
An approach to the Optimization of menu-based Natural
Language Interfaces to Databases

Fiaz Majeed1, M. Shoaib1, Fasiha Ashraf1

 1 Department of Computer Science & Engineering, University of Engineering and Technology
Lahore, Pakistan

Abstract
Natural language interfaces to databases (NLIDB) facilitate the
user to state query to database in natural language. NLIDB then
interprets the natural language query into Structured Query
Language (SQL) to perform action on target database. Menu-
based NLIDB provides restricted set of elements on screen that
are utilized to build natural language query. The latest menu-
based NLIDB’s use WYSIWYM interfaces that focus on
automatic formation of popup menus relevant to typed word on
editor. The automatic functionality has made the NLIDB more
complex with heavy resource requirement to load and execute
multiple processes simultaneously. This paper proposes an
optimization approach to efficiently use system memory by
menu-based NLIDB. It suggests the order of loading and
unloading processes in memory at right time. Finally, proposed
approach is evaluated on a real dataset. The application following
this approach runs efficiently even on low resources system.
Keywords: Natural Language Interfaces to Databases, Menu-
based Interface, WYSIWYM, Resource Optimization, Memory
Optimization

1. Introduction

NLIDB deals with representation of user request to
database in his/her native language. NLIDB then maps the
user request in standard SQL to retrieve desired results
from the target database. The purpose of this
interface/system is to facilitate the user by hiding
complexities of database query language syntax. Thus the
users write their request similar to email message and
submit to NLIDB system. System then understands the
request and translates it in accurate database query so that
the precise results can be retrieved.
 A significant challenge for NLIDB is query
understanding. It is the most difficult for the system to
understand open natural language [12] that is why the most
of NLIDB systems restrict users to write bounded queries
[1, 11]. The fundamental restricted NLIDB systems
include restricted natural language syntax and menu-based
systems [2]. The menu-based system provides restricted set
of elements from which users are constrained to choose
and format their query [3, 5, 6].

In existing menu-based systems, significant attention is not
given to economical use of system resources. In fact,
multiple memory optimization approaches have been
proposed for data-intensive applications in different
domains (e.g. data streams [8], data warehouses, and
algorithms tuning [14]). It is important to have
optimization strategy to handle the increasing size of
interfaces. In this research work, menu-based interfaces are
being considered. Therefore, an optimization technique has
been proposed to manage the menu-based application in
memory. It will enable WYSIWYM menu-based
applications to become light-weight for machine, provide
remarkable performance and become scalable with new
functionalities.
The objective of this research work is to propose an
optimization strategy for latest WYSIWYM menu-based
systems. This paper presents an approach for a k ey
resource, the memory. It suggests accurate time and
sequence of loading application processes in memory as
well as the time and sequence of unloading them from
memory, so that memory remains lightweight during the
whole life-cycle of query transformation. The menu-based
NLIDBs following this approach can efficiently manage
the memory and execute processes even in the systems
with lower specification (e.g. Personal Digital Assistant
(PDA), Desktop machines etc.).
The rest of this paper is organized as follow: Section 2
demonstrates the related work. Resource management is
explained in Section 3. Then Section 4 discusses memory
optimization approach. Subsequently, experiments have
been performed in Section 5. Finally, Section 6 concludes
the work and provides future directions.

2. Related Work

The menu-based systems were developed to enable the
user to input natural language query that can be
transformed accurately in the target database query
language. It provides all elements on the screen and
restricts the user to select from those elements for

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 438

formatting the natural language query. In this way, system
restricts the user to write query that is understandable for
the system. Such systems enable the user to write error-free
query by means of pointing device [2, 5, 6].
NLMENU [3, 10] is one such system that displays several
menus including commands (find, delete, insert...),
attributes, nouns, comparisons (between, greater than),
connectors (of, and, or) and modifiers. The screen
elements contextually and dynamically change by the
selection from the displayed menus. For example, on
selecting modifier ‘that country is’, a list of all countries is
displayed on the screen. Along with it, system reformats
query on addition of any word in it to cater a q uery that
system can understand.
A more advanced form of menu-based interface is
presented in [4]. It automatically generates semantic graph
from the target database. After building semantic graph,
system produces all possible queries following the
semantic graph. It builds number of query frames for each
node associated with other nodes. This activity is
performed only once at the time of system deployment.
Once queries are built, they become available in popup
menus on the interface. During query building process,
user selects query frame from popup menu, then according
to selection next popup menus are built. The popup menus
reduce the interface area, increase simplicity in
visualization and provide guidance for query building.
Research has been done on memory optimization in the
area of data warehousing and data streams. The
architecture to process large quantity of data streams in
presence of limited memory is presented [7]. Moreover,
resource optimization is discussed in detail in the literature
[8, 9, 14].

3. Management of Resources

The menu-based systems load semantic graph, all possible
queries for pop-up menus (the queries that are generated
from the semantic graph for each node and their associated
nodes), query transformation module, syntactic and
semantic grammars. All possible queries may be larger in
number depending upon the size of database. The process
that dynamically manipulates the frames in pop-up menus
resides in memory. The procedure that maintains
orientation of the query sentence executes on selecting any
frame from the pop-up menu to adjust syntactic flow of the
sentence also occupies place in memory. Syntactic rules
and vocabulary as well as semantic rules and domain
knowledge exists inside memory. The query parser and
query transformation module convert the constructed query
into SQL following semantic graph that is generated
according to the query. Further, the natural language query
is mapped to Directed Acyclic Graph (DAG) which is then

converted to database semantic graph. Finally, semantic
graph, the intermediate template is used to convert the user
query into technical SQL form. Hence, the semantic graph
generation procedure also resides in working memory.
These all elements together overload the working memory.
A system with high memory is required to run all the
processes at runtime otherwise system’s performance may
be badly affected. This problem can be tackled if
optimization strategy is adopted. One optimization strategy
can be of the following form:

• Pick those processes and data that are required at
the moment.

Alongside hold other processes and data on storage disk.
In this way, the usage of memory can be increased and
menu-based application can run on low memory system.
For example, while writing a query initially lexicon,
semantic rules, queries and query orientation process are
necessary for query construction. Following is the analysis
of all processes with respect to optimization parameters.

3.1 Loading of Minimum Queries

Initially, only load generic queries (might be one
prominent query for each node). Later, on selection of
specific query, retrieve relevant query frames from disk.
This method will save the memory in dominant percentage.
But disk reads on runtime is expensive activity. For
optimum strategy, we will have to tradeoff between
memory saving and time consumption.

3.2 Loading of Semantic Rules

The semantic rules are an important component for Query
Parser. They are required to format contextual and domain
specific queries. It would be an expensive solution to keep
the semantic grammar on disk and search appropriate rules
for user query. Later, retrieve the matching rule that fulfills
current information need. The semantic grammar would be
needed on every insertion, deletion or updation in the
query. Therefore, this solution is highly expensive and
degrades the performance.
Another efficient solution is that we keep the semantic
grammar in compressed form inside the memory. The
interesting factor in using this technique is to use the
method that search in compressed data without
decompressing it [13]. The idea is the compression of
search key to perform searching in the compressed text.
Further, methods are available that decompress the data
from any location. In this approach, it is required to
decompress rules that are considered appropriate by the
use of searching technique. Decompressing anywhere in
the file needs to compress the file in blocks. Word-based
compression is more suitable than character-based
compression.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 439

The above discussion demonstrates that the compression of
semantic grammar is space and time efficient. It is
important to use efficient decompression method because
semantic grammar will be frequently required to use the
rules.

3.3 Loading of Lexicon

The lexicon is required when user changes query without
using popup menus. Such an activity will be rare because
menu provides all domain knowledge within popup(s).
This activity will only be committed by non-expert users.
So if manual change is frequent, lexicon and semantic rules
are also to be retrieved frequently. The important issue is
to decide whether lexicon should be kept in memory
permanently or retrieve on demand. Lexicon can be placed
in permanent storage and access on demand because it will
be needed rarely. But in case of its frequent access, it may
be taken to the temporary storage. A threshold, say 10
continuous accesses in a specified time can be set for such
decisions. These constraints can be applied using
programming code, event or DB query.

3.4 Loading of Query Orientation Process

This process reconsiders query coherence in natural
language with the reference of natural language grammar.
It will run when user selects query frame, changes or
deletes any word. Therefore, it will have to run frequently.
It is not possible to reload query orientation program
repeatedly. This program should remain inside memory so
that it can be executed effectively on-demand. Another
point to consider here is that natural language grammar is
also required to be loaded to support query orientation
process. Again, good solution is the compression of
grammar with search key and decompress required portion
of the grammar.

3.5 Loading of Semantic Graph

The semantic graph is important to be used in two
situations. First, it is used to construct all possible query
frames in the start when natural language interface is
deployed for database representing the domain. This
process runs only once. Second, when DAG is generated
from user query, it is then compared with semantic graph
for SQL query construction. So, semantic graph is needed
at the time of SQL query formation. Once DAG is created,
only the semantic graph and query transformation module
is required inside the memory. The lexicon, query
orientation process, semantic rules, and minimum queries
are no longer required in memory. So they must be
unloaded at this moment. When DAG, semantic graph and
query transformation module are there in the memory,
enough storage space is available due to unloading of other

expired process. But remaining processes must be
unloaded on submission of query and initial processes
should be loaded again when returning to the query editor
for new query or update previous query. This is discussed
in subsequent section about loading and unloading of data
and procedure categories.

3.6 Loading of Query Transformation Module

It is final process applied on DAG based semantic graph to
map in SQL query. This time, only DAG based semantic
graph and query transformation module are required in
memory. All the other processes must be unloaded before
loading them.
The above discussion clarifies that different processes
execute on different stages. It means loading of modules
and unloading them is a s equential process. Thus it is
necessary to decide suitable time and sequence for loading
and unloading each process.

4. Memory Optimization

4.1 Sequence of Loading Processes

For efficiency, next process to be executed should be
available in memory and ready to be used before the
completion of current running process. For example, query
translation module must be ready before completion of
DAG mapping with semantic graph. The sequence of
loading processes is demonstrated in Fig. 1.

Fig. 1 Sequence of loading processes

At first (see Fig. 1) when menu-based software is executed
by the user on system, it loads minimum required queries
that make up pop-up menus at runtime and semantic
grammar for representing the semantic rules. When user
starts writing query on menu-based NLIDB editor it is
required to check the query orientation in accordance to
natural language (here we assume English language). To
do so, lexicon and semantic grammar are desirable that
have vocabulary and relevant rules respectively. At this
point, query orientation process and lexicon must be taken
to the memory. Note that all previous (start) and current

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 440

(query building) processes have occupied space in the
memory (e.g. at the moment of natural language mapping
minimum queries, Semantic Grammar, query orientation
process and lexicon are already in memory).
In next section, sequence and timing will be discussed to
unload these processes to optimize memory utilization at
each moment. Once user completes and submits his/her
query, system generates a D AG against the query. Later,
DAG is mapped to the semantic graph. Therefore,
semantic graph and DAG will occupy space in memory at
this instant.
As semantic graph is built, final step is to map the semantic
graph to SQL query. To do so, query transformation
module must be loaded and ready at this moment. At last,
query is ready to be executed on the underlying database.

4.2 Sequence of Unloading Processes

As processes for user’s natural language query to SQL
query conversion are loaded sequentially, these must be
unloaded in the same sequence to reduce burden on
memory and increase efficiency. Previous discussion
clearly describes that all processes do not run
simultaneously. Therefore, we should devise some
mechanism to unload the processes that have completed
their processing and are no more required for current
query.

Fig. 2 Sequence of unloading processes

The sequence of unloading of processes is depicted in Fig.
2. Minimum queries, semantic graph, lexicon and query
orientation process remain in memory until user submits
his/her query. As user submits the query, DAG starts
building by the system simultaneously. At this moment,
minimum queries and query orientation process are no
more required in the memory. So before DAG takes place
in memory, these must be unloaded. As DAG is mapped to
semantic graph, processes include Semantic Grammar and
lexicon are not further required because query
transformation module only use semantic graph. After
building SQL query by query transformation module;

DAG, semantic graph and query transformation module
should be unloaded. Since, target query is built by menu-
based NLIDB. Now NLIDB should be ready for new user
query by loading again the minimum queries and Semantic
Grammar that are initially required.

5. Experimental Results

We run menu-based system on the low resources system
having temporary storage 256 MB and processing speed
1GHrtz. Different processes take different size depending
upon NLIDB application domain. The size of different
processes in menu application under study is given in
Table 1.

Table 1: Memory consumption by NLIDB processes
NLIDB Component Size

Minimum queries 1 (KB)
Semantic grammar 101.3 (MB)
Query orientation
process

42 (MB)

Lexicon 69.1 (MB)
DAG 30.9 (MB)
Semantic graph 40 (MB)
Query transformation
module

50.4 (MB)

SQL query 1 (KB)

In our experimental transportation database, there are 15
relations and each relation has link with at most 6 other
relations. So automatic query generator generates at most 6
query frames for each relation.
The semantic graph is depicted in Fig. 3. If we focus on
node ‘geoloc’ in the semantic graph, the query frames
constructed by system would be:
(1) Which runaways are at [some geoloc]?
(2) Which airports exist at [some geoloc]?
(3) In which [geoloc], ships are manufactured?
(4) Which countries are located at [some geoloc]?
(5) What channels are located at [some geoloc]?
(6) Which seaports are located at [geoloc]?

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 441

Fig. 3 Semantic graph of transportation database [12]

Therefore maximum query frames generated from
transportation semantic graph are 15*6 = 90.
Initially, 15 query frames representing semantic graph
nodes are loaded. Therefore, these take maximum 1KB of
memory. Semantic graph and lexicon size depends on the
domain, the NLIDB address. This example NLIDB
consumes 101.3 MB for semantic grammar and 69.1 MB
for lexicon. The query orientation process is a s tandalone
application, supports NLIDB, occupy 42 MB of memory.
Moreover, DAG and semantic sub-graph building modules
take 30.9 MB and 40 MB space respectively. Finally,
query transformation module consumes 50.4 MB and
resulting SQL query takes 1KB of memory.
The memory consumption by menu-based NLIDB is
shown in Fig. 4.

Memory Consumption

0
20
40
60
80

100
120

NLIDB Processes

M
e

m
o

ry
(M

B
)

Minimum Queries

Semantic Grammar

Query Orientation

Lexicon

DAG

Semantic Graph

Query Transformation

SQL Query

Fig. 4 Memory usage by NLIDB processes

Semantic grammar and lexicon are heavier processes on
memory, reserve storage till the last process (query
transformation module) of query conversion. It is

important to analyze memory consumption with and
without our proposed optimization strategy.

0
50

100
150
200
250
300
350
400

Mini
mum

 Q
ue

rie
s

Sem
an

tic
 G

ram
mar

Que
ry

Orie
nta

tio
n

Le
xic

on
DAG

Sem
an

tic
 G

rap
h

Que
ry

Tran
sfo

rm
ati

on

SQL Q
ue

ry

Processes

M
em

or
y

(M
B

)

Fig. 5 Memory Usage without Optimization

Fig. 5 depicts the usage of memory without applying any
optimization strategy for menu-based application. Loading
of processes in sequence (taken along X-axis) and memory
size in MB (taken along Y-axis) are parameters of interest
in this case. The graph plotting demonstrates growth in
memory load with loading of each process. Clearly,
experimental system’s memory 256 MB is less than the
requirement of menu-based application under study (i.e.
330 MB and 2KB).

Application of Optimization Approach

0

50

100

150

200

250

300

Mini
mum Q

ue
rie

s

Sem
an

tic
 G

ram
mar

Que
ry

Orie
nta

tio
n

Le
xic

on
DAG

Sem
an

tic
 G

rap
h

Que
ry

Tran
sfo

rm
ati

on

SQL Q
ue

ry

M
em

or
y

(M
B)

Fig. 6 Memory Usage with Proposed Optimization Strategy

Fig. 6 demonstrates the memory usage by menu-based
NLIDB with the application of our proposed memory
optimization strategy. NLIDB processes (taken along X-

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 442

axis) and memory size (taken along Y-axis) are parameters
of interest in this case. The processes are loaded in
memory in order from minimum queries to lexicon, while
graph goes up straight away. Before building DAG,
undesired processes start unloading from memory and
memory consumption graph start moving downward. It is
worth mentioning here that available memory is now
enough for NLIDB application with the use of this
proposed optimization strategy.

6. Conclusions

This paper addresses the issue of heavy resource
requirement of current complex automated menu-based
systems. An optimization strategy for memory
management to keep the menu interface light-weighted
throughout the life-cycle of natural language to SQL query
conversion is proposed. The experiments demonstrate
viability of our proposed technique. Since, it m anages
application within limited memory and increase throughput
of the system. Further, application can be scaled for new
functionalities due to its economical usage of memory.

Acknowledgments

The authors thank Tayybah Kiren and Sumera Shaukat for
their contribution in proof reading of this document.

References
[1] A. Popescu, O. Etzioni, and H. Kautz, “Towards a theory of

natural language interfaces to databases”, In Proceedings of
the 8th international conference on Intelligent user interfaces
(ICIUI), 2003, pp. 149–157.

[2] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural
Language Interfaces to Databases – An Introduction”,
Natural Language Engineering, Vol. I, 1995, pp. 29-81.

[3] H. R. Tennant, K. M. Ross, and C. W. Thompson, “Usable
natural language interfaces through menu-based natural
language understanding”, In Proc. SIGCHI conference of
human factors in computing systems, ACM Press, 1983, pp.
154-160.

[4] C. Hallett, “Generic Querying of Relational Databases using
Natural Language Generation Techniques”, In Proceedings
of the Fourth International Natural Language Generation
Conference (INLG ’06), 2006, pp. 95–102.

[5] E. Mueckstein, “Controlled natural language interfaces: the
best of three worlds”, In proceedings of the 1985 A CM
thirteen annual conference on c omputer science (CSC’85),
ACM Press, 1985, pp. 176-178.

[6] Thompson, P. Pazandak, and H. Tennant, “Talk to your
semantic web”, IEEE internet computing, Vol. 9, 2005, pp.
75-78.

[7] F. Majeed, M. S. Mahmood, and M. Iqbal, “Efficient Data
Streams Processing in the Real-Time Data Warehouse”, In
proceedings of 3rd IEEE Intl. Conference on C omputer

Science and Information Technology (ICCSIT), 2010, pp.
57-61.

[8] Widomet et al., “Query Processing, approximation, and
resource management in a data stream management system”,
In proceedings of the CIDR Conference, 2003.

[9] D. A. Grossman, S. M. Beitzel, E. C. Jensen, O. Frieder, “IIT
Intranet Mediator: Bringing Data Together on a Corporate
Intranet”, IEEE IT PRO, 2002.

[10] H. R. Tennant, K. M. Ross, C. W. Thompson, and J. R.
Miller, “Menu-based natural language understanding”, In
21st annual meeting of ACL, 1983, pp. 151-158.

[11] S. Epstein, “Transportable natural language processing
through simplicity- the PRE system”, ACM Transactions on
office information systems, Vol. 3, No. 2, 1985, pp. 107-120.

[12] G. Zhang et al., “Query formulation from high-level
concepts for relational databases”, In Proceedings of the
UIDIS, IEEE Computer Society, 1999.

[13] R. Baeze-yates, and B. Ribeiro-neto, Modern Information
Retrieval Systems, Pearson Education Inc., 2005.

[14] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis,
and N. Frantzell, “Meshing Streaming Updates with
Persistent Data in an Active Data Warehouse” IEEE
Transactions on Knowledge and Data Engineering, Vol. 20,
No. 7, 2008, pp. 976-991.

Fiaz Majeed received MS degree from COMSATS Institute of
Information Technology (CIIT) Lahore Pakistan in 2009. He is
currently PhD scholar in University of Engineering and Technology
Lahore Pakistan. His research interests include data warehousing,
data streams and information retrieval. He has published 5 papers
in refereed journals and i nternational conference proceedings in
the above areas.

M. Shoaib received PhD degree from University of Engineering
and Technology Lahore Pakistan in 2006. He has done hi s post
doctorate from USA in 2008. He is currently associate professor in
this university. His research interests include information retrieval
and data mining. He has published more than 40 papers in
refereed journals and international conference proceedings in the
above areas.

Fasiha Ashraf received MS degree from University of Engineering
and Technology (UET), Lahore Pakistan in 2010. She is currently
PhD scholar in University of Engineering and Technology. Her
research interests include Information retrieval, Semantic web,
Cloud computing and Virtualization. She has published 1 paper in
refereed journal and is working on another in the above areas.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 443

