
Towards a Matrix Based Approach for Analyzing
the Impact of Change on ETL Processes

Ahmed Kabiri, Faouzia Wadjinny and Dalila Chiadmi

 Computer Science Department, Mohammadia School of Engineers (EMI), Mohammed Vth University-Agdal
BP. 765 AV. Ibn Sina Agdal, Rabat, Morocco

Abstract
Extraction, Transformation and Loading (ETL) processes aim to
extract data from data sources to targets, via a set of
transformations. In many situations, an ETL process can be
subject to changes for several reasons. For instance, data sources
changes, new requirements and bug fixing. When changes
happen, analyzing the impact of change is mandatory to avoid
errors and mitigate the risk of breaking existent treatments.
Several solutions have been proposed for this issue. We propose
a new approach, based on matrices, for analyzing the impact of
change on ETL processes. The goal of this paper is to present the
theoretical fundament of our approach. We model ETL parts as
matrices then we propose an algorithm which detects the affected
parts in an ETL process, given an attribute deletion event.
Compared with the existent solutions, our approach has the
advantage of easiness.
Keywords: Data warehouse, ETL processes, Conceptual
modeling of ETL processes, Impact of Change.

1. Introduction

Extraction, Transformation and Loading (ETL) processes
are responsible for the operations taking place in the back
stage of data warehouse architecture. In a high level
description of an ETL process, first, the data are extracted
from data sources (databases tables, flat files, ERP,
internet, etc.). Then, the extracted data are propagated to a
special-purpose area of the warehouse, called the Data
Staging Area (DSA), where their transformation,
homogenization, and cleansing take place. Finally, the data
are loaded to the central data warehouse (DW) and all its
counterparts (e.g., data marts and views) [6].

It is widely recognized that building ETL processes is
expensive in terms of time and money. It consumes up to
70% of resources [3], [5], [4], [2]. A set of studies have
shown this fact [2]. At the building phase, the ETL
designer defines how to map sources attributes to the
targets ones. Depending on the quality of data sources, he
has to specify how to clean and how to conform data. For
example, he states how to remove duplicates and how to
standardize attributes values. To assist the designer in his
task, the research community has suggested several

proposals for modeling of ETL processes [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16].

After the building phase, arrives the maintaining phase. In
order to reply to new requirements, initiated by an
involvement in the business or just to develop a bug fix
reported by stakeholders, change cannot be avoided.
Generally, change is neglected although it is a fundamental
aspect of information systems and database [17]. Often, the
focus is on building and running systems. Less attention is
paid to the way of making easy the management of change
in systems. Consequently, the time and the cost of
maintaining ETL processes, already very expensive, are
increasing more and more. Research community catches
this need and supplies, in response, some solutions as we
will see in related works section.

In this paper, we propose a new approach for analyzing the
impact of change on ETL processes. Our goal is to
simplify the maintaining phase. In our approach, we define
a new formalism, based on matrices, to represent the ETL
process parts. By applying matrices multiplication
operations, we derive a m atrix, called K matrix, which
overview the ETL process. We propose an algorithm,
using the K matrix, to detect the affected parts in an ETL
process given an attribute deletion event. This event can
occur either in sources, in targets or inside the ETL
process.

The remaining of this paper is organized as follows.
Section 2 presents the change issue in ETL processes.
Section 3 is dedicated to our approach. Section 4 presents
related works. We conclude and present our future works
in section 5.
In the rest of the paper, we don’t make difference between
ETL process, ETL job and scenario.

2. Change Issue in ETL

An ETL process integrates heterogeneous sources to a data
warehouse. It can also be used as a flow router, where it
supplies applications with data often as flat files.
Therefore, it can be seen as a bridge between sources and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 430

targets enriched with a s et of transformations. Based on
that, entities that may cause changes in ETL processes are
sources, targets and transformations. Below, we recall and
analyze some fundamental properties and aspects of these
entities before tackling changes in ETL processes.

1) Sources. They encompass all types of data sources. The
two famous types are databases and flat files. Recently, by
the expansion of the internet, XML sources become
spreading. More details and explanation about the
characteristics of sources are available in [3]. In an ETL
context, and regardless of their nature, sources are:

• Autonomous or semi
autonomous. They are under the control of ope
rational departments or they may be external to
the entity exploiting them. Consequently, any
change in sources is not systematically
reported to ETL teams.

• Diversified. In the same process, an ETL can
include various types of sources.

• Unstable. Their contents are constantly changing.
In addition, the data structures or, broadly
speaking, metadata may evolve.

2) Targets. Conversely to sources, they are controllable.
The famous types are data warehouses (as databases) and
flat files (in mediation context). But theoretically, it can be
any kind of storing. The two last properties above (about
sources) are also valid for targets.

3) Transformations. Transformation is a broad term,
meaning all the data processing operations performed from
sources to targets (mapping attributes and data flow). Such
transformations include join, filter, sort, etc. operations.
This is the critical phase in the whole process since it
carries out the logic of business process instanced as
business rules. Besides, from the first treatment to the last
one, the structure of processed data is changing. The
workflow schema is modified step by step, either by
adding or removing attributes. Therefore, at this level, the
most important and sensible parts are business rules (BR)
and flow structure.

The three entities mentioned above may be the place of
changes in ETL processes. It is interesting to note that,
while changes in targets and transformations are scheduled,
changes in sources are not under control. Therefore, it is
difficult to have a 1 00% vision of when and where a
change event can take place because of sources autonomy.
But, does any change in the three entities above is
meaningful to ETL? The answer is not obvious. It depends
on several factors, which we synthesize below.

1. The nature of change (delete, add or modify).

2. The location of change (sources, targets or
transformations). Adding a field in the target has a
direct impact on the ETL process, since it should
feed such information. While a new field in
sources does not necessarily impact ETL
processes.

3. The implementation performed by the
developer. The manner of writing requests to
extract data from sources influences the process
stability. For example, selecting data via select *
from Source is different from typing select A1,
A2….An from Source. The first option is sensible
to change, while the second one is immune to
adding fields.

4. The position of change inside data. Adding a
field at first rank differs from adding it at the end.
Suppose we use a flat file, which has the structure
(A1; A2;… ;An), as a s ource. Let’s suppose that
the attribute A1 is involved in a business rule BR
and the attribute An is free (not used). Let A0 be a
new attribute in the concerned source. Extracting
data from f1(A0;A1,A2;….An) will lead to errors
and may cause ETL crash. Indeed, during BR
evaluation, ETL will consider A0 as A1. However,
dealing with f2(A1;A2,…..;An;A0), leads to
consider A0 as a subpart of An.

The combination of the four factors cited above, gives an
idea about the complexity of managing ETL changes. A
trivial solution is to perform ad-hoc changes in ETL
processes. But, this solution is detrimental to the success of
the ETL project [3]. Therefore, we need to develop an
approach which basic mission is to supply answer to the
question: what is the impact of a given change on ETL
process? An example of this will be what part of the ETL
process is affected if we delete an attribute [2]. To answer
this question, we need to know which attributes/tables are
involved in the population of a certain attribute [2].
In the next section, we present our approach to meet this
need.

3. Our Approach for Handling Changes in
ETL Processes

In this section, we expose our approach, based on matrices,
for handling changes and evolutions in ETL processes. To
illustrate our proposal, our discussion we will be based on
a running example presented in section 3.1. Then we
expose the fundaments of our approach. Particularly, we
show how to model ETL parts as matrices in section 3.2
while we build the K matrix in section 3.3. During this
section, we consider sources and targets as flat files for
concision and simplicity reasons. In section 3.4, we visit

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 431

databases resources which are more complex and more
popular. Namely, we expand our proposal when sources
and targets are tables in relational databases. Finally, in
section 3.5, we suggest an algorithm for analyzing the
impact of deleting an attribute on ETL process according
to our approach.

3.1 A Running Example

Let's consider an ETL process called job1; reproduced in
figure 1. Job1aims to populate a target O from a source I,
having the following structures respectively: O(CustKey;
Name; ZipCode; City; Country; Address) and I(CustId;
Fname; Lname; Town; Region). Our scenario involves 3
transformations depicted in figure1: (1) flow
standardization (Format box), then (2) flow validation
(Validate box) and finally (3) flow conforming (Conform
box). At the end, data is loaded to the target O.

Fig. 1 Design of job1 feeding target O from source I.

Figure 2 describes how the component Format handles
transformations. It underlines how input fields are linked to
output fields during Format step. The same mechanism
(input fields attached to output fields via mapping rules or
business rules) is reused in other transformation steps.
However, extraction and loading steps are quite different.

Fig.2. Mapping rules associated with the component Format

3.2 Matrix-Based Modeling of ETL Parts

In this section, we introduce a matrix-based representation
of ETL parts. In our approach, all ETL parts are
represented by matrices. For instance, figure 2, which
depicts the behavior of Format component by mapping
input attributes to output ones, can be represented by a
matrix that we denote F (cf. figure 3). The rows and
columns of F are the input attributes and the output
attributes of Format component respectively.

Consequently, the size of F is card (inputs fields) ×card
(output fields), where card refers to cardinality function.

The elements of F belong to {0, 1}. More precisely,

 1 ; if the output field ordered at column j
 involves the input field positioned at rank i.
F[i,j] =
 0 ; otherwise.

For example in figure 3, F[1,1]= 1 because the population
of CustKey involves CustId (cf. figure 2). Since other
output fields are not concerned, the first row of F (vector
associated to CustId) is [1 0 0 0].

Similarly to matrix F, we build V and C the matrices
associated to Validate and Conform components
respectively. The figure 3 denotes them. In next section,
we show how to combine them.

Fig.3. Related matrices to job1 components and it K matrix.

3.3 The K Matrix

In previous section we have shown how to build matrices
F; V; C. Let I and O the representative matrices of the
source and the target components involved in job1 (cf.
figure 1). According to this figure, the output fields of
component I are the input of Format component. Stated in
terms of matrices, the columns of I are the rows of F.
Similarly the flow is propagated from a component to its
successor. Thus the matrices product I×F×V×C×O is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 432

valid and calculable1. We note the resulting matrix K as
depicted in Eq. (1).

 K = I×F×V×C×O (1)

For job1, we have calculated the K matrix expressed by
Eq. (1) when sources and targets are flat files (the matrices
I and O are equals to the identity matrix). The final result
is reproduced in figure 3.

As one can see, the rows of K are the attributes of the
source I, while the columns of K are the attributes of the
target O. Therefore, the ETL job presented in figure 1,
which bridges the dataset I and the destination O, is
equivalent to the K matrix.

Interpretation of the K Matrix: The K matrix
summarizes the relationship between sources and targets at
the field level. It supplies useful information.

Vertically, for a given output field OFD, it s hows the
active input fields, which are involved in the population of
OFD. For example, ZipCode vector shows that the input
field Town is the only active attribute regarding ZipCode
field. The K matrix shows also the autonomous output
fields, which are independent of any input fields. They are
derived during the definition of ETL process. According to
matrix formalism, the elements of its associate vector are
equals to zero. The field Country is an example of
autonomous attributes, that are consequently, protected
from sources changes.

Horizontally, vectors show the “customers” of each input
field. They are attributes having the entries of the vector
equal to 1. For example, the row of the attribute Town
shows that it is used to populate three output attributes:
ZipCode, City and A ddress. At the other extreme, rows
having all entries equal to zero, underline inert input fields.
They are unused anywhere in ETL process. Thus, any
change in such fields is indifferent to ETL.

3.4 Extension to Databases

In previous section, we have considered the source and the
target as flat files. In this section, we consider them as
database tables because databases resources are more
complex and involve special features. In addition, both of
them are famous type of storing data.

1 In matrix formalism, two matrices A and B can be multiplied
(A×B) only if the number of columns of A is equal to the
number of rows of B.

So stated differently, we aim to build K matrix when
sources and targets are database tables. To meet this need,
we keep the graph of figure 1 and we extract data by the
following request REQ.
REQ: Select CustId, Fname, Lname, Town from TableS
where A1=param1 and A 2> param2 order by CustId,
Fname, Lname.

Param1 as param2 are parameters of the ETL job. A1 and
A2 belong to TableS although they are not propagated
inside ETL job. They serve only to filter rows selected by
REQ.

Now, let's construct I the representative matrix of the
source component I (cf. figure 1) handling the above query
REQ.

The rows of I are all attributes of TableS, while the
columns of I are the selected attributes of REQ that are
the input fields of the next component (component Format
according to figure1). The entries of I (cf. figure 4) are
defined as in previous section (whether the input field
contributes to calculate the output attribute or not, the
element takes value one or zero).

Fig. 4 I Matrix and its expanded matrices related to relational source I

Finally, the arrangement of the matrix I is depicted in
figure 4. But, such modeling of I is restrictive. It does not
allow control over all features of REQ other than select
part. To overcome this situation, we have to handle other
parts by expanding I to I1 and I2, following the relation
Eq. (2).

 I = I1×I2 (2)

According to this relation, the rows of I1 are those of I
while the columns of I2 are those of I. Obviously, the rows

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 433

of I2 are the columns of I1. As one can see in figure 4, the
columns of I1 catch all clauses of REQ. The elements of I1
are defined similarly. Let's note that I can be seen as a sub-
matrix of I1. Specifically, I and I1 are identical when REQ
contains only select clause. In fact, we don’t need to
expand I in such situation. I2 is constructed like identity
matrix. Therefore, we can show that the elements of I1×I2
belong to {0, 1}.

In other side, the loading step is performed by an insert
query which can be modeled as we did for REQ. Finally
the K matrix of the ETL job depicted in figure 1, when
sources and targets are database tables, is calculable
following the formula Eq. (3). O1 and O2 are the expanded
matrices of the target O:

 K = I1×I2×F×V×C×O1×O2
 (3)

3.5 Analyzing Impact of Change on ETL processes

The K matrix defined in last sections supplies useful
information. In particular, it solves the first issue regarding
“which attributes are involved in the population of a
certain attribute”. In this section we deal with the second
issue regarding “What part of the ETL process is affected
if we delete an attribute”.

Before focusing on the impact of attribute deletion, let's
note that this event can take place at 3 levels (source,
target or in the intermediate step). It is clear that if we
delete any Dj (output attribute), there is no need to keep all
treatments related to Dj: The performance of the ETL job
is increased by eliminating both, inert fields and archaic
transformations. However, deleting an input attribute (Aj
or B j) is questionable. Indeed, when this event occurs, a
decision should be made (by the administrator or the
designer) whether:

a) To delete all parts associated to Aj; or
b) To substitute Aj by a default value; or
c) To extract equivalent information somewhere.

The option (a) is not practicable, while option (b) makes
output data constants (regarding substituted fields).
Therefore, the option (c) is more suitable, except that it
will lead to deep rework. Absorbing changes is another
issue that we omit in current paper. However, in all cases
the detection of affected parts is mandatory.

In our approach, the underlying of the impacted parts of an
ETL job, given an attribute deletion event, is supplied by
the following algorithm.

1. Inputs: Field-name, ETL-Job, Type.
2. Outputs: List of Affected parts.
3. If Type is a source
4. Begin
5. {S} = get-concerned-sources (Field-Name)
6. For each s in {S}
7. Input = Field-Name

8. = get-k-matrices-developed-form-for(s)
9. For (j=1; j < m+1; j++){
10. Output = get-linked-columns-to(Input, Mj)
11. List = List + add(Output, Mj)
12. Input= Output }
13. Clean-and-Format-then-Return (List)
14. End
15. Else, If Type is an intermediate
16. Begin
17. {E} = get-concerned-branches (Field-Name)
18. For each e in {E}
19. index = get-index-of-first-instance-as-out-Field (Field-Name)
20. Input = Field-Name

21. = get-k-matrices-developed-form-for(e)
22.
23. For (j=index; j < m+1; j++){
24. Output = get-linked-columns-to(Input, Mj)
25. List = List + add(Output, Mj)
26. Input= Output }
27. Clean-and-Format-then-Return (List)
28. End
29. Else If Type is a target
30. Begin
31. {T } = get-concerned-targets (Field-Name)
32. For each t in {T}
33. target-field = Field-Name

34. = get-k-matrices-in developed-form-for (t)
35. For (j=m; j > 0; j--){
36. If Field-Name is in rows of Mj Then {
37. Outputs= get-linked-columns- to (target-field,Mj)
38. List = List + add(Outputs, Mj) }
39. Else {
40. List = List + add(target-field, Mj)
41. Inputs= get-linked-rows-to (target-field,Mj)
42. Inputs = keep-inactive-fields-in(Inputs, target-field])
43. if Inputs is Null then stop
44. else target-field = Inputs
45. } }
46. Clean-and-Format-then-Return (List)
47. End

Algorithm Explanation:

1) Line 1 describes the inputs of the algorithm. ETL-

Job specifies the given scenario concerned by the
evolution. T ype indicates the lactation where event
takes place. It takes 3 possible values { source, target,
intermediate} . Field-name indicates the attribute name
subject of change.

2) Line 2 describes the output of the algorithm. It
returns the list of affected parts of an ETL processes
given a deletion event.

3) Line 3 to line 14 treats the case of attribute deletion
at source level:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 434

a) At line 5, for a given input field Field-name, we
identify a set of sources {S} that contains Field-
name. At line 7, the variable Input handles the
subject of change. Obviously, at the beginning
Input is Field-name. Then for each s in {S} we get
a branch of K matrix in relation with s
represented in developed form ().(line
8)

b) From line 9 to line 12, we parse each matrix
belonging to the product one by one in
order to collect affected parts.

c) At line 10, get-linked-columns-to(Input, Mj)
function parses the vector of the field Input in
matrix M j. It gets columns having elements = 1.
The result is stored in the variable Output.

d) At line 11, we update the variable List by adding
the variable Output collected previousely and M j
which sympbolzes the compmoent where the
change has taken place.

e) Too at line 12, we update variable Input. The
input of M j+1 is affected fields in M j.

f) Finally, at line 13, the function Clean-and-
Format-then-Return(List) works on List result by
eliminating redundant information. Then it
formats the result List in order to display a final
list of affected parts by component.

4) Line 15 to line 28 treats the case of attribute deletion
at intermediate level. This bloc is similar to those of
source bloc except that the starting point is not the
source but somewhere inside of ETL scenario. Exactly
at the first definition of involved attribute. This task is
performed by the function cited at line 19.

5) Line 29 to line 47 treats the case of attribute deletion
at target level. In that case, we need to go back until
the first derivation of the attribute which has been
deleted:
a) At line 31, for a given input field Field-name, we

identify the set of targets {T} that contains Field-
name. Then for each t in {T} we get it K matrices
represented in developed form () and
in relation with t.

b) At line 35 we parse each matrix belonging to the
product one by one in order to collect
affected parts.

c) At line 36, for a certain matrix M j we checks if
Field-name is an input field in Mj .

d) If this condition is true (line 37 – line 38), we
update variables and go to next matrix. It is
identical to line 11, 12 (cf. 3.c and 3.d).

e) Else (Field-name is not among input attributes of
Mj) this is the first derivation of Field-name
during ETL process. Since we delete Field-name,

line 40 to line 44 aims to see, in ulterior
treatment, if involved attributes in the population
of Field-name during Mj step ar e useful or
not. If used elsewhere we keep them, otherwise
we eliminate associated treatment.

f) Finally, at line 46, the function Clean-and-
Format-then-Return(List) works on List result by
eliminating redundant information. Then it
formats the result List in order to display a final
list of affected parts by component.

Illustration: The algorithm above deals with “What part
of the ETL process is affected if we delete an attribute”.
To make it clear, we consider job2, an ETL process
depicted in figure 5. In job2 each component is labeled
X.Y, where X indicates its representative matrix and Y is a
free text for describing the meaning of the component.

Fig. 5 Design of job2 feeding Customer Dimension.

By applying the same procedure presented in section 3.3
and section 3.2, we get the K matrix of job2 and the matrix
of each component. Explicitly, we can show that:

K1 = S1×F1×M×C×D for the branch of the source S1.
K2= S2×F2×M×C×D for the branch of the source S2.
With slight abuse of notation, we note1: K = K1 + K2.
Or in detailed form:
 K = K1 [A1…Am1; D1...Dn] + K2 [B1…Bm2;
D1...Dn].

Below, example1 illustrates attribute deletion at source
level Aj from S1. While example2 illustrates attribute
deletion at target level Dj from the destination customer.

Example 1: In reference to figure 5, let's delete Aj from
S1.
Thus, K1 = S1×F1×M×C×D = (m = 5) and
{S} = {S1.custo}.
To simplify we consider S1= D = I (identity matrix) and
(K1, F1, M, C) = (K, F, V, C) represented in figure 3. Let's

1 We use the sum operator for composition. When m1= m2, the
sum of K1 and K2 is possible in matrices theory, but even, it is
insignificant since the input attributes of K1 and K2 are not
identical

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 435

suppose that Aj is Town field. Therefore, Clean-and-
Format-then-return function in the above algorithm, will
display the affected BR regrouped by component. The
message seems like “Deleting attribute Town impacts:

• BR of City attribute at F1-foramt1 component.
• BRs of City and ZipCode attributes at M.merge

component.
• BRs of City, ZipCode and Address attributes at

C.conform-and-check component”.

Example 2: Now, suppose we delete the output field
Address. We can see in matrix C (cf. figure3) that the
attribute Address does not appear in its rows while the
participant’s fields (Name, ZipCode, City, and Country) to
populate the target field (Address) are used elsewhere.
Therefore, the attribute Address is initiated at C matrix.
Consequently, the impact is only at “BR of the attribute
Address at C.conform-and-check component”.

4. Related Works

Design and Modeling: Research community enriches the
field of conceptual modeling of ETL processes with
several approaches [8],[9],[10],[11],[12],[13], [14], [15],
[16],[7].These proposals differ on formalism and
technology used. But they have the same drawback: no
support and functionalities to deal with changes in ETL
processes.

Evolution: A report on evolution and change in data
management is available in [17]. The authors present a
summary of issues in relation with the topic. Furthermore,
a categorization of issues is given. Zooming on the area of
data warehouse, change can be either in scheme or in the
data saved from the first population of the DW. Managing
data evolution, contrarily to schema evolution, over time is
a basic mission of DW. Consequently, research efforts in
DW evolution are oriented to schema versioning. Thus, in
[18], the authors present an approach to schema versioning
in DWs. Based on graph formalism; they represent
schemata parts as a graph and define algebra to derive new
schemas of DW given a change event. The formulation of
queries invoking multiple schema versions is sketched.
Same authors rework their proposal in [19] by
investigating more data migration. X-Time [20] is a
prototype of these efforts. However, let note that these
proposals deal with evolution only in DW. Stated in ETL
words, they focus on targets side. Conversely, the proposal
[21] deals with changes in DW sources. In this work, the
authors abstract all parts of DW, particularly ETL
activities, as a s equence of enriched queries modeled by
graphs. The graphs are annotated (by the designer) with

actions to perform in response to change event. An
algorithm to readapt the graph, given an evolution event in
sources, is supplied. However, this approach is difficult to
implement, because of enormous amount of additional
information required in nontrivial cases [1]. Thus, the
authors extend their work in [22] proposal, especially deep
explanations of the above algorithm were given and the
prototype architecture is presented too. This effort has
been implemented via HECATAEUS prototype [22], [23].
This tool aims mainly to enable what-if analysis and
regulation of relational database schema evolution.

Our work offers broad scope of managing changes in ETL
setting. Indeed, it is not restrictive to evolutions in one side
or any type. Our approach takes into account, in one view,
changes that occur either in sources or targets or inside the
ETL process. At high level, it detects affected components
or affected steps and then it underlines mapping rules
affected. Besides, matrices conversely to graph, offer an
easy look over ETL.

5. Conclusion and Future Works

ETL processes are famous with two tags: complexity and
cost. Also, evolution in such environment cannot be
escaped. Consequently, it is mandatory to have a h elpful
tool and an effective approach for simplifying the
maintenance task of these processes.

In this paper, we have presented our approach for handling
impact of change analysis in ETL processes. Our approach
is based on matrices. Especially, we have represented ETL
parts as matrices and we have shown how to derive a new
matrix called K matrix, by applying multiplication
operations. We have exposed too, how K matrix
summarizes the relationship between the input fields and
the output fields and how it s ynthesizes the attributes
dependency. Particularly, the K matrix tells us “which
attributes are involved in the population of a certain
attribute” and which attributes are the “customers” of a
given one. Finally, we have proposed an algorithm to
detect affected part of ETL job when a ch ange deletion
event occurs, either in sources or targets or inside ETL.

In future works, we plan to extend the scope of events
managed by taking into account Add and Modify events at
the attribute level. Another way to advance this work is to
investigate on building, automatically, matrices related to
an ETL process and to look into how to absorb change
events. Still, exciting challenge will be the enhancement of
our model. Thus; it is more interesting to catch further
details, when defining association between attributes,
instead of restricting to binary {0, 1} relationship. Given

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 436

that, ETL optimization according to our approach will be
attracting.

References
[1] A. Dolnik, "ETL evolution from data sources to data

warehouse using mediator data storage". In MANAGING
EVOLUTION OF DATA WAREHOUSES MEDWa
Workshop, 2009.

[2] A. Simitisis, P. Vassiliadis, S. Skiadopoulos and T. Sellis,
"Data warehouse Refreshment", Data Warehouses and
OLAP: Concepts, Architectures and Solutions, IRM Press,
2007.

[3] R. Kimball and J. Caserta, The Data Warehouse ETL
Toolkit: Practical Techniques for Extracting, Cleaning,
Conforming, and Delivering Data, Wiley Publishing, 2004.

[4] W. Inmon, D. Strauss and G. Neushloss, DW 2.0 The
Architecture for the next generation of data warehousing,
Morgan Kaufman, 2007.

[5] M. Golfarelli, "Data Warehouse Life-Cycle and Design". In
Collection of Encyclopedia of Database Systems, 2009, pp.
658-664.

[6] P. Vassiliadis and A.Simitsis, "EXTRACTION,
TRANSFORMATION, AND LOADING",
http://www.cs.uoi.gr/~pvassil/publications/2009_DB_encycl
opedia/Extract-Transform-Load.pdf

[7] M. Bouzeghoub, F. Fabret and M. Matulovic-Broqué,
"Modeling Data Warehouse Refreshment Process as a
Workflow Application", in Design and Management of
Datawarehouse (DMDW) Workshop, 1999.

[8] P. Vassiliadis, A. Simitsis and S. Skiadopoulos, "Conceptual
modeling for ETL processes". In 5th ACM Int Workshop on
Data Warehousing and OLAP, pp. 14-21, 2002.

[9] A. Simitsis and P. Vassiliadis, "Methodology for the
conceptual modeling of ETL processes". In CAISE
Workshops, 2003.

[10] A. Simitsis, "Mapping conceptual to logical models for ETL
processes". In the 8th ACM Int.Workshop on D ata
Warehousing and OLAP, 2005, pp.67-76.

[11] D. Skoutas and A. Simitsis, "Designing ETL processes
using semantic web technologies", in the 9th ACM
Int.Workshop on Data Warehousing and OLAP, 2006, 67-74.

[12] D. Skoutas and A. Simitsis, "Ontology-based conceptual
design of ETL processes for both structured and semi-
structured data", International Journal. on Semantic Web and
Information Systems, Vol. 3, No. 4, 2007, pp. 1-24.

[13] Z. ElAkkaoui and E. Zimanyi, "Defining ETL Workflows
using BPMN and BPEL". in the 12th ACM Int. Workshop
on Data Warehousing and OLAP, 2009.

[14] L. Muñoz, J. Mazón and J. Trujillo, "Automatic Generation
of ETL processes from Conceptual Models". in t he 12 t h
ACM Int. Workshop on Data Warehousing and OLAP, 2009.

[15] J. Trujillo and S. Lujan-Mora, "A UML Based Approach for
Modeling ETL Processes in Data Warehouses", in
Proceedings of ER, 2003, 307-320.

[16] M. Golfarelli, "New Trends in Business Intelligence", in
proceeding of 1st International Symposium on B usiness
Intelligent Systems (BIS'05), 2005, pp. 15-26.

[17] J.F. Roddick et al, "Evolution and Change in Data
Management - Issues and Directions", SIGMOD Record 29,
2000, Vol. 29, pp. 21-25.

[18] M. Golfarelli, J. Lechtenborger, S. Rizzi and G. Vossen,
"Schema Versioning in Data Warehouses". in ER Workshops
2004, LNCS 3289, pp. 415–428.

[19] M. Golfarelli, J. Lechtenborger, S. Rizzi and G. Vossen,
"Schema versioning in data warehouses: Enabling
crossversion querying via schema augmentation", Data and
Knowledge Engineering, 2006, pp.435–459.

[20] S. Rizzi and M Golfarelli, "X-time: Schema versioning and
cross-version querying in data warehouses", in International
Conference on Data Engineering (ICDE), 2007, pp.1471–
1472.

[21] G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y.
Vassiliou, "What-If Analysis for Data Warehouse Evolution",
in DaWaK conference, 2007, LNCS 4654, pp. 23–33.

[22] G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y.
Vassiliou, "Policy-Regulated Management of ETL
Evolution", Journal on Data Semantics XIII, LNCS 5530,
2009, pp. 146–176.

[23] G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y.
Vassiliou, " HECATAEUS: Regulating Schema Evolution.
Data Engineering", in International Conference on Data
Engineering (ICDE), 2010, pp. 1181-1184.

A. KABIRI Engineer degree in Computer Science in 2003. PhD
student in Computer Science. Main research interests: Data
integration, Data warehouses, ETL, MDA. Practitioner in
Business Intelligence field.

F. WADJINNY Engineer degree in industrial computing in 1992;
DESA degree in computing Networks and Multimedia in 2002;
PhD in Computer Science in 2010 with distinction; Professor of
computer science at ITSMAERB, Rabat/ Morocco; 12 recent
publications papers (between 2008 and 2011); Ongoing research
interests: Mediation systems, P2P data integration, Data
warehousing, Information systems security.

D. CHIADMI is a Professor of Computer Science at Mohamadia
engineering School, Mohammed V Agdal University, Morocco.
She received her Diploma (M.Sc.) and her Doctorate (Ph.D.) in
Computer Science. She is Director of SIR Laboratory
(Information System and Distribution Laboratory), Mohammed
V Agdal University since 2005 and Head of the Research team
Intégrale (INTEGRAtion de ressources d’information sur Le
wEb). She is Editor in chief of eTI journal (www.revue-eti.net),
a digital open access journal on I T, and she served on v arious
program committees of conferences and journals in computer
sciences. Her research interests include semantic data and
services integration, services composition, and BI. Book, book
chapter and about 20 recent papers published.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 437

http://www.cs.uoi.gr/~pvassil/publications/2009_DB_encyclopedia/Extract-Transform-Load.pdf
http://www.cs.uoi.gr/~pvassil/publications/2009_DB_encyclopedia/Extract-Transform-Load.pdf

