
A Novel Architecture for Motion Estimation 

Subarna Chatterjee1 
 

 1 Department of IT, Bengal Engineering and Science University, 
Shibpur , Howrah – 711103, WB, India 

 
 
 

Abstract 
The work of motion estimation is highly used in the surveillance 
applications especially for military activities. One of the key 
elements of many video compression schemes is motion 
estimation, for the removal of video temporal redundancy. This 
paper presents an architecture for motion estimation using 
modified Full Search BM algorithm eliminating the SAD 
distortion criterion. The quality of the algorithm used was 
compared with Full Search through software implementations. 
The quality of BMA results was considered satisfactory, The 
designed hardware considered a search range of [-25, +24], with 
blocks of 16x16 pixels. The architecture was described in VHDL 
and mapped to a Xilinx Virtex-II Pro VP70 FPGA. 
Defining efficient techniques for video processing is of special 
interest due to the existence of a wide variety of applications in 
the fields of entertainment, computer vision, surveillance, 
security etc. The different techniques are mainly compared in the 
terms of algorithmic efficiency, hardware requirement, 
processing speed and error performances. In this paper we have 
designed a n ew parallel processing architecture to perform the 
video analysis for motion estimation. We have also done the 
simulation and FPGA based synthesis of the proposed 
architecture for the most commonly used target hardware to 
analyze the hardware cost. 
Keywords: Motion Estimation, Macro Blocks, Zero Matrix, 
Edges, Frame. 

1. Introduction 

During warfare or in animal world, the fighter or the hunter 
always tries to protect himself by adopting slow or fast 
movements and hides against opponents by adopting 
camouflaging and decides and acts for sudden attack at an 
ultimate moment; and here comes the motivation to take 
remote pictures of the environment and analyze the 
pictures, identify the presence of motion, if any, and to 
conclude that there must be an enemy, if there is motion. 
Analysing the motion of the pictures, an appropriate action 
is taken, depending on the generated signal. To implement 
the process, we need architectures which estimate the 
motion of the pictures.  
Already several papers have been published proposing 
different architectures based on the Full-Search Block-
Matching (FSBM) [1,2,13-17] motion estimation (ME) 
algorithm which is the most popular algorithm for ME and 

also demands most computation. H.Yeo et all [1] proposed 
pipelined systolic array architecture where they have 
achieved high throughput rate but the hardware complexity 
is also high. L.C.Liu et all [17] proposed a Frame-level 
pipelined FSBM architecture, where the search range 
increases and this increases the required number of 
computation and storage space; this will result in an 
increase in processing time and memory bandwidth. Some 
authors proposed block-level [2,14] pipelined architectures 
which have many disadvantages over frame-level pipelined 
architectures in their complex control, increased number of 
memory accesses , reduced data reuse, reduced processor 
utilization ratio. All the proposed architectures based on 
FSBM algorithm are scalable with the search range and 
depend on the value of the search range. The problem with 
FSBM ME algorithm is its requirement of large number of 
search data accesses and most search areas are overlapped. 
If the search range is set half of the block size, significant 
reduction in input-output bandwidth can be achieved 
without sacrificing performance.  
The task of motion estimation is used in many areas and it 
requires heavy computation which has created a need for 
developing new ways of implementations, such that, it 
decreases the time required for the application. The aim is 
to propose a ME algorithm which will reduce the search 
data access and hence the required number of computation; 
and propose a s uitable architecture model for ME, 
considering highest throughput, low pin-count, low 
memory bandwidth and reduce computational complexity 
to handle huge amount of data by modifying the existing 
FSBM algorithm. With this view the work focused on the 
simulation of the ME algorithm in a parallel logic and also 
tries to define an efficient architecture model for ME 
which will parallelize the task of ME so that multiple 
blocks can be processed simultaneously keeping in mind 
the number of processors required and also the processing 
time needed and simulate the hardware design. 
In this paper, the video or image is captured using an 
image sensor and stored as successive frames in a v ideo 
file format. The set of frames is then processed to detect 
the motion of the moving objects. A proposal for hardware 
implementation of the algorithm is made and architectural 
synthesis of the same for different board is tested. 
Performance and implementation cost of the parallel 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 414



memory architecture are estimated and compared to some 
previous memory architectures. The parallel memory can 
keep the data path fully utilized in video processing 
function implementations. This ensures high-speed 
operation and full utilization of the processing resources. 
Main Results:  
The organization of the paper is as follows. In Section II 
the Review of Previous work of ME has been done. In 
Section III we have defined edge detection algorithm. 
Methodology of motion analysis with its hardware 
estimation is being described in Section III and Section IV. 
Performance analysis and comparison with the other 
related works is described in Section V and concluding 
remarks in Section VI.  

2. Review of Previous work of Motion 
Estimation   

The work of ME is highly used in the surveillance systems 
of the defense department. In systems such as MPEG[4], 
ME[12][18], eliminates temporal redundancies in image 
sequences and thus accounts for most of the compression. 
To perform ME, the Full Search Block Matching (FSBM) 
[1][13][14][15]  algorithm is preferred because of it’s 
optimal precision, simplicity and low control overhead. 
Block-based ME technique is being widely used in video 
compression applications, for the removal of video 
temporal redundancy. The six-level nested Do-loop Full-
Search Block-Matching ME algorithm proposed by H.Yeo 
and Y.H.Hu[1] is as shown below. 

do v = 1 to Nv 
do h = 1 to Nh 
     MV (h, v) = (0, 0); 
     Dmin (h, v) = ∝ ; 
     do m = -p to p 
     do n = -p to p 
          MAD (m, n) = 0; 
          do i = 1 to N 
          do j = 1 to N 
              MAD (m, n) = MAD (m, n) + | x ((h-1)N 
+ i, (v-1)N + j) –  y ((h-1)N + i + m, (v-1)N + j + 
n)|; 
          enddo j, i ; 
          if Dmin (h, v) > MAD (m, n) 
              Dmin (h, v) = MAD (m, n); 
              MV (h, v) = (m, n);  
          end if ; 
enddo n, m, h, v ; 

A typical video frame consists of Nh × Nv blocks of pixels 
where Nh is the number of N × N  blocks in each row and 
Nv is the number of block-level rows in each frame. The 
value of N, which is the macroblock size, is arbitrary. The 

Nh 
 
 
 

 Nv 

N × N N × N .    .     N × N v = 1 
N × N N × N .    . N × N v = 2 
N × N N × N .    .     N × N v = 3 

. 

. 

. 

. 

. 

. 

.    . 

.    .     

.    .     

. 

. 

. 

. 

. 

. 

N × N N × N .    .     N × N v = Nv 
Current frame ( Nv × Nh  blocks of pixels ) 

Fig. 1  Current frame block distribution. 

value of N is 8 or  16 generally. Figure 1 shows the 
distribution of blocks in the current frame. 
For ME each image block in the present frame is to be 
matched to an Nh × Nv region in a reference frame. Each of 
these blocks has to be considered individually and block 
matching computation has to be performed in a predefined 
search area in the reference frame. The search is restricted 
to a specific area in the reference frame which is called 
search area. The search range is [- p, p] where Np ≤ . 
The block matching algorithm has to be applied for each 
block in the current frame. For each block first the motion 
vector (MV) of that block is initialized to 0 and minD  
value for that block to ∝ . The search range for this block 
is as shown in Figure 2. 

 

Fig. 2  Search  range for each block. 

Next the value of two variables m and n has to be varied 
from –p to p. For each value of m and n we initialize the 
value of the variable MAD for that m and n combination to 
0. As seen in Figure 2 there will be 2)12( +p  candidate 
blocks. So, for each combination value of m and n we will 
consider one among the 2)12( +p candidate blocks. For 
the block in the current frame we will compute the MAD 
(Mean Absolute Distortion) value with each of these 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 415



candidate blocks. So, we will get total 2)12( +p number 
of MAD values. The function MAD in Eq (1) is as below: 

∑∑
−

=

−

=

++−=
1

0

1

0
|),(),(|1),(

N

i

N

j
njmiyjix

N
nmM A D

Here, ),( jix denotes the luminance pixels of the current 
frame and ),( njmiy ++ denotes the luminance pixels 
of the reference frame. 
  After the complete iteration of the do loops the 
variable minD for that block will contain the lowest MAD 

value among the 2)12( +p MAD values. The variable MV 
for that block will contain the values of m and n for which 
give the best matching block, i.e., the candidate block with 
lowest MAD value. The values of m and n will denote 
displacement of the block in the current frame with respect 
to the reference frame, which is known as motion vector. 
Total vh NN × number of motion vectors is generated 
for a frame. With help of these motion vectors we can 
easily construct or predict the current frame. 
For each position value of MB the algorithm consider 

2)12( +p candidate blocks. For the block in the current 
frame it will compute the MAD (Mean Absolute 
Distortion) value with each of these candidate blocks that 
is, total 2)12( +p number of MAD values computation. 
In general case considering the search range [-16,16] the 
total number of MAD values computation needed is 

2)12( +p = ( 2 x 16 + 1)2  = 33 2 = 1089 . 
Several papers published before different architectures are 
proposed which are based on the FSBM[1][13][14][15] 
ME algorithms. These solutions are able to find the 
optimal results in terms of blocks matching. However, this 
type of architecture uses a very high amount of hardware 
resources due to this large number of computation. To 
reduce the hardware resources cost the complexity of the 
Full Search has to be reduced with little losses in the 
results quality. 
The objective is to propose a ME algorithm which will 
reduce the number of computation and not consider the 

2)12( +p candidate blocks for each MB; which result in 
improvements in performance, storage space and 
computational complexity. 

3. Edge Detection  

Edges are often considered as primary image artifacts for 
extraction by low-level processing techniques, and the start 
point for many computer vision techniques. Edge detecting 
an image significantly reduces the amount of data and 

filters out useless information, while preserving the 
important structural properties in an image.The Canny 
edge detection algorithm [3][5][6] is a commonly tused 
technique for  optimal edge detection. It utilizes some 
improved techniques which results in: (i) low error rate,(ii 
well localized edge points,(iii)only one response to a single 
edge etc. 

3.1 Steps for Edge Detection  

Step1: The initial image is smoothened by convolving 
with a Gaussian filter with specified standard deviation σ, 
to reduce noise. Mathematically we can write the 2-D 
convolution [6] as:  

),(),(),( lkKjiIjiO ⊗=                                           

              ),()1,1(
1 1

lkKljkiI
m

k

n

l
∑∑
= =

−+−+=               (2)  

If the image has M rows and N columns, and the kernel has 
m rows and n columns, then the size of the output image 
will have M - m + 1 rows, and N - n + 1 columns. where:  
K(k,l) = convolution kernel; I(x,y) = original image; 
O(x,y) = filtered image;  
m by n= size of convolution kernel 
 

Step2: The gradient of the image is obtained by feeding 
the smoothened image through a convolution operation 
with the derivative of the Gaussian in both the vertical and 
horizontal directions. G=( G2

x+G2
y )1/ 2 and edge direction 

θ=tan-1(Gy / Gx) computed at each point. 
 

Step3: Edge point is defined to be a point whose strength 
is locally maximum in the direction of the gradient. 
 

Step4: Non-maximum suppression is used to trace along 
the edge in the edge direction and suppress any pixel value 
(sets it equal to 0) that is not considered to be an edge. 

3.2 Proposed Steps for Motion Detection   

Canny edge detection algorithm is used to detect the edges 
of the image frames. Edges of the frames are detected and 
saved, which is then compared with the initial frame to find 
the rate of change of information followed by the predicted 
velocity. The steps of the proposed algorithm can be 
briefed as follows: 

1. Video is captured, and stored as a video file. 
2. Conversion of each JPEG (RGB) frame into a 

gray scale image. 
3. Detection of the edge pixels in the successive 

frames. 
4. Divide each image into a set of MBs. 
5. Storing the index of the zero MBs i.e. the MBs 

which doesn’t have any edge pixels, for each 
frame.   

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 416



6. Finding the number of similarities in the index 
values between the frames. From this we can 
calculate the difference in the motion information 
for each movie. 

3.3 Result Analysis for Motion Detection Algorithm   

 

 

Fig. 3  Upper figure shows the 1st frame of the video file and lower figure 
the frame after edge detection. 

Validity of the proposed Motion detection algorithm is 
simulated using MATLAB 7.1 from Mathworks Inc[11]. 
Here 112 frames of a v ideo file have been taken. Each 
frame is a still image of pixel size 288 × 350. The first 
frame has more similarity with the second frame than with 
the one hundred and twelfth frame in terms of same index 
repetition. The number of zero MB(16 ×10) for the first 
frame is 60,and for second frame is 67 out of 630 MB, 
same index repeat on 58 number of MB; so difference is 
[(60 - 58)+(67 - 58)] = 11 number of MB for first frame 
and second frame. The number of zero MB(16x10) for 
112th  frame is 80 same index repeat on 29 number of 
macro blocks so difference is [(60 - 29) + (80 -29)] = 82 
number of MB. This difference in information concludes 
that there exists motion of the object in the movie. 

4. Hardware Estimation   

4.1 Hardware Estimation Of Canny Edge Detection 
Algorithm   

From Eq (2) putting i=j=1 we get,  

∑∑
= =

=
m

k

n

l
lkKlkIO

1 1
),(),()1,1(  

Now putting m=n=5 that is the size of the convolution 
kernel we get, 
O(1,1) = I11K11 + I12K12 + I13K13 + I14K14 + I15K15 + 
I21K21 + I22K22 + I23K23 + I24K24 +I25K25 + I31K31 + 
I32K32 + I33K33  + I34K34 + I35K35 + I41K41+ I42K42 + 
I43K43 +I44K44  + I45K45+ I51K51 + I52K52 + I53K53 + 
I54K54 +  I55K55 

           = Y11+Y21+Y31+Y41+Y51 
Where,  

Y11 = I11K11 + I12K12 + I13K13 + I14K14 + I15K15 
Y21 = I21K21 + I22K22 + I23K23 + I24K24 + I25K25 
Y31 = I31K31 + I32K32 + I33K33 + I34K34 + I35K35 
Y41 =I41K41 + I42K42 + I43K43 + I44K44  + I45K45 
Y51 =I51K51 + I52K52 + I53K53 + I54K54  + I55K55 

 

 

Fig. 4  Parallel architecture of Gaussian filter. 

Figure 4 shows the hardware estimation of the Gaussian 
Filter, which is the core of the Canny Edge Detection 
Algorithm. The filter comprised of four delay operators(4 
D FF), five multiply operators, and four addition operators. 
Figure shows a fully-parallel hardware architecture for this 
algorithm. The fully-parallel architecture simply maps each 
arithmetic operator in the algorithm into a separate 
hardware element.  From figure we see execution take 
(Tm+4Ta+Ta) =Tm+5Ta clock cycle, where Ta = addition 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 417



time and Tm = multiplication time, let  T m =1ns and Ta = 
1ns;then Tm+5Ta =  1+5 = 6 ns when the size of kernel is 5 
by 5 matrix. So in general case when it is of order n then 
this architecture need n+1 clock cycle. 
Similarly using the ITU-R601 format (720×576 at 25fps) 
each frame is of size 576×720 , it get the 1st sample in ( 
Tm+4Ta+Ta ) clock cycle;  
     

O( i , j ) = O(1 ,1) + O(1 ,2) + O(1 ,3) + ….... + O(1 ,575) 
+ O(1 ,576) + 
          O(2 ,1) + O(2 ,2) + ….... + O(2 ,575) + O(2 ,576) + 
          O(3 ,1) + O(3 ,2) +….... + O(3 ,575) + O(3 ,576) + 
         O(4 ,1) + O(4 ,2)) +….... + O(4 ,575) + O(4 ,576) + 
........+ O(720 ,1) + O(720 ,2)+…... +  + O(720 ,576) + 
        O(720 ,1) + O(720 ,2) + …... +  O(720 ,576)  
O(1,575) = I1575K11 + I1576K12 + I2575K21 + I2576K22 + 
I3575K31 + I3576K32 + I4575K41 + I4576K42 + I5575K51 + 
I5576K52 

O(1,576) = I1576K11 + I2576K21  + I 3576K31 + I4576K41 + 
I5576K51 

O(719,1) = I7191K11 + I7192K12 + I7193K13 +I7194K14 + 
I7195K15 + I7201K21 + I7202K22 +  I 7203K23+ I7204K24 + 
I7205K25 

O(720,1) = I7201K11 + I7202K12 + I7203K13 + I7204K14 + 
I7205K15  

 

Fig. 5  Gradient and Edge direction calculation. 

Considering Tm= Ta= 1 clock cycles output of the 1st 
frame that is 1st sample is available at 6 + (576-1) = 581 

clock cycles; hence Sampling time ≥ 581 clock cycles or ≥ 
Tm+ 5Ta+ (576-1) sec.  
Figure 5 shows the proposed architecture of the gradient 
and edge direction calculation. The filter comprised of two 
delay operators (2 D FF), three multiply operators, and 
three addition operators for gradient calculation in the 
horizontal direction and same elements are used for 
gradient calculation in the vertical direction.  The spatial 
gradient amplitude G = (G2

x+G2
y )1/ 2 and edge direction θ 

= tan-1(G y /G x ) computed at each point. The fully-
parallel architecture simply maps each arithmetic operator 
in the algorithm into a separate hardware element.  From 
figure we see execution take (Tm+2Ta+Ta+Tm+2Ta) = 
2Tm+5Ta clock cycle, where Ta = addition time and Tm = 
multiplication time, let Tm =1ns and Ta = 1ns;then 
2Tm+5Ta =  2+5 = 7 ns when the size of kernel is 3 by 3 
matrix. So in general case when it is of order n then this 
architecture need 2n+1 clock cycle. 

4.2 Result Analysis of Gaussian filter  

Fig 6 shows the simulation output of the Gaussian filter 
using Xilinx-ISE6 and Modelsim 6.1 simulator. At first 
clock  product I11K11, I21K21, I31K31, I41K41, I51K51 is 
calculated; second clock product I12K12, I22K22, I32K32 , 
I42K42 , I52K52 is calculated; similarly at third ,fourth and 
fifth clock product I13K13, I23K23, I33K33 , I43K43 , 
I53K53 ,I14K14, I24K24, I34K34 , I44K44 , I54K54 ,I15K15, 
I25K25, I35K35 , I45K45 , I55K55 is calculated. At sixth clock 
the first filter output is generated from the filter_out port. 
After that at every clock the output is generated. 

Table 1: Device utilization summary 

 
Spartan-3 

S50 
Virtex – 

v50 
Virtex-II 

V2000 
     Virtex-II  
    Pro VP70 

  Virtex-IV     
     VFX60 

# Slices 372 (48%) 787(102%) 372 (3%) 372 (1%) 350 (1%) 
# Slice FFs 240 (15%) 240(15%) 240 (1%) 240 (0%) 200 (0%) 
# 4 input LUTs 498 (32%) 1283(83%) 498 (2%) 498 (0%) 498 (0%) 
# bonded IOBs 50 (40%) 50 (27%) 50 (8%) 50 (5%) 50 (12%) 
# GCLKs: 25 (625%) 1 (25%) 25 (44%) 25 (7%) 1 (3%) 
Memory Usage 76804 KB 78196 KB   113584KB 217284KB 238472KB 

The percentage value in the parenthesis shows utilization 
ratio of the amount of available resources. The comparison 
of the synthesis results of the proposed parallel architecture 
of the Gaussian filter taking different device family are 
being summarized in Table 1. Table 1 shows the usage of 
different blocks in FPGA ie LUT, RAMs.  The comparison 
of the synthesis results taking different Device-Family 
shows that the designed architecture utilizes maximum 
resource for Spartan-3 device. 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 418



 

Fig. 6  Simulation output of Gaussian filter. 

4.3 Architectural connectivity of Motion Detection 
Algorithm    

 

 Fig. 7  Block Diagram of Motion Detection. 

Figure 7 shows the basic architectural blocks of motion 
detector hardware. Capture the video file by camera. Split 
the .avi file into set of frames, now convert the RGB image 
to gray scale image. Calculate the edges by Canny edge 
detector .Divide each frame into set of macro-blocks. 
When control signal (c) of the estimator is zero then test 
for equality for each macro-block with zero matrix and 
store the index of zero macro-blocks(16×16) for each 
frame. Then count the number of zero matrix(16×16) for 
each frame. When control (c) is 1 then Check if same 
index repeat for the successive frames and calculate the 
difference. 
Using the ITU-R601 format (720×576 at 25fps) each 
frame is of size 576×720.We divide it into 256 MB each of 
size 36×45. Now we have to test for equality with zero 
matrix(36×45) and count the number of zero MB. Figure 6 

is the algorithm for equality test of one MB of size 
Nv×Nh of a frame with zero MB of same size.  
 

do i = 0  to Nv 
     do j = 0  to Nh 
            if  zero( i,j) == m(i,j) 
                 p = p+1; 
            endif; 
      enddo j; 
enddo i; 
if p == Nv × Nh 
    q=1; 
else q=0; 
end; 

Fig. 8  Algorithm for equality test of one MB of size Nv × Nh 

Considering Nv =36 and Nh=45     the processing of j 
loop can be implemented in an estimator with 2 ALU 
objects and will execute in two clock cycles. For 
processing for a 36 × 45 macro-block is implemented as a 
single serial processing stage (minimum resource 
approach), it will execute in 90 clock cycles. For next 
checking it takes 2 clock cycles. 
Figure 9 demonstrates the proposed internal architecture of 
the Estimator block, which utilizes multiple processing 
elements. Here we have taken 256 processing elements. 
Each Processing element (P1,P2, P3,.....P256) has one 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 419



memory element M(Each memory consists of 36register 
(R1,R2,R3…R36)), 36Comparator to test the equality and 
store the result in the  registers (I1,I2,I3…I36),1Adder for 
addition and  store the result in register R_1 ,1Comparator 
to test the equality and store the result in the I_1 register. 
At the end of each cycle the sum of all the I_1 registers are 
being calculated and are store in the counter register 
(count).  

 

Fig. 9  Block Diagram of Estimator. 

 

Fig. 10  Parallel pipeline processing approach. 

Figure 10 is the block diagram Of  the steps required for 
comparison of each macro-blocks(36×45) of a frame with 
zero matrix using parallel approach in the first  execution 
phase on a p rocessing element(P). 1st row pixels of the 
macro blocks(36×45) of the frame enter the registers 
(R1,R2…R36). They are compared with a co nstant zero 

value, if equal then   registers (I1,I2, I3…I36) will be set to 
one otherwise they will be set to zero. Count the number of 
zero macro blocks for each frame. We have to check 
whether the value of register R_1,R_2,R_3,…R_256 (MB1 
in figure 5) is 1620 then set I_1,I_2,I_3,….I_256 to one 
otherwise set I_1,I_2,I_3,….I_256 to zero. Lastly count the 
sum of I_1,I_2,…I_256. For one frame it takes 3+ (45-1)+2 
= 49 clock cycles. 
The proposed architecture in Figure 9 employs 256 
processing elements The number of clock cycles required 
is 49 for calculating the index and number of zero macro-
blocks for each frame. Here we have taken 25 frames for 
motion detection so total clock cycles required is 25×49 
=1225 for calculating the index and number of zero macro-
blocks for the movie. Checking of same index repetition 
for the 1st frame and 2nd frame take 2 clock cycles. As the 
execution phase occur in parallel in pipeline manner so the 
total checking takes 1225 clock cycles to calculate the 
difference. So total clock cycles required depends on the 
number of frames and the size of frames in the video-file. 

4.2 Improvements from Design Point of  View  

To detect only moving objects, frame subtraction is 
performed. Since there is not enough space to store past 
frames entirely, we store only the zero MBs of the 
1st Frame after ED. 
 

     Image                             Divide it                                       identify  

                                          into set of MB                             moving Objects                     
 

(a) 

    Image                                     Calculate edges                   

                                                  For each frames  
                                                                                 Divide   the frame                      

                                                                                into    set of MB                                                

                                           identify moving  
                                                 Objects 

 

(b) 

Fig. 11(a) Block Diagram of the FSBM algorithm for ME (b)Block 
diagram of the proposed ME algorithm. 

ME[12][18] with this modified algorithm the distortion 
criterion is not calculated for all samples. In this method, 
for each pixels calculated, only the zero MB pixels are 
considered and the rest of the pixels are discarded. Results 
shows that with this algorithm less than a quarter of the 
block samples are calculated, increasing the performance 
and decreasing the complexity of the ME operation. 

do k = 0  to Nv × Nh - 1 
    do i = 0  to N-1 
         do j = 0  to N-1 
              MB (k, i, j) = I (i + m , j + n) 

Canny Edge 
Detector 

Divider 

Estimator 

Divider Estimator 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 420



          enddo j; 
          n=n+N; 
      enddo i; 
      m=m+N; 
enddo k; 
 

Time Complexity for division of a frame into a set of MBs 
= T(n×n) 
= Nh × Nv × N × N   
Considering image size of 8×8 matrix and size of each MB 
of 2×2 and  number of MB 16,  
T(8×8) = 4 × 4 × 2 × 2 

= 16 × 4 
= 64  

Time Complexity for execution of the FSBM algorithm 
for ME used by the estimator  =T(n×n)  
= Nh × Nv × 2)12( +p  × N × N   
Considering image size of 8×8 matrix and size of each MB 
of 2×2 and  number of MB 16 ,  
T(8×8) = 4 × 4 × 2)12( +p × 2 × 2 

= 16 × ( 2 × 2 + 1) 2 × 4 

= 64 × ( 4 + 1) 2 
= 64 × 5 2 
= 64 × 25 = 1600  

Total time complexity in this case is = 64+1600 clock 
cycles; 

Time Complexity of the proposed ME algorithm                 
= T(n×n)  
= Nh × Nv × N × N   
Considering image size of 8×8 matrix and size of each MB 
of  2×2 and  number of  MB is 16, 
T(8×8) = 4 × 4 × 2 × 2 
           = 16 × 4 
           = 64  
Total time complexity in this case is  
= 13 + 64 + 64 clock cycles; 
= 64 + 77 clock cycles; 

Ratio of total time is 1600:77 = 20.78:1 ≈ 21:1. So the 
number of computation and the processing time required 
for ME can be reduced by applying this ME algorithm. 

4.4 Result Analysis of Estimator  

  

Fig. 12  Simulation output of the estimator.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 421



Figure 12 shows the simulation output of the estimator 
using Modelsim 6.1 simulator. At first clock memory 
elements (p1m1,p1m2) get the data of the first row of the 
4×2 matrix. It compare the four data value of p1m1 and 
p1m2 with a constant zero if tested result is equal then 
register p1i1 and p1i2 is set to 1 otherwise it is set to zero, 
both p1i1 and p1i2 are 4×1 matrix. Now we add the four 
value of p1i1(0,1,2,3) and p1i2(0,1,2,3) and store the value 
in temp1 and temp2.At the 2nd clock we get the number of 
zero MB for the 1st row of the 4×2 MB here it is 4 and we 
give the input for the next row of  the 4×2 matrix p1m1 
and p1m2. At the 3rd clock we get the number of zero MB 
for each 4×2 MB here it is 8.Now as here we take the 
frame size as 4×4 and divide it in  two 4×2 MB.  At  3rd 
clock cycle we get the result of the comparison of the value 
of c1 & c2 with 8 if it is 8 then p2i1and p2i2 is set to one 
otherwise they are set to zero, c i s the counter register 
which count the total number of zero MB for each frame 
here it is two for the first frame and 1 in the 2nd frame. So 
the same index repeats for one MB i.e. the number of 
similar zero matrix of MB for the 1st and the 2nd frame is 
one. 
Counter cc1 count the reputation of zero macro-blocks in 
the successive frames. The counters cc1 is an array of 
registers so that we can get the difference in the successive  
frames. During the execution of the second frame the value 
of  p 1i1 and p1i2 is compared with 8 and another checking 
is there if p2_i1 and p2_i2 are one(for previous frame it is a 
zero matrix MBs);if both the condition satisfies 
p2_i1,p2_i2 is updated with the new test results if equal 
then it is set to one otherwise set to zero. 

5. Performance Analysis and comparison  

With the proposed architecture, ME is performed block by 
block in a raster scan order. Using the ITU-R601 format 
(720×576 at 25fps), the functionality of the proposed 
scalable architecture is thoroughly tested. In total, around 
1225clock cycles are required to perform real-time 
ITUR601 resolution (with block size 45×36) ME. 

Table 2: Performance Comparison 
Type #PE Pipeline 

Level 
Data 

Operation 
Search 

Range(p) 
Input  
Pins 

#CC 
/Block 

Ours 256 Frame TDO NA  256 2.46 
Liu,Li et al 1089 Frame TDO -16/+16 32 256 

Yeo & Hu 1024 Frame BDO -16/+15 72 256 

He,Bi,Mao 256 Frame TDO -16/+16 16 1089 

Lai &Chen 1024 Block BDO -16/+15 40 256 

Lee & Lu 256 Block BDO -16/+15 24 1024 

Tuan et al 256 Block BDO -16/+15 16 1024 

BDO: Broadcasting  Data operation, TDO : Transmittent  Data 
operation, DO: Data operation. # CC: Clock Cycle, 

The comparison of the proposed architecture with the other 
existing architectures[1][9][13][14][15] presented in the 
Table 2. In Table 2 number of PE, Pipeline Level, type of 
Operation, Search Range (p), Input pin count, number of 
clock cycles required to estimate the motion per block 
have been compared. All the proposed architecture is 
scalable with the search range p so depends on the value of 
p. The Full Search Block Matching ME algorithm consider 
each of these blocks individually and compute the block 
matching in a predefined search area in the reference 
frame. The search range is [-p, p] where p ≤ N ( N × N = 
size of the frame). For each position value of MB the 
algorithm consider 2)12( +p candidate blocks. For the 
block in the current frame it will compute the MAD (Mean 
Absolute Distortion) value with each of these candidate 
blocks that is, total 2)12( +p number of MAD values 
computation. As the proposed architectures considers the 
search range [-16, 16] total number of MAD values 
computation needed is 2)12( +p = (2 × 16 + 1)2  = 332 = 
1089. ME[9][12][18][19] with this modified algorithm is 
based on finding the same index repeatation of zero MB 
with the next frame and discarding the rest of the MB 
pixels; we are not considering the 2)12( +p candidate 
blocks for each MB. So we get a huge number of reduction 
in computation which implies a decreases in storage place ; 
results in an increases in the performance of the algorithm 
as well as the proposed architecture for ME operation. 
In summary the clock cycles per frame in the proposed 
structure is minimum while smaller PE components are 
used. 

6. Conclusions 

The architecture level techniques, such as parallel 
architectures, are more effective than sequential. By using 
these techniques the power consumption can be reduced 
further more without degrading the system performance. 
Parallel architectures reduce the power consumption but 
increase the cost of the silicon area than sequential 
architecture. 
The proposed architecture can reduce the processing cost, 
which increases the speedup as well as the throughput .The 
parallel memory can keep the data path fully utilized in 
video processing function implementations. This ensures 
high-speed operation and full utilization of the processing 
resources. The future work will be vlsi fabrication of the 
estimated hardware.     

Acknowledgments 

I like to acknowledge the reviewing work of my 
M.E.(CSE) thesis by Prof. Amitabha Sinha, Director, 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 422



School of Information Technology, West Bengal 
University of Technology, Salt Lake, Sector-I, Kolkata-
700 064, India for and his moral support, guidance, for the 
completion of my work. I also acknowledge the moral 
support of concerned staff of West Bengal University of 
Technology. Also I must acknowledge the inspiration I 
received from Prof. A. K. Ray, then Head of the 
Department, School of Medical Science & Technology, 
IIT  Kharagpur, and Professor of Electronics & Electrical 
Communication Engineering, IIT Kharagpur, Kharagpur-
731 302, WB, India. 

References 

[1] H. Yeo,Y.H. Hu, “A Novel Modular Systolic Array 
Architecture for Full Search Block Matching Motion 
Estimation” IEEE Transactions on Circuits Systems for 
Video Technology, Vol. 5, No. 5 , Oct. 1995, pp.407-416. 

[2] L. Vos , M. Stegherr, “Parameterizable VLSI architectures 
for the full-search block-matching algorithm,” IEEE 
Transactions on Circuits and Systems, vol. 36, no. 10, Oct. 
1989 , pp. 1309–1316 . 

[3] N. Roma, L. Sousa, “Parameterizable hardware architectures 
for automatic synthesis of motion estimation processors,” 
IEEE Workshop on Signal Processing Systems- Design and 
Implementation(SiPS’01), Sept. 2001, pp. 428–439. 

[4] S. Agha V. M. Dwyer “Algorithms and VLSI Architectures 
for MPEG4 Motion Estimation” Electronic Systems and 
Control Division Research 2003. 

[5] D. Zhāng G. Lu “An Edge and Color Oriented Optical Flow 
Estimation Using Block Matching” Gippsland School of 
Comp & Info Tech Monash University Churchill, Victoria 
3842. 

[6] M. Venkatesan , D.V. Rao “Hardware Acceleration of Edge 
Detection Algorithm on FPGAs” Department of Electrical 
and Computer Engg University of Nevada Las Vegas, NV 
89154. 

[7] K. N. Ngan, A. A. Kassim, H. S. Singh, “Parallel image-
processing system based on t he TMS32010 digital signal 
processor” IEE Proceedings E, Vol. 134, No.2, Mar 1987, 
pp.119-124. 

[8] F. Durand, J. Dorsey “Fast Bilateral Filtering for the 
Display of High-Dynamic Range Images” ACM 
Transactions on Graphics, 2002, pp.249-256. 

[9] Subarna. Chatterjee et al, “Parallel Hardware Design for  
Motion Estimation”, International Journal of Recent Trends 
in Engineering(IJRTE),Vol.1,No.1, Aug  2009, pp.653-657. 

[10] H. S. Neoh, A. Hazanchuk “Adaptive Edge Detection for 
Real-Time Video Processing using FPGA” Altera 
Corporation, 101 Innovation Dr. San Jose CA 95134. 

[11] MATLAB Reference Manual from Matworks,Inc. 
[12] Subarna Chatterjee et al., “Parallel Hardware Design for 

Motion Estimation”, International Journal of Recent Trends 
in Engineering (IJRTE-2009), Vol-1, No-1, pp. no. 653-
657, ISSN-1797-9617, May - 2009. 

[13] S. Kittitornkun ,Y.H.Hu “Frame-Level  P ipelined Motion 
Estimation Array Processor” IEEE Trans. on C ircuits and 
Systems for Video Technology, Vol. 11, No. 2, Feb 2001.    

[14] J. C. Tuan, T. S. Chang, and C. W. Jen, “On the data reuse 
and memory bandwidth analysis for full-search block-
matching VLSI architecture,” IEEE Transactions on Circuits 
and Systems for Video Technology, Vol. 12, No. 1, Jan 
2002, pp. 61-72. 

[15] HE Wei-feng, BI Y un-long, MAO Zhi-gang “Efficient 
Frame-Level Pipelined Array Architecture for Full-Search 
Block-Matching Motion Estimation” IEEE International 
Symposium on C ircuits and Systems, Japan ,Vol. 3, May 
2005, pp. 2887- 2890. 

[16] Douglas L. Perry, “VHDL Programming by Example”, Tata 
McGraw-Hill Edition 2002, Fourth Edition. 

[17] L.C. Liu, J.C. Chien, H. Y. H.Chuang, and C. C. Li “A 
Frame-Level FSBM Motion Estimation Architecture with 
Large Search Rang” IEEE Conference on Advanced Video 
and Signal Based Surveillance(AVSS’03). 

[18] Subarna Chatterjee et al., “Design of Parallel Architecture 
for Motion Estimation” International Workshop on Mobile 
Systems(WoMS’08)July 2008, pp-113-116. 

[19] Subarna Chatterjee et al., “Architecture Design of Efficient 
Video Processing Technique for Motion Analysis” IEEE 
WIE National Symposium on E merging Technologies 
(WieNSET’07) Jun 2007, pp. 141-144. 

 

 
She was awarded Gold Medal from the university for stood 1st in 
M.E.(CSE)-2009. She has authored 10 r esearch papers in 
International and N ational journals and conferences. Her current 
research interest includes Medical Imaging, Image Processing, 
Pattern Recognition and Machine Intelligence. 
 

Subarna Chatterjee received 
her Bachelor's degree in 
Information Technology, from 
MCKV Institute of Engineering, 
Liluah, Howrah, then under 
Vidyasagar University, in 2004 
followed by Post Graduate 
Diploma in Embedded 
Computer System in 
2006(Dec), and M.E. (CSE) in 
2009(July) from West Bengal 
University of Technology , 
Kolkata. She is presently 
pursuing her PhD at Bengal 
Engineering and S cience 
University, Shibpur, Howrah. 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 423




