
Self Tuning of Oracle Database Using SQL Scripts

Pooja Rani1 , Pariniyojit Kumar Singh2, Hitesh Kumar Sharma3

1 Department of Information Technology, ITM University,

 Gurgaon, Haryana, India

Abstract

The Oracle professionals or DBA’s should know how to
accurately predict the high-water mark of RAM demands for
their database, and fully allocate the RAM, reserving only
enough to accommodate spikes in user connections. For an
Oracle server, in this paper the goal is to keep all the RAM
memory demands of the database and database connections
beneath the amount of physical RAM memory. In an Oracle
environment, we can accurately control the amount of RAM
memory that is used by the database instance System Global
Area (SGA). This is because the Oracle database
administrator can issue alter system command to change the
RAM memory areas, and can grow and shrink the RAM
memory areas on as needed basis.

Keywords: SGA, PGA, DBWn, LGWR, CKPT, SMON

1. Introduction

An Oracle database is a combination of oracle Instance
and data files on the file system. Oracle Database =
Oracle Instance + Datafiles Again Oracle Instance is
nothing but Memory architecture and Background
processes. Oracle database uses memory for its
operation. The total memory allocated to the Oracle
database can be broadly categorized into SGA (System
Global Area) and PGA (Program Global Area).

We can also categorize SGA into fixed SGA and
variable SGA. Fixed SGA is a component of the SGA
that varies in size from platform to platform and release
to release. It is compiled into the database. The fixed
SGA contains a set of variables that point to the other
components of the SGA and variables that contain the
values of various parameters. The size of the fixed
SGA is something over which we have no control and it
is generally very small. Think of this area as a
bootstrap section of the SGA, something Oracle uses
internally to find the other bits and pieces of the
SGA.[1]”

1.1 System Global Area

SGA Contains following data structure:

• Database buffer cache
• Redo log buffer
• Shared pool
• Java pool
• Large pool (optional)
• Data dictionary cache
• Other miscellaneous information

Variable SGA contains 4 main components as listed
above, those are “Database Buffer Cache”, “Redo Log
Buffer”, “Shared Pool” and “Large Pool”. We call it
variable SGA because we can alter the size of each of
these components manually using ALTER SYSTEM
command. The size of each of the components of
variable SGA is determined by INIT.ORA parameters.

Following are the INIT.ORA parameter for each of the
component:

• Database Buffer Cache – db_block_buffers
This is used to hold the data into the memory. When
ever a user access the data, it gets fetched into database
buffer cache and it will be managed according to LRU
(Least recently used) algorithm.
• Redo Log Buffer – log_buffer
This memory block hold the data which is going to be
written to redo log file.

• Shared Pool – shared_pool_size
This contains 2 memory section, 1) Library Cache 2)
Dictionary Cache.

• Large Pool – Large_pool_size
If defined then used for heavy operations such as bulk
copy during backup or during restore operation.

The total size of SGA is determined by a p arameter
SGA_MAX_SIZE. Below is the simple calculation of
memory sizes.

1.2 Program Global Area

PGA contains information about bind variables, sort
areas, and other aspect of cursor handling. This is not a

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 532

shared area and every user has its own PGA. But why
PGA is required for every user? The reason being that
even though the parse information for SQL or PLSQL
may be available in library cache of shared pool, the
value upon which the user want to execute the select or
update statement cannot be shared. These values are
stored in PGA. This is also called Private Global
Area.Database buffer cache is again divided into 3
different types of cache.

1. Default Cache
2. Keep Cache
3. Recycle Cache

If we define the cache size using DB_CACHE_SIZE
(or DB_BLOCK_BUFFER and specify the block size)
then this will be default cache. The cache has a limited
size, so not all the data on disk can fit in the cache.
When the cache is full, subsequent cache misses cause
Oracle to write dirty data already in the cache to disk to
make room for the new data

2.3 Shared Pool Reserved Size

Shared Pool, as we have seen previously contains the
parsed SQL statements and execution plans. With
continuous use of database, after a p eriod of time the
shared pool will get fragmented. New parsed SQL and
execution plans comes and old one gets aged out and
hence overwritten. This will also lead to larger
packages being aged out with new entries going into
shared pool. Hence access to such larger packages will
take time to parse and create execution plan. This might
cause performance issues. To avoid such situation, you
can define a p arameter
SHARED_POOL_RESERVED_SIZE. This will
reserve some additional space other then
shared_pool_size[2].

2. Process Architecture

Oracle has several process running in the background
for proper functioning of database. Following are the
main categories of process.

I. Server Process – to handle the requests of user
processes connected to the instance. Server processes
(or the server portion of combined user/server
processes) created on behalf of each user’s application
can perform one or more of the following:

• Parse and execute SQL statements issued through the
application

• Read necessary data blocks from datafiles on disk
into the shared database buffers of the SGA, if the
blocks are not already present in the SGA

• Return results in such a way that the application can
process the information

II. Background Process - An Oracle instance can have
many background processes; not all are always present.
The background processes in an Oracle instance include
the following: On many operating systems, background
processes are created automatically when an instance is
started.

Database writer (DBWn) - The database writer
process (DBWn) writes the contents of buffers to
datafiles. The DBWn processes are responsible for
writing modified (dirty) buffers in the database buffer
cache to disk. Although one database writer process
(DBW0) is adequate for most systems, you can
configure additional processes (DBW1 through DBW9)
to improve write performance if your system modifies
data heavily. These additional DBWn processes are not
useful on uniprocessor systems.

Log Writer (LGWR) – The log writer process
(LGWR) is responsible for redo log buffer
management–writing the redo log buffer to a redo log
file on disk. LGWR writes all redo entries that have
been copied into the buffer since the last time it wrote.

Checkpoint (CKPT) - When a checkpoint occurs,
Oracle must update the headers of all datafiles to record
the details of the checkpoint. This is done by the CKPT
process. The CKPT process does not write blocks to
disk; DBWn always performs that work.

System Monitor (SMON) – The system monitor
process (SMON) performs crash recovery, if
necessary, at instance startup. SMON is also
responsible for cleaning up temporary segments that are
no longer in use and for coalescing contiguous free
extents within dictionary-managed tablespaces. If any
dead transactions were skipped during crash and
instance recovery because of file-read or offline errors,
SMON recovers them when the tablespace or file is
brought back online. SMON wakes up regularly to
check whether it is needed.

Process Monitor (PMON) -The process monitor
(PMON) performs process recovery when a user
process fails. PMON is responsible for cleaning up the
database buffer cache and freeing resources that the
user process was using. For example, it resets the status
of the active transaction table, releases locks, and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 533

removes the process ID from the list of active
processes.

Archiver Process (ARCn) -The archiver process
(ARCn) copies online redo log files to a designated
storage device after a l og switch has occurred. ARCn
processes are present only when the database is in
ARCHIVELOG mode, and automatic archiving is
enabled.An Oracle instance can have up to 10 ARCn
processes (ARC0 to ARC9). The LGWR process starts
a new ARCn process whenever the current number of
ARCn processes is insufficient to handle the workload.
The ALERT file keeps a record of when LGWR starts a
new ARCn process.

Lock Manager Server (LMS) - In Oracle9i Real
Application Clusters, a L ock Manager Server process
(LMS) provides inter-instance resource management.

Queue Monitor (QMNn) – The queue monitor
process is an optional background process for Oracle
Advanced Queuing, which monitors the message
queues. You can configure up to 10 queue monitor
processes. These processes, like the Jnnn processes, are
different from other Oracle background processes in
that process failure does not cause the instance to
fail.[3]

3. Implementation of Proposed System

The primary goal for an Oracle server is to keep the
RAM memory demands of the database and the
database connection below the amount of physical Ram
memory. We can control the amount of RAM used by
the database SGA in an Oracle environment by issuing
alter system commands. Let’s take a closer look at these
new Oracle9i features and scripts, which allow you to
see detailed RAM memory usage.

3.1 Algorithm

It defines three variables: ∆RT abbreviates for change
in response time, BUFFER_SIZE denotes the current
size of buffer, CACHE_SIZE corresponds to the size of
cache memory

4. Oracle 9i Scripts

The goal for an oracle server is to keep the RAM
memory demands of the database and database
connections below the amount of physical RAM
memory. We can control the amount of the RAM used
by the database SGA in an oracle environment by
issuing alter system commands.

SCRIPT 1
A quick dictionary query (sc1.sql) against the
v$parameter view will yield the correct for each PGA
RAM region size.

set pages 999;
column pga_size format 999,999,999
select 2048576+a.value+b.value pga from
v$parameter a, v$parameter b where
a.name=’sort_area_size’ and
b.name=’hash_area_size’
The data dictionary query output shows that the Oracle
PGA will use 3.6 megabytes of RAM for each
connected Oracle session.

PGA
3,621,440
If we now multiply the number of connected users of
the PGA demands for each user, we will know exactly
how much RAM should be reserved for connected
sessions.

SCRIPT 2
Computing total PGA RAM
This script reads both the sort_area_size and
hash_area_size to compute the total PGA region.This
script will display a prompt for the high water mark of
connected users and then computes the total PGA RAM
to reserve for dedicated oracle connections.The MS-
Windows PGA session incurs a 2MB overhead in this
example.
Sc2.sql

Compute PGA sizes
set pages 999;
column pga_size format 999,999,999
accept hwm number prompt ‘Enter the high-water mark
of connected users:’
select &hwm*(2048576+a.value+b.value) pga from
v$parameter a, v$parameter b
where a.name=’sort_area_size’ and
b.name=’hash_area_size’
Running the script,we see that we are prompted for the
high water mark.we will assume that the HWM of
connected sessions to the oracle database server is
100.Oracle will do the math and display the amount of
RAM to reserve for oracle connections.

ALGORITHM

1. dbTuner (ESTIMATED_CACHE_SIZE)
2. Begin
3. Run application, algorithm and process
4. Calculate the change in response time (∆RT)
5. If (∆RT>0)
 {
 Run Script
 {
 BUFFER_SIZE = BUFFER_SIZE + 1
 Allocate more RAM and update CACHE_SIZE
 }
 Else IF (∆RT<0)
 {
 Run Script
 {
 BUFFER_SIZE = BUFFER_SIZE - 1
 Reduce RAM and update CACHE_SIZE
 }
 }
 6. Go To Step 4
 6. Stop application, algorithm and process
 7. End

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 534

SQL>@Sc2

Enter the high water mark of connected users:100
Old 2: &hwm*(2048576+a.value+b.value)pga_size
New 2:100*(2048576+a.value+b.value) pga_size
PGA

362,144,000
Returning to our example Windows server, we are
ready to calculate the optimum SGA size. Multiplying
100 by the amount needed for each PGA region(3.62
MB) and adding the 2 MB PGA overhead, gives us
the total PGA size of 364 MB.The maximum size for
the SGA is determined by subtracting the total PGA
and the OS overhead from the total RAM on the server.
Here is a summary:
Total RAM on Windows Server 1250 MB Less:
Total PGA regions for 100 users:
364 MB
RAM reserved for Windows(20%)
250 MB

Maximum SGA size
636 MB
This leaves 636 MB of free memory for the SGA.
Therefore, the RAM allocated to the data buffers should
be adjusted to make the SGA size less than 636 MB, the
server will begin to page RAM, impairing the
performance of the entire server.

SCRIPT 3
Script that adjusts the RAM caches

set heading off
set feedback off
set verify off
accept decrease_pool char prompt 'Enter cache to
decrease: '
accept increase_pool char prompt 'Enter cache to
increase: '
accept change_amount number prompt 'Enter amount to
change: '
spool Sc3.sql
select
 'alter system set &decrease_pool =
'||to_char(to_number(value)-&change_amount)||';'
from v$parameter where name =
lower('&decrease_pool');
select
 'alter system set &increase_pool =
'||to_char(to_number(value)+&change_amount)||';'
from v$parameter where name =
lower('&increase_pool');
spool off
set feedback on

@Sc3

************** OUTPUT *************
SQL> @Sc3
Enter cache to decrease: shared_pool_size
Enter cache to increase: db_cache_size
Enter amount to change: 2048576

alter system set shared_pool_size = 39283072;
System altered.
alter system set db_cache_size = 27825792;
System altered.
This script prompts the DBA for the name of the cache
and the sizes and issues the proper appropriate alter
system commands to adjust the regions.

SCRIPT 4
Script provides us with DBHR
column bhr format 9.99
column mydate heading 'yr. mo dy Hr.'
select
 to_char(snap_time,'yyyy-mm-dd HH24') mydate,
 new.name buffer_pool_name,
 (((new.consistent_gets-old.consistent_gets)+
 (new.db_block_gets-old.db_block_gets))-
 (new.physical_reads-old.physical_reads))
 / ((new.consistent_gets-old.consistent_gets)+
 (new.db_block_gets-old.db_block_gets)) bhr
from
 perfstat.stats$buffer_pool_statistics old,
 perfstat.stats$buffer_pool_statistics new,
 perfstat.stats$snapshot sn
where
 (((new.consistent_gets-old.consistent_gets)+
 (new.db_block_gets-old.db_block_gets))-
 (new.physical_reads-old.physical_reads))
 / ((new.consistent_gets-old.consistent_gets)+
 (new.db_block_gets-old.db_block_gets)) < .90
and
 new.name = old.name
and
 new.snap_id = sn.snap_id
and
 old.snap_id = sn.snap_id-1;

**************** OUTPUT **************
Here is a sample of the output from this script:
SQL> @Sc4
yr. mo dy Hr BUFFER_POOL_NAME BHR

------------- -------------------- -----
2011-02-12 15 DEFAULT .94
2011-02-12 15 KEEP .98
2011-02-12 15 RECYCLE .84
2011-02-12 16 DEFAULT .91

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 535

2011-02-12 16 KEEP .96
2011-02-12 16 RECYCLE .68

This script provides us with data buffer hit ratio for
each of the buffer pools at one hour intervals. It is
important that the KEEP pool always has a 99-100 %
DBHR. If this is not the case, data blocks should be to
the KEEP pool to make it the same size as the sum of
all object data blocks that are assigned to the KEEP
pool.

SCRIPT 5
Script provides us with the contents of data buffers
set pages 999
set lines 92
ttitle 'Contents of Data Buffers'
drop table t1;
create table t1 as
select
 o.owner owner,
 o.object_name object_name,
 o.subobject_name subobject_name,
 o.object_type object_type,
 count(distinct file# || block#) num_blocks
from
 dba_objects o,
 v$bh bh
where
 o.data_object_id = bh.objd
and
 o.owner not in ('SYS','SYSTEM')
and
 bh.status != 'free'
group by
 o.owner,
 o.object_name,
 o.subobject_name,
 o.object_type
order by
 count(distinct file# || block#) desc;
column c0 heading "Owner" format a12
column c1 heading "Object|Name" format a30
column c2 heading "Object|Type" format a8
column c3 heading "Number of|Blocks
in|Buffer|Cache" format 99,999,999
column c4 heading "Percentage|of object|blocks
in|Buffer" format 999
column c5 heading "Buffer|Pool" format a7
column c6 heading "Block|Size" format
99,999
select
 t1.owner c0,
 object_name c1,
 case when object_type = 'TABLE PARTITION' then
'TAB PART'

 when object_type = 'INDEX PARTITION' then
'IDX PART'
 else object_type end c2,
 sum(num_blocks) c3,
 (sum(num_blocks)/greatest(sum(blocks), .001))*100
c4,
 buffer_pool c5,
 sum(bytes)/sum(blocks) c6
from
 t1,
 dba_segments s
where
 s.segment_name = t1.object_name
and
 s.owner = t1.owner
and
 s.segment_type = t1.object_type
and
 nvl(s.partition_name,'-') = nvl(t1.subobject_name,'-')
group by
 t1.owner,
 object_name,
 object_type,
 buffer_pool
having
 sum(num_blocks) > 10
order by
 sum(num_blocks) desc;

* ******* OUTPUT *******************

5. Conclusion & Future work

Tuning the database can become quite complex, but
Oracle9i offers the administrator and unparalleled
ability to control the PGA and SGA. Until Oracle9i
evolves into a completely self-tuning architecture, the
DBA will be responsible for adjusting the dynamic
configuration of the system RAM. It is intended to give
the DBA a high-level overview of the silent features
involved in scheduling dynamic reconfigurations within
Oracle. In the future, we may expect complete self-
tuning databases to emerge, but in the meantime the
administrator must track the historical behavior of the
database and apply it to predictive models. It is only in
this way that scare instance resources can be
proactively applied to develop an optimally-tuned
Oracle database. As people get more sophisticated in
their self-tuning endeavors, many more Oracle metrics
may become self-tuning. For example, there are dozens
of self-tuning parameters that are considered immutable
that may be found to be changeable. As an example,
let’s consider the optimizer_index_cost_adj parameter.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 536

References

[1] loannis Alagiannis (DIAS, I&C, EPFL) ,Towards
 Adaptive, Flexible, and Self-tuned database system
 by in EDIC-ru/05.05.2009.
[2] Foundations of Automated Database Tuning by
 VLDB ‘06, September 12– 15, 2006, Seoul,
 Korea.Copyright 2006 VLDB Endowment, ACM
[3] Rethinking Database System Architecture: Towards
 a Self-tuning RISC-style Database System in Cairo,
 Egypt, 2000
[4] AutoAdmin: Self-Tuning Database Systems
 Technology, Copyright 2006 IEEE
[5] Self-Tuning Database Systems: A Decade of
 Progress, Copyright 2007 VLDB Endowment
[6] Automatic Physical Database Tuning: A relaxation
 based Approach, Copyright 2005
[7] SQL Memory Management in Oracle9i,Hong Kong,

China, 2002
 [8] Self-Tuning for SQL Performance in Oracle
 Database 11g. 2009 IEEE 25th International
 Conference on Data Engineering

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 537

