
Multiple Pattern Matching Algorithm using Pair-count

Raju Bhukya1, DVLN Somayajulu 2

1 Dept of CSE, National Institute of Technology,
Warangal, A.P, India. 506004.

2 Dept of CSE, National Institute of Technology,
Warangal, A.P, India. 506004.

.

 Abstract

Pattern matching occurs in various applications, ranging from simple
text searching in word processors to identification of common motifs
in DNA sequences in computational biology. The problem of exact
pattern matching has been well studied and a number of efficient
algorithms already exist. However these exact pattern matching
algorithms are of little help when they are applied to finding patterns
in DNA sequences. Pattern matching in a D NA sequence or pattern
searching from a l arge data base is a major research area in
computational biology. To extract pattern from a l arge sequence it
takes more time, in order to reduce searching time we have proposed
an approach that reduces the search time with accurate retrieval of the
matched pattern from the given sequence of any size of a file.
Executing patterns from a l arge DNA or protein data is a
computationally intensive task. As performance plays a major role in
extracting patterns from a g iven DNA sequence or from a large
database independent of the size of the sequence. More efficient
approaches related to multiple pattern matching techniques are
becoming more important for finding the functional as well as the
structural properties of the proteins and genes. One of the major
problems in genomic field is to perform pattern comparison on DNA
and protein sequences. In the current approach we explore a new
technique which avoids unnecessary comparisons in the DNA
sequence and gives the accurate retrieval of the pattern called a
multiple pattern matching algorithm using pair count. The proposed
technique gives very good performance related to DNA sequence
analysis for querying of publicly available genome sequence data. By
using this method the number of comparisons gradually decreases and
comparison per character ratio of the proposed algorithm reduces
accordingly when compared to the some of the existing popular
methods. The experimental results show that there is considerable
amount of performance improvement due to this the overall
performance increases.

Keywords: Count, Index, Pair, Sequence

1. Introduction

Genetic algorithms are based on ideas from population
genetics. These algorithms are powerful tools for solving
complex pattern-matching problems, especially when the
matching is incomplete or inexact or when it occurs on
repetitive patterns separated by unmatched patterns, as it can be
in searches for long DNA sequences that take into p ossible
alterations, from single deletions or insertions to crossovers.

Exact string matching consists of finding one or, more
generally, all of the occurrences of a pattern in a target. Text-
Based applications must solve two kinds of problems,
depending on which string, the pattern or the target, is given
first. In computational biology the application of computer
technology is used to the management of biological
information. Computers are used to gather, store, analyze and
integrate biological and genetic information which can then be
applied to gene based drug discovery and development. The
problem of string matching is to find all occurrences of pattern
'P' of size 'm' in the text string 'T' of size 'n'. Researchers have
been focused this sphere of research, various techniques and
algorithms have been purposed and designed to solve this
problem. Exact String matching algorithms are widely used in
bibliographic search, question answering application, DNA
pattern matching, text processing applications and information
retrieval from databases.

Every human has his/her unique genes. Genes are made up of
DNA and therefore the DNA sequence of each human is
unique. However the DNA sequences of all humans are 99.9%
identical, which means there is only 0.1% difference. DNA is
contained in each living cell of an organism, and it is the carrier
of that organism’s genetic code. The genetic code is a s et of
sequences, which define what proteins to build within the
organism. Since organisms must replicate and reproduce tissue
for continued life, there should be some means of encoding the
unique genetic code for the proteins. The genetic code is the
information which will be needed for biological growth and
reproductive inheritance. As DNA is the basic blue print of life
it can be viewed as a long sequence over the four alphabets A,
C, G and T. It contains genetic instructions of an organism and
is mainly composed of nucleotides of four types. Adenine (A),
Cytosine (C), Guanine (G), and Thymine (T). The pattern itself
may not be exactly known, because it may involve insertion,
deletion, or replacement of the symbols. The amount of DNA
extracted from the organism is increasing exponentially. The
DNA constitutes the heritable genetic information in nuclei,
plasmids, mitochondria, and chloroplasts that forms the basis
for the developmental programs of all living organisms.
Determining the DNA sequence is therefore useful in basic
research studying fundamental biological processes, as well as

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 453

in applied fields such as diagnostic or forensic research.
Because DNA is key to all living organisms, knowledge of the
DNA sequence may be useful in almost any biological subject
area. In medicine it can be used to identify, diagnose and
potentially develop treatments for genetic diseases. Similarly,
genetic research into plant or animal pathogens may lead to
treatments of various diseases caused by these pathogens.
When we know a particular sequence is the cause for a disease,
the trace of the sequence in the DNA and the number of
occurrences of the sequence defines the intensity of the disease.
As the DNA is a large database we need an efficient algorithm
to find out a particular sequence in the given DNA. We have to
find the number of repetitions and the start index and end index
of the sequence, which can be used for the diagnosis of the
disease and also the intensity of the disease by counting the
number of pattern matching strings, occurred in a g ene
database. The biologists often queries new discoveries against a
collection of sequence databases such as GENBANK, EMBL
and DDBJ to find the similarity sequences. As the size of the
data grows it b ecomes more difficult for users to retrieve
necessary information from the sequences. Hence more
efficient and robust methods are needed for fast pattern
matching techniques. The string matching can be described as:
given a specific strings P generally called pattern searching in a
large sequence/text T to locate P in T. if P is in T, the matching
is found and indicates the position of P in T, else pattern does
not occurs in the given text. Pattern matching techniques has
two categories and is generally divides into single pattern
matching and multiple pattern matching algorithms.

• Single and Multiple pattern matching algorithms

In a standard problem, we are required to find all occurrences
of the pattern in the given input text, known as single pattern
matching. Suppose, if more than one pattern are matched
against the given input text simultaneously, then it is known as,
multiple pattern matching. Whereas single pattern matching
algorithm is widely used in network security environments.
Multiple pattern matching can search multiple patterns in a text
at the same time. It has a high performance and good
practicability, and is more useful than the single pattern
matching algorithms. To determine the function of specific
genes, scientists have learned to read the sequence of
nucleotides comprising a D NA sequence in a p rocess called
DNA sequencing. DNA comparison, pattern recognition,
similarity detection and phylogenetic trees construction in
genome sequences are the most popular tasks. From the
biological point of view pattern comparison is motivated by the
fact that all living organisms are related by evolution. This
implies that the genes of species that are closer to each other
should show signs of similarities at the DNA level.

Let P = {p1, p2, p3,..,pm} be a set of patterns of m characters
and T={t=t1,t2,t3…tn} in a text of n characters which are
strings of nucleotide sequence characters from a fixed alphabet

set called ∑= {A, C, G, T}. Let T be a large text consisting of
characters in ∑. In other words T is an element of ∑*. The
problem is to find all the occurrences of pattern P in text T.
Many existing pattern matching algorithms are reviewed and
classified in two categories.

• Exact and Inexact string matching algorithm

Exact pattern matching algorithm will find that whether the
probability will lead to either successful or unsuccessful search.
The problem can be stated as: Given a pattern p of length m and
a string/Text T of length n (m ≤ n). Find all the occurrences of
p in T. The matching needs to be exact, which means that the
exact word or pattern is found. Some exact matching
algorithms are Naïve Brute force algorithm, Boyer-Moore
algorithm[3], KMP Algorithm[7]. Inexact/Approximate pattern
matching is sometimes referred as approximate pattern
matching or matches with k mismatches/ differences. This
problem in general can be stated as: Given a pattern P of length
m and string/text T of length n. (m ≤ n). Find all the
occurrences of sub string X in T that are similar to P, allowing a
limited number, say k different characters in similar matches.
The Edit/transformation operations are insertion, deletion and
substitution. Inexact/Approximate string matching algorithms
are classified into: Dynamic programming approach, Automata
approach, Bit-parallelism approach, Filtering and Automation
Algorithms. Inexact sequence data arises in various fields and
applications such as computational biology, signal processing
and text processing.

Pattern matching algorithms have two main objectives.

• Reduce the number of character comparisons required
in the worst and average case analysis.

• Reducing the time requirement in the worst and
average case analysis.

In many cases most of the algorithm operates in two stages.
Depending upon the algorithm some of the algorithm uses pre-
processing phase and some algorithm will search without it.
Many Pattern matching algorithms are available with their own
merits and demerits based upon the pattern length and the
technique they use. Some pattern matching algorithm
concentrates on pattern itself. Other algorithm compare the
corresponding characters of the patterns and text from the left
to right and some other perform the character from the right to
left. The performance of the algorithm can be measured based
upon the specific order they are compared. Pattern matching
algorithms has two different phases.

• Pre-processing and searching phase

The pre-processing phase collects the full information and is
used to optimize the number of comparisons. Whereas
searching phase finds the pattern by the information collected
in pre-processing.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 454

2. Background and Related Work

In this paper we mainly focus on multiple pattern matching.
Given a known pattern we wish to count how many times it
occurs in the text, and to point out its occurrence positions. The
outcome of this search can be further processed by the pattern
discovery machinery, possibly to come back with new searches
for more specific patterns. Since the search patterns of interest
are in general complex, we leave out of this paper the search for
exact strings, which are the most trivial search patterns. As
methods were improved, matching set methods and
approximate string matching techniques were developed.
Improvements in computer speed and evaluation of more
complex problems necessitated multi-dimensional matching
methods. Multi-dimensional methods are generally built on
previously developed string matching algorithms and applied to
multi-dimensional patterns. These include matching patterns for
tree charts, graphs, pictures, proteins, nucleic acids and
molecular phylogeny. Multi-dimensional methods include tree
methods, two dimensional methods used in computer graphics,
and three dimensional methods used in analyzing protein
structures.

String matching mainly deals with problem of finding all
occurrences of a string in a given text. In most of the DNA
applications it is necessary for the user and the developer to be
able to locate the occurrences of specific pattern in a sequence.
In Brute-force algorithm the first character of the pattern P is
compared with the first character of the string T. If it matches,
then pattern P and string T are matched character by character
until a mismatch is found or the end of the pattern P is detected.
If mismatch is found, the pattern P is shifted one character to
the right and the process continues. The complexity of this
algorithm is O(mn). The Bayer-Moore algorithm[3] applies
larger shift-increment for each mismatch detection. The main
difference the Naïve algorithm had is the matching of pattern P
in string T is done from right to left i.e., after aligning P and
string T the last character of P will matched to the first of T . If
a mismatch is detected, say C in T is not in P then P is shifted
right so that C is aligned with the right most occurrence of C in
P. The worst case complexity of this algorithm is O(m+n) and
the average case complexity is O(n/m). In IFBMPMA[12] the
elements in the given patterns are matched one by one in the
forward and backward until a mismatch occurs or a complete
pattern matches .The KMP algorithm[7] is based on the finite
state machine automation. The pattern P is pre-processed to
create a finite state machine M that accepts the transition. The
finite state machine is usually represented as the transition
table. The complexity of the algorithm for the average and the
worst case performance is O(m+n). In IBKPMPM[13]
algorithm we first choose the value of k (a fixed value), and
divide both the string and pattern into number of substring of
length k, each substring is called as a partition. If k value is 3
we call it as 3-partition else if it is 4 then it is 4-partition
algorithm. We compare all the first characters of all the
partitions, if all the characters are matching while we are

searching then we go for the second character match and the
process continues till the mismatch occurs or total pattern is
matched with the sequence. If all the characters match then the
pattern occurs in the sequence and prints the starting index of
the pattern or if any character mismatches then we will stop
searching and then go to the next index stored in the index table
of the same row which corresponds to the first character of the
pattern P. In approximate pattern matching method the oldest
and most commonly used approach is dynamic programming.
In 1996 Kurtz[8] proposed another way to reduce the space
requirements of almost O(mn). The idea was to build only the
states and transitions which are actually reached in the
processing of the text. The automaton starts at just one state and
transitions are built as they are needed. The transitions those
were not necessary will not be build. The Deviki-Paul
algorithm[5] for multiple pattern matching requires a pre-
processing of the given input text to prepare a table of the
occurrences of the 256 member ASCII character set. This table
is used to find the probability of having a match of the pattern
in the given input text, which reduces the number of
comparisons, improving the performance of the pattern
matching algorithm. In the MSMPMA[18] technique the
algorithm scans the input file to find the all occurrences of the
pattern based upon the skip technique. By using this index as
the starting point of matching, it c ompares the file contents
from the defined point with the pattern contents, and finds the
skip value depending upon the match numbers (ranges from 1
to m-1). Harspool[6] does not use the good suffix function,
instead it uses the bad character shift with right most character
.The time complexity of the algorithm is O(mn). Berry-
Ravindran[2] calculates the shift value based on the bad
character shift for two consecutive text characters in the text
immediately to the right of the window. This will reduce the
number of comparisons in the searching phase. The time
complexity of the algorithm is O(nm) .Sunday[4] designed an
algorithm quick search which scans the character of the
window in any order and computes its shift with the occurrence
shift of the character T immediately after the right end of the
window. The FC-RJ[11] algorithm searches the whole text
string for the first character of the pattern and maintains an
occurrence list by storing the index of the corresponding
character. It uses an array equal to size of the text string for
maintaining occurrence list. Time and space complexity of pre-
processing is O(n).

Ukkonen[15] proposed automation method for finding
approximate patterns in strings. He proposed the idea using a
DFA for solving the inexact matching problem. Though
automata approach doesn’t offer time advantage over Boyer-
Moore algorithm[3] for exact pattern matching. The complexity
of this algorithm in worst and average case is O(m+n). In this
every row denotes number of errors and column represents
matching a p attern prefix. Deterministic automata approach
exhibits O(n) worst case time complexity. The main difficulty
with this approach is construction of the DFA from NFA which
takes exponential time and space. Wu.S.Manber.U[16]

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 455

proposed the algorithm for fast text searching allowing errors.
The first bit-parallel method is known as “shift-or” which
searches a p attern in a text by parallelizing operation of non
deterministic finite automation. This automation has m+1 states
and can be simulated in its non deterministic form in O(mn)
time. The filtering approach was started in 1990. This approach
is based upon the fact it may be much easier to tell that a text
position doesn’t match. It is used to discard large areas of text
that cannot contain a match. The advantage in this approach is
the potential for algorithms that do not inspect all text
characters. By using dynamic programming approach
especially in DNA sequencing Needleman-Wunsch[9]
algorithm and Smith-waterman algorithms[14] are more
complex in finding exact pattern matching algorithm. By this
method the worst case complexity is O(mn). The major
advantage of this method is flexibility in adapting to different
edit distance functions. The Raita algorithm[10] utilizes the
same approach as Horspool algorithm6 to obtaining the shift
value after an attempt. Instead of comparing each character in
the pattern with the sliding window from right to left, the order
of comparison in Raita algorithm[10] is carried out by first
comparing the rightmost and leftmost characters of the pattern
with the sliding window. If they both match, the remaining
characters are compared from the right to the left. Intuitively,
the initial resemblance can be established by comparing the last
and the first characters of the pattern and the sliding window.
Therefore, it is anticipated to further decrease the unnecessary
comparisons.

The Aho-Corasick algorithm[1] developed at Bell Labs in 1975
by Alfred Aho and Corasick is an extension of the KMP
algorithm[7]. The AC algorithm consists of constructing a finite
state pattern matching machine from the keyword and then
using the machine to process the text in a single pass. It can
find an occurrence of several patterns in the order of O(n) time,
where n is the length of the text, with pre-processing of the
patterns in linear time. Two dimensional pattern matching
methods are commonly used in computer graphics. Takaoka
and Zhu[19] proposed using a combination of the KMP
algorithm[7] and RK methods in an algorithm developed for
two dimensional cases. The second approach that runs faster
when the row length of the pattern increases and is significantly
faster than previous methods proposed. Three dimensional
pattern matching is useful in solving protein structures, retinal
scans, finger printing, music, OCR and continuous speech.
Multi-dimensional matching algorithms are a natural
progression of string matching algorithms toward multi-
dimensional matching patterns including tree structure, graphs,
pictures, and proteins structures.

3. Multiple Pattern Matching Algorithm using
Pair-Count

The most common approach is to improve efficiency which
involves the idea of indexing method where the number of

comparisons is reduced when compared with different existing
algorithms. So a new index based algorithm is proposed. In
such approach the characters are indexed according to their
indexes as they occur in the text/sequence. The efficiency and
performance highly depends upon the character size. The
objective of the work is to find the patterns from the sequence
file of large size. Many different solutions have been proposed
to bring the optimal results with exact matching sequence data
but gets inaccurate and slow results. Latest computational
technology uses fast algorithms which made relatively easy in
bringing accurate results.

In the proposed work indexes has been used for the DNA
sequence. We have to search a p attern in a s tring whose
alphabet set = {A, C, G, T}. Let the string be S of n characters
and the pattern P of m characters. After creating the index the
algorithm will search for the pattern in the string using the
index of least occurring character in the string and the pair
comparison method for comparison is done once we align with
the least count character with the pattern. The index based
algorithm uses a table called stab[4][n] which stores all the
indexes of each character in its corresponding vector with the
occurrence index. Current algorithm used for the pair count
technique is suitable for the DNA pattern matching as well as
for the protein sequence and normal text comparison. The
algorithm provides dynamic array generation mechanism for
pattern matching of all 256 ASCII character value. As we scan
the sequence from left to right the characters are places into the
table by using the hash function. Generally the algorithm
generated here will provide the view for 2D array generation at
runtime so as to construct only those many character subscript
as many are available in the text string. Such dynamic array
generation reduces the time as well as space complexity both in
comparison to other existing popular methods. It also helps in
decreasing the number of searching comparison for the 2D
array. Here step 3 to step 7 shows the 2D array generation
procedure and appropriate example is discussed at later sections
for random character among all 256 ASCII values.

3.1 Algorithm

Input- Combination of pattern P[] (pattern of string to search)
 S [] (text of the string)
Step 1 Initialize
 i =0, k = 0 , l = 0; {// Incremental variables}
Step 2 Char C = S[i]
 int d = int (S[i]) //ASCII value conversation
 //2D DYNAMIC ARRAY
Step 3 If c is distinct // Subscript table construction
 m = (d - 64) % 5
 subscript[k][l] = c
 l = l+1
 subscript[k][l] = m
 k = k+1;
Step 4 If c not the last char in S[]
 i= i+1;
 GOTO step 2

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 456

Step 5 Take character c from pattern P[] // 2D array construction
 c= P[i]
Step 6 Stab[n][m] = c // stab[][] is 2D array
 m=m+1
 stab[n][m] = index of c
Step 7 repeat till all c in S[]
 m=m+1
 index= i
 stab[n][m]=index
 //2D DYNAMIC CONSRTUCTION ENDS
Step 8 Next i
 n=n+1
 GOTO step 5
Step 9 for each pattern in combination of pattern
 Follow step 10 to step 15
Step 10 Calculate and store each character of pattern P[] in an
array c_occur[] and their index in c_index[]
Step 11 Compute i where i=index of character having minimum
occurrence
Step 12 Compute pos in pattern where Pos=index of character
(having min occurrence in s[] in pattern
Step 13 Compute l
 l= i - pos of char in pattern[]
Step 14 Compare the pair of character from s and pattern
 no_of_comp++;
 if (compare is true)
 continue next pair compare
 no_of_comp++
 no_of_occr++
 if(false)
 no_of_comp++
Step 15 Next i
 GOTO Step 3

 The basic idea used here is to store all the indexes of each
character in its corresponding row in the 2D vector. Now using
this pre-processed index we will not be opting for normal
sequential comparison rather we have implemented ASCII
indexing technique which reduces the comparisons as well as
memory usage. The ASCII indexing technique will be used to
reduce the pre-processing time. It means the searching of row
in 2-D array for the occurrence index of character will take time
when normal method is applied, but if we apply ASCII
indexing technique it reduces the time complexity by reducing
number of search to get correct row of 2D array. For DNA
pattern (A,C,G,T) w e get array subscript by using the hash
function [(S[i]-64)%5], and the subscript Table.1 is as follows.

Table.1.Array Subscript values for the DNA sequence
S. No DNA ASCII

value
Val(ASCII)-
64

{Val(ASCI
I)-64}%5

Array
Subscript

1. A 65 1 1 1
2. C 67 3 3 3
3. G 71 7 2 2
4. T 84 20 0 0

By the above table we can fetch the occurrence of A,C,G,T in
2D array by just going into the row which is the subscript of
corresponding character. Suppose we have a character A which
is having ASCII value of 65 and by using the hash function we

will get its array subscript as 1. By using the array subscript of
each character we can go directly to the row of 2D array which
is the subscript of the corresponding character. The hash
function [(S[i]-64)%5] always returns a subscript value in the
range 0,1,2,3 which is needed for subscripting 2D array of size
[4][n]. The subscript values 0,1,2,3 represent the characters T,
A, G and C respectively. So for each character in the string of
the function ((S[i]-64)%5) directly references to its
corresponding row in the 2D table.

3.2 Pre-processing and Searching

Suppose when it comes to a normal text where a pattern is to
be searched in that text, then as far as pre-processing is
concerned it will first fetch each distinct character from the text
one by one by incrementing the index of the text and calculate
for each character with the corresponding subscript (stored in
subscript[]). The advantage of calculating subscript is number
of comparison is gradually reduced with array subscript. In
pattern matching once the subscript is known we can go
directly to that row in the occurrence table which reduces the
comparison by n/4. Pre-processing of index occurrence table is
done by taking each character one by one from the text and
then its corresponding index is stored in 2D array with the
assigned subscript for the character as row of the 2D array. It
goes as, if once we got the character then its ASCII subscript is
taken, and the corresponding row of 2D array is filled with the
index of the character. The pre-processing method is used for
constructing 2D array as it goes till all the character of the text
completes i.e., till we reaches the end of the text. After this we
are ready with occurrence index of each character in the text
and also with the subscript of each distinct character going to
come in the text or pattern. With the presence of these two
tables it almost reduces the initial comparison at pre-processing
phase to one-fourth of the normal algorithm. Once we get the
text (S[]) and pattern (P[]) as input our primary job is to
search for the minimum count (i.e. occurrence of character)
character among the pattern’s character by going through the
count column of subscript array. Once we get the minimum
count character then we have to access its occurrence index
from 2D array with the help of its subscript value which is
already available with us as a pre-processed table.

 As we are now having first occurrence index of the minimum
count character then we go for alignment method of the pattern
with the text. For comparison of character the text pointer is
decremented to one less than the length of the pattern (i.e. L=
n-1), where L= comparison pointer. After alignment and
pointer shift, now pair wise comparison is done from text (S [])
and pattern (P[]) one by one each pair is taken, if first pair
matches the corresponding pattern’s first pair then we shift
pointer twice for comparison of next pair and it goes till the
pattern end is encountered. If matching fails then we switch’s to
next occurrence of the character from the 2D array. After the
occurrence of pattern in the text or after a matching failure we
go again to 2D array for next occurrence index and minimum

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 457

count character. Then the same alignment procedure is
followed till th e end of the text. For a new pattern again the
minimum count character is searched and corresponding
subscript valued row is fetched for the occurrence index of that
character. In this scheme pattern matching uses the pre-
processed table of subscript and 2D array of reference of each
different pattern, to calculate their occurrence. The pre-
processing of table is needed at the starting of the text, which is
once done can be used for any type and number of pattern for
that particular text.

3.3 Example for the DNA Text Sequence

Take a string S=GCTCGATTTCGATGGCTCGAATCCTA of 26
DNA characters and P = TCGA of 4 characters. The index table
stores all the indexes of each character A, C, G and T in its
corresponding row as it occurs in the sequence. The 0th row
stores the indexes of occurrences of the character T, 1st row for
A, 2nd row for G and 3rd row for C. It also stores the total
number of occurrences of each character in separate array. The
comparisons will start from the character in pattern P which is
occurring least number of times in the string. For the sequence
S the element T, A, G and C are occurring 8, 5, 6 and 7 times
respectively. Here A is occurring least number of times, so A is
used as the initial alignment and once if there is a match of
pattern A with the sequence character A then rest of the pair
will be compared in a sequential order for the pattern matching
process. Once we have aligned the minimum count character
with the text then pairing concept is applied for comparison in
which we compare pair wise. Comparing pair wise often
reduces our comparison in respect of normal comparison
sequential method.

Table.2.DNA Sequence 2D index table
Subscript Indexes Count

T 0 2 6 7 8 12 16 21 24 8
A 1 5 11 19 20 25 5
G 2 0 4 10 13 14 18 6
C 3 1 3 9 15 17 22 23 7

In this technique the character A in pattern P is aligned with A
in the DNA sequence S. Once the alignment is completed then
it will match pair wise one by one pairs of the DNA sequence
from the starting character of the given pattern by using the
comparison pointer (i.e. L= n-1). In the index table the
occurrence of the A character is 5 i.e., least count is 5, so A will
be used for matching process. Here the table has an extra field
called count which increments every time as the character
occurs in the sequence. The count helps to find the least count
character which is available from the index table, so only those
many comparisons can be done. The algorithm maps to the first
occurrence of A according to the table and then starts
comparing the first pair of the pattern with the possible match
in the string relative to that A.

S=GCTCGATTTCGATGGCTCGAATCCTA
 P =TCGA
Here the alignment is done in accordance with least count
character i.e., A, now we perform pairing comparison from
pattern P with text S.
S=GCTCGATTTCGATGGCTCGAATCCTA
 P=TCGA
First pair TC matches with the first pair of text so it goes to
next step i.e., it will now compare for next pair of it.
S=GCTCGATTTCGATGGCTCGAATCCTA
 P =TCGA
For second pair also we get the pair matching, which tells that
one occurrence of the pattern has been found. Now we go to the
second index in the table of occurrence of A.
S=GCTCGATTTCGATGGCTCGAATCCTA
 P=TCGA
Here the next A is present in the 11 index. So the initial
alignment is performed.
S=GCTCGATTTCGATGGCTCGAATCCTA
 P=TCGA
Then the first pair TC matches with the first pair of text, now
compare for next pair of it.
S=GCTCGATTTCGATGGCTCGAATCCTA
 P =TCGA
For second pair also we get the pair matching, where second
occurrence of the pattern has been found. Now we go to the
third index in the table of occurrence of A.
S=GCTCGATTTCGATGGCTCGAATCCTA
 P =TCGA
The third index as available in 2D index table of A which is 19.
After aligning the A we perform pair comparison.
 S=GCTCGATTTCGATGGCTCGAATCCTA
 P =TCGA
First pair TC matches with the first pair of text so it goes to
next step i.e., it will now compare for next pair of it.
S =GCTCGATTTCGATGGCTCGAATCCTA
 P =TCGA
For second pair also matches with the sequence and next
pattern is found from the sequence. Now we go to the fourth
index in the table of occurrence of A.
S =GCTCGATTTCGATGGCTCGAATCCTA
 P =TCGA
Here the first pair TC do not matches with the text’s pair so we
leave rest of the pair comparison for this index and move to last
index of A. Here also the pattern doesn’t match so we stop.
S =GCTCGATTTCGATGGCTCGAATCCTA
 P =TCGA
By above example we can conclude that taking least count and
pairing comparison often reduces the number of comparison in
corresponding to other algorithmic technique where normal
checking is done. More over use of ASCII method with 2D
array also reduces the space and time complexity factor which
is very high in many earlier proposed algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 458

3.4 Normal text sequence

Take a string S=ACDAGOODDAACDAGACGOODD of 21
characters and combination of pattern for which we will be
checking the general English text pattern. Here the distinct
characters for the two pattern combination is P={ ACDA,
GOOD} of 5 distinct character in a new combination. The index
table stores all the indexes of each character A, C, D, G and O
in its corresponding row as it occurs in the sequence. The 0th
row stores the indexes of occurrences of the character O, 1st row
for A, 2nd row for G, 3rd row for C, 4th row for D with the help
of the hashing technique. It stores the total number of
occurrences of each character in separate array. The
comparisons will start from the character in pattern P which is
occurring least number of times in the string. For the sequence
S the element A, C, D, G, and O are occurring 5, 3, 6, 3 and 4
times respectively. Here C is occurring least number of times,
so C is used as the initial alignment and once if there is a match
of pattern C with the sequence character C then rest of the pair
will be compared in a sequential order for the pattern matching
process. Once we have aligned the minimum count character
with the text then pairing concept is applied for comparison in
which we compare pair wise. In this technique the character C
in pattern P is aligned with C in the sequence S. Once the
alignment is completed then it will match pair wise using one
by one pairs of the English text sequence from the starting
character of the given pattern. In the index table the occurrence
of the C character is only 3 i.e., least count is 3 so C will be
used for matching process. Here the table has an extra field
called count which increments every time as the character
occurs in the sequence. The count helps to find the least count
character which is available from the index table, so only those
many comparisons can be done. The algorithm maps to the first
occurrence of C according to the table and then starts
comparing the first pair of the pattern with the possible match
in the string relative to that C.
S=ACDAGOODDAACDAGACGOODD
P=ACDA
Here the alignment is done in accordance with least count
character i.e., C in our case with the text, now we perform
pairing comparison from pattern P with text S.
S= ACDAGOODDAACDAGACGOODD
P= ACDA
First pair AC matches with the first pair of text so it g oes to
next step i.e., it will now compare for next pair of it.
S= ACDAGOODDAACDAGACGOODD
P= ACDA
For second pair also we get the match, where the first
occurrence of the pattern has been found. Now we go to the
second index in the table of occurrence of C.
S=ACDAGOODDAACDAGACGOODD
 P=ACDA
The second occurrence of the C is at 11 position .Now we
perform pairing comparison from pattern P with text S.
S=ACDAGOODDAACDAGACGOODD
 P=ACDA

First pair AC matches with the first pair of text so it g oes to
next step i.e., it will now compare for next pair of it.
S=ACDAGOODDAACDAGACGOODD
 P=ACDA
For second pair also we get the pair matching, so the second
pattern has been found from the text. Now we go to the third
index in the table of occurrence of C.
S=ACDAGOODDAACDAGACGOODD
 P=ACDA
The third occurrence of the C is at 16th position. So we perform
pairing comparison from P with text S.
S=ACDAGOODDAACDAGACGOODD
 P=ACDA
First pair AC matches with the first pair of text so it g oes to
next step i.e., it will now compare for next pair of it.
S=ACDAGOODDAACDAGACGOODD
 P=ACDA
For the next pair since it do not matches so we leave this
occurrence and since once further occurrence exist so we go for
net combination of pattern. For 2nd combination we have P =
{GOOD}. In the index table the occurrence of the G character
is only 3 i.e., least count is 3 so G will be used for initial
alignment process. If we use the pair-count process two
patterns will be matched related to GOOD pattern.

3.5 Mathematical Proof

Let X be a text of size m and Y be given pattern of size n, m>=
n, let us assume stab[n][m] be 2D array having occurrence
index of each character. Then for pre-processing tables needed
for pattern matching mathematical calculation done are as
follows.
Character ASCII value
 e.g. T= 84
Now here hashing technique is employed with a hash function
for construction of hash key.
 Val = |[ASCII val(char) - 64]| %5
 Subscript = val;
 Index occurrence table
 Stab [val][0] = 1st position index
And it goes on for each character’s next occurrence and for
next character the corresponding hash key is taken for stab[][]
row.
In our case e.g. let us take A, C, G, T i.e., n=4. If count [] being
array keeping number of occurrence details so,
Stab[min(count[n])][0] = 1s t index of the minimum count
character in text X.
POS = position of that character in Y i.e., pattern.
I = character index in 2D array.
Now, for alignment, text X’s pointer for comparison has to shift
as per the length of the pattern and as per the given 1st
character of the pattern. Mathematically it can be done as,
L = I – POS
Where L= 1st pair of X to be compared after alignment with Y.
The comparison took in pair as X[L] + X[L+1] with Y[0] +
Y[1].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 459

Therefore,
 L= character index in 2D array – POS.
 X = GCTCGATTTCGATGGCTCGAATCCTSA
 Y =TCGA
Here alignment is done but now for comparison with pairs of X,
L is to be generated, i.e.,
In this case I = 20 (index of A’s occurrence)
 POS= 3(position of character in Y)
Therefore by our formula L= I – POS we have,
 L=20-3 = 17
 i.e., pair comparison starts from 17th position of text X
So X[17] + X[17+1] compared with Y[0] + Y[1].

3.6 ASCII value generation for dynamic 2D array at
runtime

For finding array subscript we use the hashing function
mechanism, once we get the subscript the particular character
occurrence can be fetched by going into the given subscript row
of the 2D runtime array. For avoiding the hash collision here
we use linear probing collision avoidance technique which
results in all distinct array subscript for the each distinct
character of the given text S. Linear probing is a scheme in
hashing technology resolving collision in between hashing of
values of hash methods(function) sequentially searching the
hash table for a free location. This is accomplished using two
values, one as a s tarting value and one as an interval between
successive values in progressive modular arithmetic. The
second value, which is the same for all keys and known as the
linear_size, is repeatedly added to the starting value until a free
space is found, or the entire table is traversed.

 Req cell = (index_start + linear_size) % array length

This algorithm, which is used in different hashing techniques,
provides good memory caching (if linear size is equal to one),
through good locality of reference. The performance of linear
probing is also more sensitive to input distribution when
compared to double hashing. The concept used for creation of
ASCII value 2D array is the hashing method to generate the
array subscript of each occurring character in the given text
pattern. Once the character subscript will be generated then we
can easily access the particular character with its index value.
To generate proper unique subscript of the character we follow
certain collision avoidance technique in the hashing method.
Here we have applied the technique called linear probing
method. Its mathematical approach is as follows.
 The normal subscript is assigned to each character with the
corresponding generated hashing value till the space in 2D
array is vacant for that particular index. If the cell is not vacant
then the following logic is applied.

Req cell = (index_start + linear_size) % array length

Where, index _start = the initial index value of the 2D array
 linear_size= the size jump what we take in seek of
vacant position (in case of linear probing step size=1)
 array length = size of the 2D array.
Given an ordinary hash function H(x), a linear probing function
(H(x, i)) would be

H(x,i) = (H(x)+i) (mod n)

Here H(x) is the hash function, n the size of the hash table, and
the linear size is i in this case. Using linear probing, dictionary
operation can be implemented in constant time. In other words,
insert, remove and find operations can be implemented in O(1).

3.7 Example for the combination of the characters,
numbers and special symbols

 As we have constructed the array for the different text for the
pattern matching, here we generate the 2D ASCII array table
for the text. For all distinct character of the text hash function
({|Val(ASCII)-64|}%9) has been applied an d using linear
probing technique proper subscript has been allotted. The
various selected distinct character are # $ % A G ! Q
9 + <- 8 H and using the appropriate hashing technique it
allots the subscript value within the range of 0 to 11. The array
subscript table follows with the linear probing method.

Table.3. Index subscript of different Symbols

 Take a string S=$%89A#AA%%89A$+!Q#AA%88<-
G$+!Q%89AA#AA%#988HH of 44 characters and P = %89A
of 4 characters. The index table stores all the indexes of each
character %, 8, 9 and A in its corresponding row as it occurs in
the sequence. The 0th row stores the indexes of occurrences of
the character %, 10th row for 8, 9th row for 9 and 3rd row for A.
It stores the total no of occurrences of each character in
separate array. The comparisons will start from the character in
pattern P which is occurring least number of times in the string.
For the sequence S the element %, 8, 9 and A are occurring 6, 7,
4, 10 t imes respectively. Here 9 is occurring least number of
times so 9 is used as the initial alignment and once if there is a
match of pattern 9 with the sequence character 9 then rest of the

S. No Char ASCII
value

|Val(ASCII)
-64|

{|Val(ASCI
I)-64|}%9

Array
Subscript

1. # 35 29 2 2
2. $ 36 28 1 1
3. % 37 27 0 0
4. A 65 1 1 3
5. G 71 7 7 7
6. ! 33 31 4 4
7. Q 81 17 8 8
8. 9 57 7 7 9
9. + 43 21 3 5
10. <- 96 32 5 6
11. 8 56 8 8 10
12. H 72 8 8 11

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 460

http://en.wikipedia.org/wiki/Double_hashing

pair will be compared in a sequential order for the pattern
matching process.

For the given sequence/text we used all the symbols
S=$%89A#AA%%89A$+!Q#AA%88<G$+!Q%89AA#AA%#98
8HH the occurrence table is shown table.4. From the above
sequence S we have taken the combination of special symbols,
characters, numbers and special characters. As we scan the
sequence a table is created called dynamic 2D table and these
sequence S will be sent by using the hash function. The
advantage of doing this is only the symbols, characters,
numbers or special symbols available in the sequence size table
will be created. Here we are reducing the memory size without
taking unnecessary all the 256 characters. Only the characters
which are in the sequence only the 2D table will be created as
shown below.

 Table.4.Index values for all the combination of characters

For the given text S=$%89A#AA%%89A$+!Q#AA%88<-
G$+!Q%89AA#AA%#988HH and pattern the P=%89A. The
pair comparison is done with aligning the pattern with 9 which
is having minimum count.
S= $%89A#AA%%89A$+!Q#AA%88<-G$+!Q%89AA#AA%#988HH
 P= %89A
Once the alignment has been done the pattern is matched pair
wise. In this case one match has been found of pattern P in text
S. Then we go for 11th index of 9 for comparing.
S=$%89A#AA%%89A$+!Q#AA%88<-G$+!Q%89AA#AA%#988HH
 P=%89A
Second match found of pattern P in text S. Then we go for the
third occurrence of 9 at 31th index.
S=$%89A#AA%%89A$+!Q#AA%88<-G$+!Q%89AA#AA%#988HH
 P=%89A
Third match has been found for pattern P in S. Further no index
of 9 in text S matches with the pattern.

3.8 Example for the Protein Sequence

Unlike what we have only 4 characters in the DNA, we can
here have around 20 characters in the string text for which
various different protein sequences. The below Table.5 shows
different characters related to the protein sequence characters
and the various patterns whose matching we will be done by
pair count method.

Table.5.Protein sequence index subscript

For the given 10 distinct character of protein sequences we
construct ASCII 2D array table to follow our pair count method
for generating the array subscript for each character. Here also
for 2D array generation we use a different hash function and a
linear probing technique are used to avoid collision in assigning
the subscript cell to the character in the 2D array. Randomly we
have taken some protein characters and ASCII value is taken
related to those characters and by doing hash operation we will
get the array subscript ranging from 0-9. Now the
corresponding sequences index of each character is taken in
dynamic 2D array as follows.

Table.6.Protein sequence occurrence index

Let us now take the protein sequence i.e., the sequence be S =
IIFKCKKILWIPPQHFRKKILCWPLQHFRKKILCWPLKKKWNNRCP and
pattern P=KKIL.
S is the sequence of the protein sequence and various patterns
to be matched will be in P.
S = IIFKCKKILWIPPQHFRKKILCWPLQHFRKKILCWPLKKKWNNRCP
 P=KKIL
Here the alignment is done with the character which is having
least count. In this case L is having 5 as minimum count so we
align pattern P with S. We perform pairing comparison from
pattern P with sequence S.
S = IIFKCKKILWIPPQHFRKKILCWPLQHFRKHILCWPLKKKWNNRCP
 P=KKIL
First pair KK matches with the first pair of sequence, so we
now compare for next pair.
S = IIFKCKKILWIPPQHFRKKILCWPLQHFRKKILCWPLKKKWNNRCP
 P=KKIL
For second pair also matches with the sequence and the pattern
is found from the sequence. Now we go to the second index in

S.No Char
index Character text/sequence indexes Count

1 % 0 1 8 9 20 29 37 6
2 $ 1 0 13 25 3
3 # 2 5 17 34 38 4
4 A 3 4 6 7 12 17 18 32 33 35 36 10
5 ! 4 15 27 2
6 + 5 14 26 2
7 <- 6 23 1
8 G7 24 1
9 Q 8 16 28 2

10 9 9 3 11 31 39 4
11 8 10 21 22 40 41 42 5

Protein
Sequences

ASCII
value

|Val(ASCII)
-64|

{|Val(ASCII)-
64|}%9

Array
Subscript

L 76 12 3 3

I 73 9 0 0

P 80 16 7 7
F 70 6 6 6
C 67 3 3 4
R 82 18 0 1

Q 81 17 8 8

H 72 8 8 9
K 75 11 2 2
W 87 23 5 5

Char
Index Character text/sequence indexes Count

I 0 0 1 7 10 19 31 6
R 1 16 28 43 3
K 2 3 5 6 17 18 29 30 37 38 39 10
L 3 8 20 24 32 36 5
C 4 4 21 33 44 4
W5 9 22 34 40 4
F 6 2 15 27 3

 P 7 11 12 23 35 45 5
Q 8 13 25 2
H 9 14 26 2

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 461

the table of occurrence of L. Here also for second index it
matches so the given pattern is occurred in the text S.
S= IIFKCKKILWIPPQHFRKKILCWPLQHFRKKILCWPLKKKWNNRCP
 P=KKIL
Then it will search for the further occurrence of the pattern in
the text S. Further L occurs at 32nd index so the pattern is
checked. So totally three patterns have been found from the
sequence S.
S = IIFKCKKILWIPPQHFRKKILCWPLQHFRKKILCWPLKKKWNNRCP
 P=KKIL

4. Experimental Results

In this section we present several experiments result analysis
with some of the existing and the popular techniques. The
below DNA sequence dataset has been taken for the testing of
pair-count algorithm .The DNA biological sequence S∈∑*of
size n=1024 and pattern P∈∑*. Let S be the following DNA
sequence.
AGAACGCAGAGACAAGGTTCTCATTGTGTCTCGCAATAGT
GTTACCAACTCGGGTGCCTATTGGCCTCCAAAAAAGGCT
GTTCAACGCTCCAAGCTCGTGACCTCGTCACTACGACGG
CGAGTAAGAACGCCGAGAAGGTAAGGGAACTAATGACGC
GTGGTGAATCCTATGGGTTAGGATCGTGTCTACCCCAAAT
TCTTAATAAAAAACCTAGGACCCCCTTCGACCTAGACTAT
CGTATTATGGACAAGCTTTAACTGTCGTACTGTGGAGGCT
TCAAAACGGAGGGACCAAAAAATTTGCTTCTAGCGTCAAT
GAAAAGAAGTCGGGTGTATGCCCCAATTCCTTGCTGCCC
GGACGGCCAGGCTTATGTACAATCCACGCGGTACTACAT
CTTGTCTCTTATGTAGGGTTCAGTTCTTCGCGCAATCATA
GCGGTACTTCATAATGGGACACAACGAATCGCGGCCGGA
TATCACATCTGCTCCTGTGATGGAATTGCTGAATGCGCAG
GTGTGAATACTGCGGCTCCATTCGTTTTGCCGTGTTGATC
GGGAATGCACCTCGGGGACTGTTCGATACGACCTGGGAT
TTGGCTATACTCCATTCCTCGCGAGTTTTCGATTGCTCATT
AGGCTTTGCGGTAAGTAAGTTCTGGCCACCCACTTCGAG
AAGTGAATGGCTGGCTCCTGAGCGCGTCCTCCGTACAAT
GAAGACCGGTCTCGCGCTAAATTTCCCCCAGCTTGTACAA
TAGTCCAGTTTATTATCAAAGATGCGACAAATAAATTGATC
AGCATAATCGAAGATTGCGGAGCATAAGTTTGGAAAACTG
GGAGGTTGCCAGAAAACTCCGCGCCTACTTTCGTCAGGA
TGATTAAGAGTATCGAGGCCCCGCCGTCAATACCGATGTT
CTTCGAGCGAATAAGTACTGCTATTTTGCAGACCCTTTGC
CAGGCCTTGTCTAAAGGTATGTTACTTAATATTGACAATAC
ATGCGTATGGCCTTTTCCGGTTAACTCCCTG.

By the current technique different patterns are analyzed and the
graph is plotted by using these results. Different pattern sizes
has been taken from the DNA sequence ranging from 1 to 20
randomly and tested. The number of occurrences and the
number of comparisons is shown in the Table.7. The number of
comparisons per character (CPC) which is equal to (Number of
comparisons/file size) can be used as a measurement factor, this
factor affects the complexity time, and when it is decreased the
complicity also decreases.

Table.7.Comparison of pair count with existing algorithms

SNo

Pattern(P’s)
 No

of
 Char

No
of

Occ

IFBMPM

CPC

 IBKPMPM

CPC

Pair
Count

CPC

1 A 1 259 518 0.5 259 0.2 259 0.2
2 AG 2 53 624 0.6 518 0.5 247 0.2
3 CAT 3 11 567 0.5 542 0.5 296 0.2
4 AACG 4 5 614 0.5 614 0.5 258 0.2
5 AAGAA 5 2 616 0.6 607 0.5 272 0.2
6 AAAAAA 6 3 627 0.6 620 0.6 356 0.3
7 AGAACGC 7 2 600 0.5 613 0.5 268 0.2
8 AAAAAAGG 8 1 634 0.6 623 0.6 281 0.2
9 GCTCATTAG 9 1 582 0.5 590 0.5 269 0.2
10 CCTTTTCCGG 10 1 562 0.5 578 0.5 266 0.2
11 TTTTGCCGTGT 11 1 650 0.6 650 0.6 264 0.2
12 TTCTTAATAAAA 12 1 651 0.6 634 0.6 277 0.2
13 GGGACCAAAAAAT 13 1 579 0.5 582 0.5 269 0.2
14 TTTTGCCGTGTTGA 14 1 638 0.6 654 0.6 265 0.2
15 CCTCCAAAAAAGGCT 15 1 578 0.5 558 0.5 270 0.2
16 GGCTGTTCAACGCTCC 16 1 598 0.5 580 0.5 273 0.2
17 TTTTCGATTGCTCATTA 17 1 643 0.6 633 0.6 273 0.2
18 GGGATTTGGCTATACTCC 18 1 598 0.5 580 0.5 277 0.2
19 GGCCTTGTCTAAAGGTATG 19 1 579 0.5 585 0.5 272 0.2
20 CCTGAGCGCGTCCTCCGTAC 20 1 570 0.5 582 0.5 268 0.2

The below Fig.1 shows the graph analysis of the proposed
method with the existing techniques. We have analyzed by
taking different algorithms like IBKMPM and IFBMPM with
the pair-count technique. The values have been taken from the
above 1-20 pattern shown in above table 7. The dotted line
shows the proposed method where as the above two lines shows
the K-Partition and IFBMPM techniques.

Fig 1. Comparison of different algorithms using DNA sequence

From Table.8.observations has been made for the following in
terms of relative performance of our algorithm with the existing
algorithms. The proposed algorithm gives good performance in
two parameters like CPC ratio and number of comparisons with
the algorithms like MSMPMA, Brute-force, Tri-Match, Naïve
string matching, IFBMPM and IBKPMPM algorithms. From the
below table the total number of occurrences of each pattern, the
number of comparison and CPC ratio of each algorithm is given.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Paircount
IBKPMPM
IFBMPM

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 462

Table.8. Results of proposed algorithm with existing techniques

The below Fig.2 shows the comparison between different
algorithms used for comparison in the above table for different
pattern size ranging from 1-16 in size with the algorithms like
IBKPMPM, IFBMPM, MSMPMA, Brute-Force, Tri-match and
Naïve string search algorithm. It is clear that proposed (pair-
count) algorithm outperforms when compared with all other
algorithms. From the above Table.8 the total number of
occurrences of each pattern, the number of comparison and
CPC ratio of each algorithm is given. For each of algorithm we
have two fields i,e., number of comparisons and CPC ratio. In
some of the cases as the size of the pattern increases the
number of comparisons and comparison per character decreases
in case of proposed method.

 Fig.2. Comparison different algorithms using DNA sequence

The below Table.9. Shows the comparison with the different
algorithms related to the DNA sequence compared with the
algorithms like Boyer-Moore, Quick Search, DP with the
proposed technique. From the experimental result analysis it is
observed that the highest number of comparisons in the existing
techniques is above 4000 where as in the proposed one it is less
than 2200 comparisons for the largest pattern size of 16.

Table.9. Comparison of BM, QS, DP with PC for DNA Sequence

The Fig.3 shows the graph comparison of different algorithms
with the proposed pair count technique related to the DNA
sequence. The algorithms which we have compared are Boyer-
Moore, Quick search and DP with the proposed technique pair-
count algorithm. The above shown are the different patterns
which we have used for the comparisons.

Fig 3. Comparison of different algorithms using DNA sequence

4.1 Experimental Analysis of Normal Text Sequence

A text of size 1024 characters were taken as given below and
tested with the multiple patterns as shown in the Table.10. The
below normal text sequence dataset has been taken for the
testing of pair-count algorithm .The text sequence S∈∑*of size
n=1024 and pattern P∈∑*. Let S be the following normal text
sequence as shown below.

PATTERNMATCHINGISONEOFTHEBASICANDMOSTIMPO
RTANTISSUESINTHERESEARCHAREASOFCOMPUTERSCI

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 8 12 16

Pair-Count MSMPMA
TRI-MATCH BRUTEFORCE
NAÏVE STRING IBKPMPM
IFBMPM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 8 12 16

Boyer-moore
Quick-Search
Deviki-Paul
Pair-Count

S.No PATTERN Occurrence Boyer
Moore

Quick
 Search

Deviki
Paul

Pair-
Count

1 A 259 1024 1024 259 259
2 A,AG 259,52 1758 1676 711 506

3 A,AG,CAT 259, 52,11 2399 2283 1228 802
4 A, AG, CAT,

AACG
259,

52,11, 4 2909 2787 1754 1060

5 A, AG, CAT,
AACG, AAGAG

259,
52,11, 4, 2 3282 3153 2281 1332

6 A, AG, CAT,AACG,
AAGAG,AAAAAAC

G

259,
52,11, 4,

2,0
3554 3529 2831 1602

7 A, AG, CAT,AACG,
AAGAG,AAAAAAC

G
TTCTTAATAAAA

259, 52,
11, 4, 2,

0, 1
3731 3729 3398 1879

8
A, AG, CAT,AACG,

AAGAG, AAAAAACG,
TTCTTAATAAAA,

GGCTGTTCAACGCTCC

259,
52,11, 4,
2,0, 1, 0

4041 4086 3928 2152

Pattern

 PAIR
COUNT

IBKMPM

IFBMPM MSMPMA BRUTE-

FORCE
TRI-

MATCH

NAÏVE

 STRING

No
.of
Com

CPC
No.
of
Com

CPC
No.
of
Com

CPC
No.
of
Com

CPC
No.
of
Com

CPC
No.
of
Com

CPC
No.
of
Com

CPC

A 259 0.2 259 0.2 518 0.5 1024 1.0 1024 1.0 1025 1.0 1024 1.0

AG 247 0.2 518 0.5 624 0.6 1230 1.2 1282 1.2 1284 1.2 1281 1.2

CAT 296 0.2 542 0.5 567 0.5 1298 1.2 1318 1.2 1321 1.2 1310 1.2

AACG 258 0.2 614 0.6 614 0.5 1359 1.3 1376 1.3 1380 1.3 1376 1.3

AAGAA 272 0.2 607 0.5 616 0.6 1375 1.3 1388 1.3 1393 1.3 1387 1.3

AAAAAAGG 281 0.2 623 0.6 634 0.6 1394 1.3 1409 1.3 1417 1.3 1407 1.3

TTCTTAATAAAA 277 0.2 634 0.6 651 0.6 1390 1.3 1390 1.3 1402 1.3 1399 1.3

GGCTGTTCAACGCTCC 273 0.2 580 0.5 598 0.5 1349 1.3 1349 1.3 1365 1.3 1349 1.3

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 463

ENCETHEMEANINGOFTHEPATTERNMATCHINGISTHATF
INDINGTHEOCCURENCESOFAGIVENPATTERNINTHEGIV
ENTEXTPATTERNMATCHINGISONEOFTHEMAJORISSUES
INHEAREAOFNETWORKSECURITYANDALSOINMANYOTH
ERAREASTHEINCREASEINNETWORKSPEEDANDTRAFFIC
MAYCAUSETHEEXISTINGALGORITHMSTOBECOMEAPER
FORMANCEBOTTLENECKTHEREFOREITISVERYNECESSA
RYTODEVELOPMOREEFFICIENTPATTERNMATCHINGAL
GORITHMINORDERTOOVERCOMETROUBLESONPERFOR
MANCETHEREARESEVERALALGORITHMSINUSEINWHIC
HDPALGORITHMISYIELDINGGOODRESULTSINMANYCAS
ESHOWEVERTHISALGORITHMWASPROPOSEDONLYFOR
THESINGLEPATTERNMATCHINGBUTNOWADAYSITISPAT
TERNMATCHINGISONEOFTHEBASICANDMOSTIMPORTA
NTISSUESINTHERESEARCHAREASOFCOMPUTERSCIENC
ETHEMEANINGOFTHEPATTERNMATCHINGISTHATFINDI
NGTHEOCCURRENCESOFAGIVENPATTERNINTHEGIVEN
TEXTPATTERNMATCHINGISONEOFTHEMAJORISSUESIN
THEAREAOFNETWORKSECURITYANDALSOINMANYOTER
AREASTHEINCREASEINNETWORKSPEEDANDTRAFFICMA
YCAUSETHEEXISTINGALGORITHMSTOBECOMEAPERFO
RMANCEBOTTLENECKTHEREFOREITISVERYNECESSARY
TODEVELOPMOREEFFICIENTPATTE

 Table.10. Comparison with BM, QS, DP with PC for Text Sequence

Fig.4. shows the graphical comparison of different algorithms
with pair-count related to the normal text sequence. Towards
X-axis we have taken different pattern sizes ranging from 1 to
16 in size and towards Y-axis we have taken number of
comparisons from the above Table.10. The proposed pair-count
algorithm outperforms when compared with all other
algorithms. The current technique gives good performance in
reducing the number of comparisons compared with other
algorithms. The dotted line shows the pair-count model where
as Boyer-Moore, Quick search and DP is shown by solid lines.

Fig 4. Comparison of different algorithms with using TEXT sequence

4.2 Advantages with the proposed technique

The following are observed from the experimental results.
Reduction in number of comparisons with the some of the
existing popular techniques. The ratio of comparisons per
character has gradually reduced and is less than 1in the
proposed technique where as it is greater than 1 in existing
ones. The proposed algorithm is suitable for any size of the
input file and once the indexes are created for input sequence
we need not create them again and again. For each pattern we
start our algorithm from the matching character of the pattern
which decreases the unnecessary comparisons of other
characters.

Conclusion

We have presented a n ew model, which is simple and yet
effective algorithm for biological multiple pattern matching
algorithm. In this study a new technique for improving the
performance of Multiple pattern matching algorithm using pair-
count is proposed. Comparison of proposed algorithm is made
with existing algorithms on the basis of the number of
comparisons and the attempts made by different pattern sizes of
different algorithms to complete the task. Our algorithm
outperform in case of number of comparisons related to the
DNA sequences. The proposed model is shown to be very
efficient as well as fast and gives the accurate results with the
existing techniques. The analysis illustrate that the pair-count
algorithm is better than the number of existing algorithms.
Based on the experimental work carried out with DNA
sequence data, pair-count approach gives the better
performance.

References

[1] Aho, A. V., and M. J. Corasick, ‘‘Efficient string matching: an

aid to bibliographic Search, ’’ Communications of the ACM
(June 1975), pp. 333 340.

[2] .Berry, T. and S. Ravindran, 1999. A fast string matching
algorithm and experimental results. In: Proceedings of the
Prague Stringology Club Workshop ’99, Liverpool John Moores
University, pp: 16-28.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 8 12 16

Boyer-moore
Quick-Search
Deviki-Paul
Pair-Count

S.No PATTERN Occurrence Boyer
Moore

Quick
Search

Deviki
Paul

Pair-
Count

1 H 48 1024 1024 48 48
2 H,OF 48, 12 1571 1440 133 96
3 H, OF, AND 48, 12, 6 1963 1787 233 120
4 H, OF, AND,MOST 48, 12,

6,2 2295 2054 375 161

5 H, OF, AND,MOST,
GIVEN

48, 12, 6,
2, 4 2587 2292 495 180

6 H, OF, AND,MOST,
GIVEN, MATCHING

48, 12, 6,
2, 4, 8 2812 2506 595 231

7 H, OF, AND,MOST,
GIVEN,MATCHING,
PATTERNMATCH

48, 12, 6,
2, 4, 8, 8 3028 2732 738 321

8 H, OF, AND,MOST,
GIVEN,MATCHING,
PATTERNMATCH,

ONEOFTHEBASICAND

48, 12, 6,
2, 4, 8, 8,

2
3173 2907 850 372

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 464

[3] .Boyer R. S., and J. S. Moore, ‘‘A fast string searching
algorithm‘Communications of the ACM 20, 762- 772, 1977.

[4] .D.M. Sunday, A very fast substring search algorithm, Comm.
ACM 33 (8) (1990) 132–142.

[5] .Devaki-Paul, “Novel Devaki-Paul Algorithm for Multiple Pattern
Matching” International Journal of Computer Applications
(0975 – 8887) Vol 13– No.3, January 2011.

[6] .Horspool, R.N., 1980. Practical fast searching in strings. Software
practice experience, 10:501-506

[7] .Knuth D., Morris. J Pratt. V Fast pattern matching in strings,
SIAM Journal on Computing, Vol 6(1), 323-350, 1977.

[8] .Kurtz. S, Approximate string searching under weighted edit
distance. In proceedings of the 3rd South American workshop
on string processing. Carleton Univ Press, pp. 156-170, 1996

[9] .Needleman, S.B Wunsch, C.D(1970). “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins.” J.Mol.Biol.48,443-453.

[10] .Raita, T. Tuning the Boyer-Moore-Horspool string-searching
algorithm. Software - Practice Experience 1992, 22(10), 879-
884.

[11] .Rami H. Mansi, and Jehad Q. Odeh, "On Improving the Naive
String Matching Algorithm," Asian Journal of Information
Technology, Vol.8, No. I, ISS N 1682-3915,2009, pp. 14-23.

[12] .Raju Bhukya, DVLN Somayajulu,‘‘An Index Based Forward
backward Multiple Pattern Matching Algorithm, ‘World
Academy of Science and Technology..June 2010, pp347-355

[13] .Raju Bhukya, DVLN Somayajulu,”An Index Based K-Partition
Multiple Pattern Matching Algorithm”, ACEEE International
Journal in Network Security Vol. 02, No. 02, Apr 2011.

[14] .Smith,T.F and waterman, M (1981). Identification of common
molecular subsequences T.mol.Biol.147,195-197.

[15] .Ukkonen,E., Finding approximate patterns in strings J.Algor. 6,
1985, 132-137.

[16] .Wu S., and U. Manber, ‘‘Agrep — A Fast Approximate Pattern-
Matching Tool,’’ Usenix Winter 1992 Technical Conference,
San Francisco (January 1992), pp. 153 162.

[17] .Wu.S.,Manber U., and Myers,E .1996, A sub-quadratic algorithm
for approximate limited expression matching. Algorithmica
15,1,50-67, Computer Science Dept, University of
Arizona,1992.

[18] .Ziad A.A Alqadi, Musbah Aqel & Ibrahiem M.M.EI Emary,
Multiple Skip Multiple Pattern Matching algorithms. IAENG
International Vol 34(2) 2007.

[19] .Zhu, Rui Feng; T. Takaoka.“On improving the average case of
the boyer-moore string matching algorithm” Journal of
Information Processing 10 (3) 1987, 173–177.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 465

