
Recovery of √n bytes of data using Backtracking
Algorithm

Asha Rani K.P1, Saravana B2, Raghu D.R3, Raghunandan Athreya4, Sangamesh J C5

1Computer Science and Engineering Department,

 Dr. Ambedkar Institute of Technology, Outer Ring Road, Mallathalli, Bangalore-560056, Karnataka, India

2Bachelor of Engineering, computer Science and Engineering

3Bachelor of Engineering, computer Science and Engineering

4Bachelor of Engineering, computer Science and Engineering
Tech Mahindra

Pune, India

5Bachelor of Engineering, computer Science and Engineering

Tata Consultancy Services
Bangalore, India

Abstract

 Assume that a b usy server is transferring files across the
network, and during the transfer certain data present in the file is
replaced with erroneous data. If the client node or receiver node does
not have any technique to detect errors, then it would process the
erroneous data got, and provide unexpected results. Now assume that
the client just has a er ror detecting technique, it would be able to
detect if errors were present in the received file or not, but will not be
able to correct it, and in case it wants the correct data it will have to
request the busy server to send the file again, this in turn leads to
wastage of precious server cycles and bandwidth.
 Hence an efficient and effective error detection algorithm
is required to overcome the above mentioned problems. Proposed
algorithm can recover the erroneous data. It can be applied to all kind
of data files.
 Here we divide the input data into a 2 D square matrix,
calculate xor value of all rows, and columns present in the matrix.
This information is transferred along with the actual data, and at
receiver end we use backtracking algorithm to recover erroneous data
if any. It contains three stages, encoding of the data, testing for
errors, decoding the data.
 Before sending any file across the network it is encoded by
adding header to the actual data, header contains the necessary
information required for backtracking algorithm. The output file
received is tested for errors and if errors are found it is corrected
using backtracking algorithm and the resultant data file is decoded to
obtain the original data. If the file size is of n by tes then the
backtracking algorithm can correct upto √n bytes of the data.

Keywords : Ex-OR, RAID(Redundant Array of Inexpensive
Disks), BackTracking Algorithm, Error Detection, Error
Recovery, Repetition schemes, Checksum, Cyclic redundancy
checks, Hamming Code, Automatic Repeat-Request.

1. Introduction

Data transfer across network is increasing remarkably. And

whenever data is transferred across network, there are always
possibilities of erroneous data being received at client end.
Hence there is a need for efficient and effective technique for
error detection and recovery. There are many techniques
available in market today.

Advantages of the existing technique
• CRC is the widely used technique and it can detect

errors in large amount of data, by making use of shift
registers.

• Many error correcting algorithms are available that
corrects few bit of errors like Huffman coding, bch code etc.

Problems with existing techniques

• CRC is widely used technique but this technique can
only be used to detect errors, and can correct only 1 bit error
that too if the length of the data is small

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 538

• Many error detecting algorithms like Huffman
coding ,bch code correct only a few bit of errors but the
amount of redundancy added is considerably large

Our aim is to come up with a better technique that adds

as less redundant data as possible, also detects errors
efficiently and also to make the software time efficient.

2. Related Work

2.1 Error Detection

2.1.1 Repetition schemes:

Variations on this theme exist. Given a stream of data

that is to be sent, the data is broken up into blocks of bits, and
in sending, each block is sent some predetermined number of
times. For example, if we want to send "1011", we may repeat
this block three times each.

Suppose we send "1011 1011 1011", and this is received as
"1010 1011 1011". As one group is not the same as the other
two, we can determine that an error has occurred. This scheme
is not very efficient, and can be susceptible to problems if the
error occurs in exactly the same place for each group (e.g.
"1010 1010 1010" in the example above will be detected as
correct in this scheme). The scheme however is extremely
simple, and is in fact used in some transmissions of numbers
stations.

2.1.2 Checksum:

 A checksum of a message is an arithmetic sum of

message code words of a certain word length, for example
byte values, and their carry value. The sum is negated by
means of ones-complement, and stored or transferred as an
extra code word extending the message.

On the receiver side, a new checksum may be calculated
from the extended message. If the new checksum is not 0, an
error has been detected.

Checksum schemes include parity bits, check digits and
longitudinal redundancy check.

2.1.3 Cyclic redundancy checks:

More complex error detection (and correction)

methods make use of the properties of finite fields and
polynomials over such fields.

The cyclic redundancy check considers a block of data as
the coefficients to a polynomial and then divides by a fixed,
predetermined polynomial. The coefficients of the result of
division are taken as the redundant data bits, the CRC. On
reception, one can recompute the CRC from the payload bits
and compare this with the CRC that was received. A
mismatch indicates that an error occurred.

2.2 Error Correction

Hamming distance based checks: Since it takes many bit

errors to convert one valid Hamming code word to any other
valid Hamming code word, the receiver can correct any
single-bit error in a word by finding the "closest" valid
Hamming code, the one code word that has only one bit
different from the received word.

 Some codes can correct a certain number of bit errors and
only detect further numbers of bit errors. Codes which can
correct one error are termed single error correcting (SEC), and
those which detect two are termed double error detecting
(DED). Hamming codes can correct single-bit errors and
detect double-bit errors (SEC-DED)-more sophisticated codes
can correct and detect more errors.

An error-correcting code which corrects all errors of up
to n bits correctly is also an error-detecting code which can
detect at least all errors of up to 2n bits.

2.2.1 Reed–Solomon

 In coding theory, Reed–Solomon (RS) codes are non-binary
cyclic error-correcting codes invented by Irving S. Reed and
Gustave Solomon. They described a s ystematic way of
building codes that could detect and correct multiple random
symbol errors. By adding t check symbols to the data, an RS
code can detect any combination of up to t erroneous symbols,
and correct up to ⌊t/2⌋ symbols.

2.2.2 Hamming Code.

 In telecommunication, a Hamming code is a linear
error-correcting code named after its inventor, Richard
Hamming. Hamming codes can detect up to two simultaneous
bit errors, and correct single-bit errors; thus, reliable
communication is possible when the Hamming distance
between the transmitted and received bit patterns is less than
or equal to one.

Table 1: Comparisons of various Error Correction Algorithms.

Error Recovery
Technique

Number of
Bits
Recovered

Output file size

Repetition Scheme 800 2400
Parity Scheme 0 850 - 900
Checksum 0 900
Cyclic Redundancy
Check Sum

1 805 -813

Polarity Scheme 800 1600
Hamming code 200 1400
Convolution 800 2400
Reed Solomen 120 2040

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 539

http://en.wikipedia.org/wiki/Coding_theory
http://en.wikipedia.org/wiki/Cyclic_code
http://en.wikipedia.org/wiki/Error-correcting_code
http://en.wikipedia.org/wiki/Irving_S._Reed
http://en.wikipedia.org/wiki/Gustave_Solomon
http://en.wikipedia.org/wiki/Random_error
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Linear_code
http://en.wikipedia.org/wiki/Error-correcting_code
http://en.wikipedia.org/wiki/Richard_Hamming
http://en.wikipedia.org/wiki/Richard_Hamming
http://en.wikipedia.org/wiki/Hamming_distance

Consider the file size in 100 bytes long that is 800 bits the
no of bits the various error correcting schemes and the size of
the file is given above.

3. Methodology

This project is based on the Even parity property of Ex-OR.

We divide the data that needs to be transferred across the
network into rows and columns. And while encoding we make
sure that data present in each row and column have even
parity. We make use of Ex-OR property to accomplish this

Once this is done we transfer data across the network.
During transmission if any error occurs we find out the rows
in which error has occurred using even parity property of Ex-
OR and correct it using Backtracking algorithm.

We have used Ex-OR here because Ex-OR by nature itself
is Even Parity. That is if the number of 1(+5V) inputs to the
Ex-OR gate is odd then output of Ex-OR gate is 1(+5V) else it
is 0.

Table 2: Ex-OR Property

Input 1 Input 2 Output 1
0 0 0
0 1 1
1 0 1
1 1 0

Here is a simply examples which shows how we detect
error using Ex-OR and recover it using backtracking
algorithm.

Consider this to be the data we need to transfer across
network.
0111 1000 0101 1111 0011 1100 0010 1010 0110 1110 1111
0101 1100 0001 0111 0011 1110 1101 1001 0100 0100 1011
1000 0010 1010

Now these elements are arranged into a matrix.

Fig 1: Arrangement of data

Here during transmission let us assume that error

occurred in following locations.

1) 3rd row, 1st column

2) 3rd row, 2nd column
3) 2nd row, 4th column

Elements encircled and hi ghlighted in red below are the
positions where error has occurred.

 Moving forward we will assume error has occurred
at following position (Will be highlighted in blue) and we will
apply backtracking algorithm to calculate the values that
should have been present there. And thus recover the
erroneous data

Step 1: We start of assuming might have occurred on 2nd row
1st column. As underlined.

Fig 2: Recovery as per step 1.

So we try to generate that data that could be present in the

cell from rest of the data present in that column.
In this case it is 0111 (1st row 1st column), 1110 (3rd row 1st
column), 0011 (4th row 1st column), 0100 (5th row 1st column)
and, 0011 (result of Ex-OR of that particular column)
Value got from this is put in 2nd row 1st column and horizontal
Ex-OR of 2nd row is calculated to check if our assumption was
right. In case our assumption is right then value optioned by
calculating the Ex-OR of 2nd row should be equal to Actual
Ex-OR value.
Ex-OR of 0111, 1110, 0011, 0100, 0011 is 1101.
Now value 1101 is put in 2nd row 1st column and horizontal
Ex-OR of that row is calculated.
Ex-OR value of 1101, 0010,1010,1110,1110 is 0101! = 1100
which is not equal to actual Ex-OR value of that particular
Row. So the assumption we made was wrong.

Step 2: Now we assume that error was present in 3rd row 1st
column.

And we calculate the value that must have been present
here using other values in that column and actual Ex-OR value
of that column. 0111 (1st row 1st column), 1100 (2rd row 1st
column), 0011 (4th row 1st column), 0100 (5th row 1st column)
and 0011 (result of Ex-OR of that particular column)
Value that should have been present in 3rd row 1st column is
Ex-OR (0111, 1100, 0011, 0100, 0011) = 1111
Now value 1111 is put in 3rd row 1st column and horizontal
Ex-OR of that row is calculated.
Ex-OR value of 1111, 0111,1100,0001,0111 is 0010! = 0000
So our assumption of error being present on 3rd row 1st column
is wrong.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 540

Step 3: So we move further with the algorithm and assume
that error was present in both (1st and 2nd columns of 2nd row).
As underlined.

Fig 3: Recovery as per Step 3.

We repeat the process of calculating the values that should
have been present in those cells by using the values present in
other columns.
Calculating the value present in 2nd row 1st column.
0111 (1st row 1st column), 1110 (3rd row 1st column), 0011 (4th
row 1st column), 0100 (5th row 1st column) and 0011 (result of
Ex-OR of that particular column)
Ex-OR of 0111, 1110, 0011, 0100, 0011 is 1101.
Calculating the value present in 2nd row 2nd column.
1000 (1st row 2nd column), 0111 (3rd row 2nd column), 1110
(4th row 2nd column), 1011 (5th row 2nd column) and 1010
(Actual Ex-OR value of that column)
Ex-OR of 1000, 0111, 1110, 1011, 1010 is 0000
Now we put 1101(into 2nd row 1st column) and 0000(into 2nd
row 2nd column).
And calculate the Ex-OR of that particular row.
Ex-OR (1101, 0000, 1010, 0110, 1110) = 1111! = 1100
So our assumption of error being present in 1st and 2nd column
of 2nd row was wrong.

Step 4: Now we assume error was present in 1st and 2nd
column of 3rd row. As underlined.

Fig 4: Recovery as per step 4.

Calculating the value that was present in 1st column of 3rd
row.
0111 (1st row 1st column), 1100 (2rd row 1st column), 0011 (4th
row 1st column), 0100 (5th row 1st column) and 0011 (result of
Ex-OR of that particular column)

Value that was present in 1st column of 3rd row is

Ex-OR (0111, 1100, 0011, 0100, 0011) = 1111

 Calculating the value that was present in 2nd column of 3rd
row.
1000 (1st row 2nd column), 0010 (2rd row 2nd column), 1110
(4th row 2nd column), 1011 (5th row 2nd column), 1010 (Actual
Ex-OR value of that column)
Value that was present in 2nd column of 3rd row is
Ex-OR (1000, 0010, 1110, 1011, 1010) = 0101
Now we put 1111(into 3nd row 1st column) and 0101(into 2nd
row 2nd column)
And calculate the Ex-OR of that particular row.
Ex-OR of 3rd row is Ex-OR (1111, 0101, 1100, 0001, 0111) =
0000
And the value calculated = A ctual Ex-OR value of that
particular row so our assumption of error being present in 1st
and 2nd column of 3rd row was correct. Moving forward in the
algorithm we will be using these values.

Fig 5: Correct data obtained.

Step 5: Now we start of freshly assuming that value present in
3rd column of 2nd row was erroneous.
Repeat the process of finding the value that should have been
present there using rest of the values present in that column
and Ex-OR value of that column.
0101 (1st row 3rd column), 1100 (3rd row 3rd column), 1101
(4th row 3rd column), 1000 (5th row 3rd column), 0110 (Actual
Ex-OR value of 3rd column)
Ex-OR (0101, 1100, 1101, 1000, 0110) = 1010
Now we put 1010 as the value that should have been present
in 3rd column of 2nd row and calculate the Ex-OR of that row.
Ex-OR (1100, 0010, 1010, 0110, 1110) = 1100
And this value is not equal to Actual ex-OR value of that row
which is 1100. So our assumption was wrong.

Step 6: Now we assume error was present in 3rd column of 3rd
row and calculate the value that should have been present
there using rest of the values as done previously.
0101 (1st row 3rd column), 1010 (2nd row 3rd column), 1101
(4th row 3rd column), 1000 (5th row 3rd column), 0110 (Actual
Ex-OR value of 3rd column)
Ex-OR (0101, 1010, 1101, 1000, 0010) = 1100
Now we put 1000 as the value that should have been present
in 3rd column of 3rd row and calculate the Ex-OR of that row.
Ex-OR (1111, 0101, 1100, 0001, 0111) = 0000
And this value is equal to Actual Ex-OR value of that row
where that error was present at that location.
Though backtracking algorithm interpreted the error location
wrongly it does not harm the actual process of recovery of
data. This occurred because there was no error in 3rd column
of the matrix. And works in favor of backtracking algorithm
to improve its efficiency. Hence our assumption of error being
present in 3rd column of 3rd row was correct. But during

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 541

transmission there was no error at this particular cell. But still
backtracking algorithm told that error was present at that
location.

Fig 6: Recovery as per Step 6

Step 7: Now we start of freshly assuming that value present in
4th column of 2nd row was erroneous. As underlined.

And we calculate the value that must have been present
here using other values in that column and actual Ex-OR value
of that column.
1111 (1st row 4th column), 0001 (3rd row 4th column), 1001 (4th
row 4th column), 0010 (5th row 4th column), 0011 (Actual Ex-
OR value of 4th column)
Ex-OR (1111, 0001, 1001, 0010, 0011) = 0110 Now we put
0110 as the value that should have been present in 4th column
of 2rd row and calculate the Ex-OR of that row.
Ex-OR (1100, 0010, 1010, 0110, 1110) = 1100 and this value
is equal to Actual Ex-OR value of that row which is 1100.
Hence our assumption of error being present in 4th column of
2rd row is correct. And thus we have got the actual data from
erroneous one.
Interchange the rows and columns and repeat the process if
error is still present.

4. Implementation and result

Repeat the process until all columns are covered.
{
 Increment the number of column that needs to be

calculated by 1 say j
 {
 Repeat for number of rows for which error

has occurred
 {

Assume error had occurred in those numbers of columns
and calculate the value that had to be present in all “j”
columns by using rest of the values in that column.

Replace all the “j” columns with the value that was
calculated in the previous step and calculate the Ex-OR value
of that particular row.

Compare the Ex-OR value computed during the previous
step with the actual values.

If both are equal then error was detected.
 {
 Again start from j = 1;
 }
 }

 }
}

The algorithm was implemented and data was recovered
using backtracking algorithm.

Here is the file comparison of actual file size versus

Encoded data.

Table 3: Recovery of data through BackTracking Algorithm.

Actual File
Size(in bytes)

After Encoding
(in bytes)

%Increase in size(in
bytes)

25 41 64
100 126 26
1000 1094 9.4
100000 101129 1.12
1000000 1002006 0.2

5. Conclusion

The algorithm discussed above need not be used only for
detecting and recovering errors for files transferred across
network. It can able be used while storing data too. Currently
there are few places where Ex-OR is used for data recovery.
This algorithm can be used in all those places, the above
algorithm increases the efficiency of Ex-OR is detecting and
recovering errors.

 One such example is with RAID. Currently RAID (2,
3, 4, 5) uses Ex-OR (parity) to detect and recover data. But
has a fault tolerance of 1 disk. But with the help of above
algorithm the fault tolerance of RAID can be increased, since
data is arrange into a 2D array as compared to Conventional
RAID technologies where it i s arranged in 1D. That is if the
number of disks present is 9 then with the help of RAID 2, 3,
4 or 5 technologies only 1 disk can be recovered. But with the
help of above algorithm up to 3 disks can be recovered. As a
result fault tolerance is increased to 3 disks. This arrangement
of data into 2D array also increase the error detection and
recovery property of Ex-OR.

This is one such scenario in which performance is increased
with the help of above algorithm. Similarly there are many
such scenario in which the above algorithm could be used to
increase the amount of data recovered by Ex-OR.

REFERENCES

[1] Gilles Brassard, Paul Bratley (1995). Fundamentals of Algorithmics.
Prentice-Hall

[2] HBmeyer.de Interactive animation of a backtracking algorithm.
[3] Peterson, W. W. and Brown, D. T. (January 1961). "Cyclic Codes for

Error Detection".
[4] Shu Lin, Daniel J. Costello, Jr. (1983). Error Control Coding:

Fundamentals and Applications
[5] http://en.wikipedia.org/wiki/

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 542

