenging problems, development of methods and
tools, and empirical studies should be carried out so that
we can expect significant improvement in the way we
test software. Researchers should demonstrate the
effectiveness of many existing techniques for large
industrial software, thus facilitating transfer of these
techniques to practice. The successful use of these
techniques in industrial software development will
validate the results of the research and drive future
research. The pervasive use of software and the
increased cost of validating it will motivate the creation
of partnerships between industry and researchers to
develop new techniques and facilitate their transfer to
practice. Development of efficient testing techniques and

tools that will assist in the creation of high-quality
software will become one of the most important research
areas in the near future.

In this research work first establish a total set of
requirement specification for a comprehensive software
testing tool. In Object Oriented environment, these
requirements will address various testing methods and
strategies object oriented development scenarios. This
work will propose architectural designs object oriented
paradigms which will satisfy the established
requirements specifications .These designs can be
further translated into practical industrial tools.

Future Work
Also, this study will propose set of metrics which will be
relevant to do m easurements on the proposed
architectures. These measurements will be used to draw
inferences for understanding behavior of the metrics in
relation to the proposed architectures for improving the
designs for optimizing their quality

6. References:
[1]. Edward Miller and William E. Howden. Tutorial:

Software Testing & Validation Techniques. IEEE
Computer Society Press, second edition, 1981. [23] John
D. Musa. A theory of software reliability and its
applications. IEEE Transactions.

[2]. A. J. J. Marciniak, “Encyclopedia of software
engineering”, Volume 2, New York, NY: Wiley, 1994,
pp.1327-1358.

[3]. G. M. Kao, M. H. Tang, and M. H. Chen. Investigating

test effectiveness on object oriented software - a case
study. In Proceedings of Twelfth Annual International
Software Quality Week, 1999.

[4]. Jilles van Gurp,Oject Oriented Testing Reports,software

verification and validation,DAD404, IDE, University of
karlskrona/Ronneby,1998

[5]. G.Suganya, S .Neduncheliyan, A Study of Object

Oriented Testing Techniques: Survey and Challenges.

[6]. Based on n otes from James Gain (jgain@cs.uct.ac.za)

Larman, chapter 21and notes on Larman from George
Blank of NJIT plus Glenn Blank’s elaborations and
expansions.

[7]. Roger S.Pressman “Software Engineering –A
Practitioner’s Approach” McGraw Hill International
Edition.

[8]. Berard, E.V., Essays on Object-Oriented Software
Engineering, vol. 1, Addison-Wesley, 1993

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 626

mailto:jgain@cs.uct.ac.za

FIGURE 1: OBJECT ORIENTED ARCHITECTURE TOOL

Randam Based Testing

Private string id

public void run();
public void runtest();
public void setup();

public void cleanup();

Functional Testing

privateint Id
private string name
private input, output

virtual void run scenario();
virtual void run();

virtual void setup();
virtual void cleanup();

Class Based Testing

private string result

publicvoid run();
public void runtest();
publicvoid setup();

public void cleanup();

Partitioned Based Testing

Private int id

public void setup();
public void compute();

public void query();

Category Based Testing

int id

public void setup();
public void compute();

public void query();
public void terminate();

Attribute Based Testing

Void attribute

public void setup();
public void compute();

public void query();

State Based Testing

Void state

public void setup();
public void compute();

public void query();

Fault Based Testing

private string error
private string result

public void operation class();
public void message class();

public void unexpected();
public void wrongoperation();

public void
incorrectinvocation();

Scenario Based Testing

Private string error

public void setup();
public void cleanup();

public void run scenario();

Integration Based
Testing

Private string expected
output

public void setup();

public void run test();
public void cleanup();

public void run();

Thread Based Testing

Private string
expected output

public void setup();
public void run test();
public void cleanup();

public void run();

Cluster Based Testing

Private string
expected output

public void setup();
public void run test();
public void cleanup();

public void run();

Use Based Testing

Private string
expected output

public void setup();
public void run test();
public void cleanup();

public void run();

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 627

