
An Experimental Survey on Parsing with Neural and Finite
Automata Networks

Sanjay Bhargava1 and G. N. Purohit 2

 1 Department of Computer Science, Banasthali University
Jaipur, Rajasthan - 302001, India

2 Department of Computer Science, Banasthali University
Banasthali, Rajasthan - 304022, India

Abstract

Parsing is the process of structuring a l inear depiction in
accordance with a g iven grammar. The “linear depiction” may
be a language sentence, a computer program, a weaving pattern,
a sequence of biological strata, a part of music, actions in a ritual
performance, in short any linear chain in which the preceding
elements in some way confine the next element. Parsing with
finite automata networks implies, in one way, the conversion of
a regular expression into a minimal deterministic finite
automaton, while parsing with neural networks involves parsing
of a n atural language sentence. This research paper presents a
twofold investigation on the various parsing techniques with (i)
neural networks and (ii) finite automata networks. Consequently,
the present research paper depicts a comprehensive comparison
among a number of parsing techniques with neural networks
followed by another in depth comparison flanked by a number
of parsing techniques with finite automata networks.
Keywords: Neural networks, Finite automata networks,
Parsing, Regular expressions, Natural language processing.

1. Introduction & Background

The present twofold study shows a d etailed comparison
between various parsing techniques with (i) neural
networks and (ii) finite automata networks. Accordingly,
a comparison has been made among parsing methods by
Bhargava and Purohit [5-6] with a range of parsing
techniques for similar purpose. Next section 1.1 provides
a comparison among parsing techniques with neural
networks, followed by another comparison among various
parsing methods with finite automata networks.

1.1 Parsing with Neural Networks

Parsing is a usual task within computational linguistics,
characteristically attempted by using statistical algorithms
and a set of linguistic information; a good example is the
use of probabilistic parsing (see, e.g. [15], [31], [45], and
[64]). In probabilistic parsing, probabilities are extracted
from a parsed corpus for the purpose of choosing the most

likely regulation when more than one regulation could be
relevant during the course of a parse (see, e.g. [17], [23],
[33], [39], [46], [49], [60], and [63]).
Also for parsing a natural language, increasing
inquisitiveness is generated by neural network parsers
(see, e.g. [28], [32], [37], [41], and [47]). The major
problem that occurs with neural networks is that they
cannot take labeled trees as input. Neural networks
typically utilize an internal representation consisting of a
distributed pattern of activation across a number of nodes.
Using such a representation to handle parse trees focuses
upon two dissimilar strategies: (i) The parse tree may be
encoded into network’s internal distributed representation,
and decoded back on request by a s eparate network;
holistic parsers are examples of this approach [32], and
(ii) The parse tree may be represented explicitly with
specific output units specifying the relationships between
the input words and output constituents. This explicit
representation may again find two forms:
• The separate constituents may utilize different output

units to produce the entire parse tree such as Hebbian
parser [28].

• Otherwise, they may reuse output units such as
Simple Synchrony Network [41].

Therefore, parsing and natural language processing with
neural networks faces in general an inconsistency
between using fixed-sized, comparatively inflexible
neural network architectures, on one hand, and the
limitless generative capacity of language models
described by recursive grammars, on the other hand. A
widespread approach to triumph over this inconsistency
has been the use of recurrent neural networks in various
studies: [19-21], [26], [30], [40], [54], and [59]. Recurrent
neural networks (RNN) have a convinced capacity to
represent past inputs or contexts in hidden units of the
network, and thus are in a limited way capable to deal
with structures of variable size.
In addition, almost all the approaches for parsing with
natural languages use some type of neural network
architecture and some typical statistical function for

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 279

obtaining a parse decision (see, e.g. [7-9], [15], [42], and
[45]). Such a statistical function (for parse decision)
requires a significant amount of time for its execution;
however, Bhargava and Purohit [6] have made an attempt
by removing the need of any such statistical function thus
reducing the overall parsing time.

1.2 Parsing with Finite Automata Networks

Regular expressions and finite automata are two
dissimilar representations for regular languages: Regular
expressions (a finite or infinite set of strings of alphabet
characters), on one hand, generate regular languages
while, on the other hand, finite automata (graphs) accept
regular languages. Apparently, regular expressions and all
variants of finite automata (NFA with or without ε-
transitions, or DFA) are equivalent because all of them
represent the same language, that is, a regular language.
Thereby, all of them are convertible into each other [34].
Parsing with finite automata networks implies in a way
the conversion process of a regular expression into finite
automata because of the following two sequential
processes: (i) regular expression is parsed for its validity,
and if valid (ii) it is converted into finite automata using
the parsing aspects of finite automata construction. So,
hereinafter we’ll refer to the conversion process as
parsing with finite automata networks.
In the literature related to the conversion problem, it has
been found that there exist many different algorithmic
approaches for converting a regular expression into some
variant of a finite automaton; Watson [58] enumerated
various algorithmic approaches for the conversion
problem. Algorithmic approaches to convert a regular
expression into some variant of a finite automaton
include:
• The algorithms to convert regular expression into

NFA with or without ε-transitions (see, e.g. [1], [10-
11], [27], [35-36], [43], [53], [62], and [65]) and

• The algorithms to convert regular expression into
DFA using intermediate NFAs (see, e.g. [2-4], [14],
[16], [25], [34], [55-57], and [61]).

In addition, Daciuk et al. [18] discussed a parsing
algorithm to convert a set of strings into a minimal,
deterministic, acyclic finite-state automaton. Later,
Carrasco and Forcada [13] presented another algorithm to
modify any minimal finite-state automaton so that a string
is added to or removed from the language accepted by it.
Recently, Carrasco et al. [12] presented another algorithm
that allowed the incremental addition or removal of
unranked order trees to a minimal frontier-to-root
deterministic finite-state tree automaton. Unfortunately,
all the above studies had limitations as they represented
only a finite set of strings. To overcome this limitation,
Bhargava and Purohit [5] proposed an algorithm which
converted a regular expression into a DFA directly, that is
without the use of any intermediate NFA and as there was

no NFA construction by the proposed algorithm, the time
complexity of the proposed algorithm was also reduced
by a significant amount.
The contents of this paper are arranged as follows.
Section 2 first briefs the results of Bhargava and Purohit’s
[6] algorithm on parsing with neural networks followed
by an experimental survey on comparison among the
parsing methods with neural networks. Next section 3
again, first concisely describes the results of Bhargava
and Purohit’s [5] algorithm on parsing with finite
automata networks followed by another experimental
investigation on comparison among the parsing methods
with finite automata networks. Last Section 4 details the
conclusions of the present research paper.

2. Experimental Survey on Parsing with
Neural Networks

Bhargava and Purohit [6] proposed an algorithm for
parsing with neural networks and applied it over a huge
number of random test sentences of natural language. For
this they used a simulated grammar set, consisting of 200
valid connection paths (a connection path has been used
during parsing as either an initial parse tree or a parse
tree to be added as a connection path). Then they
executed the experiment for a s et of 100 test sentences
taken randomly from the environment. The detailed
results of this experiment are shown in Table 1. After the
completion of the first experiment the Grammar set
consists 232 (200 old + 32 new) valid connection paths,
with the importance (A connection path is most important
if its frequency is highest, less important if its frequency is
lesser, and least important if its frequency is least.) of
each connection path during parsing. Bhargava and
Purohit [6] repeated the experiment with a set of 200
random test sentences, and after the experiment the
Grammar set consists 295 (232 old + 63 new) valid
connection paths. Then the experiment was repeated again
with a set of 150 r andom test sentences, and after the
experiment the Grammar set consists 345 (295 old + 50
new) valid connection paths.
The experiment was repeated again and again, for 20
different sized sets of randomly selected test sentences
and the results of all the experiments are shown in Table
1. A total of 6125 r andom test sentences has been
considered, out of which 5204 s entences (4985 valid
which were parsed and 219 invalid which were not
parsed) have produced the predicted results; while the
other 921 sentences (649 valid which were not parsed and
272 invalid which were parsed) have produced an
unexpected result. A “^” sign in the third column of the
table suggests that the corresponding increase in the set
Grammar is not in accordance with the previous increase;
this is due to the random test sentences that were taken
during experiments.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 280

Table 1: Detailed analysis table depicting observed versus predicted
results.

E
xp

. N
o.

N
o.

 o
f t

es
t s

en
te

nc
es

 (N
)

N
o.

 o
f p

ar
se

 tr
ee

s i
n

G
ra

m
m

ar

N
o.

 o
f v

al
id

 se
nt

en
ce

s
w

hi
ch

 a
re

 p
ar

se
d

N
o.

 o
f v

al
id

 se
nt

en
ce

s
w

hi
ch

 a
re

 n
ot

 p
ar

se
d

N
o.

 o
f i

nv
al

id
 se

nt
en

ce
s

w
hi

ch
 a

re
 p

ar
se

d

N
o.

 o
f i

nv
al

id
 se

nt
en

ce
s

w
hi

ch
 a

re
 n

ot
 p

ar
se

d

R
at

io
 o

f o
bs

er
ve

d
ve

rs
us

pr

ed
ic

te
d

re
su

lts

(I) (II) (III) (IV) (I+IV)/
N

0 - 200 - - - - -

1 100 232 70 27 3 0 0.70

2 200 295 135 42 12 11 0.73

3 150 345 106 29 8 7 0.75

4 50 365 30 8 8 4 0.68

5 250 395^ 188 36 13 13 0.80

6 450 555 379 43 9 19 0.88

7 300 652 238 25 27 10 0.83

8 350 740^ 281 29 24 16 0.85

9 325 869 256 40 14 15 0.83

10 125 909 87 27 7 4 0.73

11 425 1079^ 369 31 13 12 0.90

12 75 1091^ 65 8 1 1 0.88

13 175 1139 138 19 13 5 0.82

14 500 1259^ 427 35 19 19 0.89

15 475 1438 404 45 6 20 0.89

16 600 1650 517 42 28 13 0.88

17 525 1828 457 51 4 13 0.90

18 550 1934^ 476 34 27 13 0.89

19 225 2016 160 42 13 10 0.76

20 275 2103 202 36 23 14 0.79

Total 6125 2103 4985 649 272 219 0.85

The results shown in the detailed analysis table are in fact
extremely hopeful, particularly in the absence of any
statistical function. Bhargava and Purohit [6] have started
with the set size 200 of Grammar and only after 20
experiments, with 6125 random test sentences, it became
2103. Thus the size of the set Grammar would go on
increasing and, after the passage of a huge number of test
sentences, the set Grammar would become so rich that the
results obtained would match with the results expected,

most of the times. The size of set Grammar increases
approximately at a rate of n/3, where n is the number of
random test sentences. Figure 1 shows the behavior of set
Grammar with respect to the number of input test
sentences.

Fig. 1 Set Grammar after 20 experiments.

Figure 2 provides another view of the extracted
information from Table 1. In this chart a comparison,
based over all the 20 e xperiments, is shown among the
number of test sentences, the number of sentences
producing predicted results, and the number of sentences
producing unpredicted results (All those sentences which
are either correct and parsed correctly or incorrect and

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

0 5 10 15 20 25 30 35 40 45 50 55 60 65

N
o.

 o
f P

ar
se

 tr
ee

s i
n

se
t G

ra
m

m
ar

 in
 H

un
dr

ed
s

No. of Test sentences in Hundreds

Set Grammar after parsing of 6125
random test sentences.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 281

not parsed, lead to the predicted results while all other
sentences lead to unpredicted results.).

Fig. 2 Comparison among input test sentences, sentences producing
predicted results, and sentences producing unpredicted results.

Though a small sample from the environment was taken
during experiments, the results were really encouraging;
85% of the times, Bhargava and Purohit [6] reached to the

predictions while 15% of the times they failed with
respect to predictions. There are basically two reasons for
such a failure.
(i) Unbounded nature of the natural language still

allowed so many valid sentences which were not
covered by Grammar as shown in the 5th column of
the detailed analysis table (Table 1). In this column,
there exist 649 such test sentences which are valid
but, because of the limitation of the set Grammar,
they are not parsed.

(ii) Ambiguous nature of the natural language still
allowed so many invalid sentences which were
covered by Grammar as shown in the 6th column of
the detailed analysis table (Table 1). In this column,
there exist 272 such test sentences which are invalid
but, because of the ambiguous nature of the natural
language represented by the set Grammar, they are
parsed.

However as Bhargava and Purohit [6] moved towards
putting more and more random test sentences to the
algorithm, the set Grammar would start becoming rich
thus reducing the chances of a valid sentence to be
rejected, and hence would effectively manage the risks
involved with unbounded nature of natural language. The
ambiguous nature of the natural language, on the other
hand, would require some semantic knowledge base for
its exclusion.
As far as we know, Empty-First-Daughter (EFD) parsing
methods [50] using indexing techniques, were the most
time efficient for parsing a natural language. Penn and
Popescu [51], Kiefer et al. [38], Elmasri and Navathe
[22], Malouf et al. [44], Ramakrishnan et al. [52] and
Ninomiya et al. [48] enumerated four EFD parsers (the
non-indexed EFD parser, the path-indexed parser, the
non-indexed EFD parser using quick-check and the
combination of path indexing and quick-checking) and
they also have shown that the above four parsers were the
most time efficient in their kinds. However, when we
compared the parsing time of the Bhargava and Purohit’s
[6] parser with the parsing times of the four EFD parsers,
we found that the Bhargava and Purohit’s [6] parser
further shortened the parsing time hence, showing its
supremacy over the above four EFD parsers. For the
above comparison, we used a test set containing 40
sentences of lengths from 2 to 9 words (5 sentences for
each length) over the five parsers and recorded the
parsing time for each of them. Table 2 shows a detailed
comparison between the parsing times of Bhargava and
Purohit’s [6] method and the four EFD parsers.

Table 2: Comparison between average parsing times (msec).

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

550

575

600

1 2 3 4 5 6 7 8 9 1011121314151617181920

No. of random test sentences

No. of sentences producing predicted results

No. of sentences producing unpredicted results

Experiment Number

N
o.

 o
f t

es
t s

en
te

nc
es

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 282

W
or

ds
 p

er
 se

nt
en

ce

Pa
rs

in
g

tim
e

by
 N

on
-in

de
xe

d
E

FD

Pa
rs

in
g

tim
e

by
 P

at
h-

in
de

xe
d

E
FD

Pa
rs

in
g

tim
e

by
 Q

ui
ck

-c
he

ck
 E

FD

Pa
rs

in
g

tim
e

by
 P

at
h-

in
de

xe
d

E
FD

 w
ith

 q
ui

ck
-

ch
ec

k

Pa
rs

in
g

tim
e

by
 B

ha
rg

av
a

an
d

Pu
ro

hi
t’

s [
6]

m

et
ho

d

%
 R

ed
uc

tio
n

in
 p

ar
sin

g
tim

e
by

 B
ha

rg
av

a
an

d
Pu

ro
hi

t’
s [

6]
 P

ar
se

r
(a

s c
om

pa
re

d
w

ith
 th

e
sh

or
te

st

pa
rs

in
g

tim
e

by
 a

n
E

F
D

 p
ar

se
r)

(msec) (msec) (msec) (msec) (msec)

2 0.9 0.9 1.0 0.9 0.8 11.1

3 4.0 4.4 3.9 4.4 3.4 12.8

4 15.5 16.4 14.9 16.0 12.3 17.5

5 46.2 46.9 44.2 46.5 34.7 21.5

6 103.8 102.5 98.1 100.8 76.1 22.4

7 184.8 186.9 176.0 180.7 133.9 23.9

8 311.4 313.5 301.0 295.3 212.8 28

9 594.6 562.7 554.7 551.7 301.4 45.4

Bhargava and Purohit [6] provided a parser which
reduced the parsing time by more than 45% when the
number of words per sentence was 9. As practically in all
the languages most of the sentences contain 9 or more
words, Bhargava and Purohit’s [6] parsing method is
simply matchless among its neighbors for similar parsing
with respect to the reduction in parsing time (As the
sentence size goes more than 9, parsing time will become
more shortened).
As shown in Figure 3, which is a graphical representation
of Table 2, we find that Bhargava and Purohit’s [6] parser
reduces the parsing time effectively, particularly in the
cases when the sentences are bigger in size. For sentences
having more than 5 words, Bhargava and Purohit’s [6]
parser outperforms all the four EFD parsers thereby
showing its supremacy over the others.

Fig. 3 Comparison between parsing times of various methods.

3. Experimental Survey on Parsing with
Finite Automata Networks

Bhargava and Purohit [5] proposed an algorithm for
parsing with finite automata networks (algorithm for
conversion of a regular expression into a D FA) and

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

550

575

600

2 3 4 5 6 7 8 9

Non-indexed EFD
Path-indexed EFD
Quick-check EFD
Path-indexed EFD with quick-check
Bhargava and Purohit's [6] parser

Number of words per sentence

A
ve

ra
ge

 P
ar

si
ng

 ti
m

e
(m

se
c)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 283

applied it over 150 regular expressions of 15 di fferent
sizes n, and for this, 10 di fferent and random regular
expressions were taken of each size n. Then, the average
time taken in the conversion for each value of n was
obtained and is shown in Table 3.

Table 3: Comparison table between n, n.logen, n.log2n and time taken
by Bhargava and Purohit’s [5] algorithm.

n “n” n.logen n.log2n n2

Average
Time taken

by
Bhargava

and
Purohit’s

[5]
algorithm

1 1 0 0 1 1

5 5 8.05 11.61 25 26.2

10 10 23.03 33.22 100 46

15 15 40.62 58.60 225 65.8

20 20 59.92 86.44 400 92.4

25 25 80.47 116.10 625 110.6

30 30 102.04 147.21 900 127.4

35 35 124.44 179.53 1225 148.4

40 40 147.56 212.88 1600 167

45 45 171.30 247.13 2025 190

50 50 195.60 282.19 2500 221

75 75 323.81 467.16 5625 318.6

100 100 460.52 664.39 10000 426.4

150 150 751.60 1084.32 22500 608.2

200 200 1059.66 1528.77 40000 804

As shown in Table 3, Bhargava and Purohit’s [5]
algorithm took a little more time than n.log2n for 1 ≤ n ≤
10; it coincided with the time n.log2n for 10 ≤ n ≤ 20; and
then it became better by taking less time than n.log2n for
n > 20. In addition, the algorithm’s time complexity
becomes better than n.logen when n ≥ 75. Hence,
Bhargava and Purohit’s [5] algorithm takes O(n.log2n)
time. Besides, for larger values of n (n ≥ 75) it becomes

more time-efficient and shows a time complexity of
O(n.logen) as shown in Figure 4.

Fig. 4 Comparison between n, n.logen, n.log2n, and the time taken by
Bhargava and Purohit’s [5] algorithm.

Consequently, the time complexity of Bhargava and
Purohit’s algorithm [5] shows its dominance over the
other methods for similar studies as shown in the Table 4.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

1 5 10 15 20 25 30 35 40 45 50 75 100

"n"

n.loge(n)

n.log2(n)

Average Time taken by Bhargava and
Purohit's [5] algorithm

n

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 284

Table 4: Comparison between the time complexities of various methods
for parsing with finite automata networks

Methods Conversion
Type

Time Complexity for
Regular Expression
conversion into DFA
(Time k1 is needed for
conversion of ε-free
NFA into DFA while
Time k2 is needed for

conversion of NFA
into DFA)

Glushkov
[24]

a regular
expression of size
n into an ε-free

NFA

O(n2) + k1

Hagenah and
Muscholl

[29]

a regular
expression of size
n into an ε-free

NFA

O(n.log2(n)) + k1

Hromkovic et
al.

[35]

a regular
expression of size
n into an ε-free

NFA

O(n.log2n) + k1

Rytter
[53]

a regular
expression of size

n into an NFA

O(logen) + k2
{using (n/logen)

parallel processors}

Bhargava and
Purohit

[5]

a regular
expression of size

n into a DFA

O(n.log2n)
for n ≤ 74. One high-

speed
processor O(n.logen)

for n ≥ 75.

As shown in Table 4, the first three methods by Glushkov
[24], Hagenah and Muscholl [29], and Hromkovic et al.
[35] respectively have a time complexity which is more
than that of Bhargava and Purohit’s [5]. Rytter’s [53],
however had shown a time complexity which is very
close to that of Bhargava and Purohit’s [5] but the
disadvantage with Rytter’s [53] method is the requirement
of (n/loge n) processors unlike Bhargava and Purohit’s
algorithm [5] which needs only one processor.
Figure 5 provides another enhanced view of the above
comparison among the time complexities. The time
complexities by Glushkov [24], Hagenah and Muscholl
[29], and Hromkovic et al. [35] are only intended for
conversion of a regular expression into an ε-free NFA;
however the actual complexity will be more than those
indicated because of additional time required for
conversion of NFA into DFA. Thereby the method by
Bhargava and Purohit [5] is certainly an improvement
over the above three methods. Further though Rytter
method [53] converted a regular expression into an NFA
in logen time, the major drawback of Rytter’s method
[53] was the use of n/logen processors in comparison of
Bhargava and Purohit’s [5] method which utilizes only
one processor (For n=10 Rytter used 4 processors, for
n=25 the number of processors was 8, for n=50 it was 13,

for n=75 it was 17, and for n=100 it was 22 processors).
Thus the ultimate time complexity by Rytter method [53]
would be approximately same (because of additional time
required to convert Rytter’s NFA into DFA) as of
Bhargava and Purohit’s [5] method, except the advantage
associated with Bhargava and Purohit’s [5] method of
using only one processor.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

n=10 n=25 n=50 n=75 n=100

Glushkov [1961]

Hagenah and Musholl [1998]

Hromkovic et al. [2001]

Rytter [1989]

Bhargava and Purohit [2011]

Size of regular expression

Ti
m

e
co

m
pl

ex
ity

 (
re

qu
ire

d
st

ep
s)

 b
y

va
rio

us
 m

et
ho

ds

Fig. 5 Comparison of time complexities of various methods for parsing
with finite automata networks, at increasing values of n.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 285

4. Conclusion & Future Work

The present research paper provides a t wofold
experimental survey on comparison between parsing
methods with two different type of networks, viz. (i)
neural networks, and (ii) finite automata networks. The
most recent contributions by Bhargava and Purohit’s [5-6]
for such parsing are taken into account for the purpose of
comparison. The comparisons show that Bhargava and
Purohit’s [5-6] contributions for the parsing are extremely
significant and are also far away from other parsing
methods with respect to time complexity and parsing
time: the time complexity of Bhargava and Purohit [5]
was proven to be the least while the parsing time by
Bhargava and Purohit [6] was again proved to be the
smallest.
Though for the experimental survey, comparisons have
been made only by taking into consideration a few
comparable methods for each type of parsing, in future
the survey study can become more affluent by adding
more comparable methods into the comparison.

References
[1] Antimirov, V. [1996]. “Partial derivatives of regular

expressions and finite automata constructions”. Theoretical
Computer Science. vol. 155, no. 2, pp. 291-319.

[2] Ben-David, S., D. Fisman, and S. Ruah [2008].
“Embedding finite automata within regular expressions”.
Theoretical Computer Science. vol. 404, no. 3, pp. 202-
218.

[3] Berry, G. and R. Sethi [1986]. “From regular expressions to
deterministic automata”. Theoretical Computer Science.
vol. 48, no. 1, pp. 117-126.

[4] Berstel, J., D. Perrin, and C. Reutenauer [2009]. Codes and
Automata. Encyclopedia of Mathematics and its
Applications no. 129. Cambridge University Press.
Cambridge.

[5] Bhargava, S. and G. N. Purohit [2011]. “Construction of a
minimal deterministic finite automaton from a regular
expression”. International Journal of Computer
Applications (IJCA). vol. 15, no. 4, pp. 16-27.

[6] Bhargava, S. and G. N. Purohit [2011]. “Parsing a Natural
Language: A Non-Statistical Approach”. National Journal
of Computer Science & Technology (NJCST). vol. 3, no. 1,
pp. 23-33.

[7] Black, E., R. Garside, and G. Leech (eds.) [1993].
Statistically-driven computer grammars of English: The
IBM/Lancaster approach. Amsterdam: Editions Rodopi.
Amsterdam/Atlanta, GA.

[8] Bod, R. [1995]. “The problem of computing the most
probable tree in data-oriented parsing and stochastic tree
grammars”. In Proceedings of the 7th Conference on
European Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics,
Morgan Kaufmann Publishers, San Francisco, CA. pp. 104-
111.

[9] Briscoe, T. and J. Carroll [1993]. “Generalized
probabilistic LR parsing of natural language (corpora) with

unification-based grammars”. Computational Linguistics.
vol. 19, no. 1, pp. 25-59.

[10] Bruggemann-Klein A. [1993]. “Regular expressions into
finite automata”. Theoretical Computer Science. vol. 120,
no. 2, pp. 197-213.

[11] Brzozowski, J. A. and R. Cohen [1969]. “On
decompositions of regular events”. Journal of the ACM (J.
ACM). vol. 16, no. 1, pp. 132-144.

[12] Carrasco, R. C., J. Daciuk, and M. L. Forcada [2009].
“Incremental construction of minimal tree automata”.
Algorithmica. vol. 55, no. 1, pp. 95-110.

[13] Carrasco, R. C. and M. L. Forcada [2001]. “Incremental
construction and maintenance of minimal finite-state
automata”. Computational Linguistics. vol. 28, no. 2, pp.
207-216.

[14] Chang, C. H. and R. Paige [1992]. “From regular
expressions to DFAs using compressed NFAs”. In
Proceedings of the 3rd Annual Symposium on
Combinatorial Pattern Matching. Lecture notes in
Computer Science no. 644. Springer-Verlag, London. pp.
90-110.

[15] Charniak, E. [1996]. Statistical Language Learning. Mass.
[u.a.] : MIT Press. Cambridge, MA.

[16] Cohen, D. I. A. [1991]. Introduction to Computer Theory.
2nd edn. John Wiley & Sons, Inc. New York.

[17] Collins, M. and T. Koo [2005]. “Discriminative reranking
for natural language parsing”. Computational Linguistics.
vol. 31, no. 1, pp. 25-70.

[18] Daciuk, J., S. Mihov, B. W. Watson, and R. E. Watson
[2000]. “Incremental construction of minimal acyclic
finite-state automata”. Computational Linguistics. vol. 26,
no. 1, pp. 3-16.

[19] Dobnikar, A. and B. Šter [2009]. “Structural properties of
recurrent neural networks”. Neural Processing Letters. vol.
29, no. 2, pp. 75-88.

[20] erňanský, M., M. Makula, and u. Beňušková [2007].
“Organization of the state space of a s imple recurrent
network before and after training on recursive linguistic
structures”. Neural Networks. vol. 20, no. 2, pp. 236-244.

[21] Elman, J. L. [1991]. “Distributed representations, simple
recurrent networks, and grammatical structure”. Machine
Learning. vol. 7, no. 2-3, pp. 195-224.

[22] Elmasri, R. and S. Navathe [2000]. Fundamentals of
database systems. Addison-Wesley Longman Publishing
Company, Inc. Boston, MA, USA.

[23] Fort, K. and B. Guillaume [2007]. “PrepLex: a l exicon of
French prepositions for parsing”. In Proceedings of the 4th
ACL-SIGSEM Workshop on Prepositions. Association for
Computational Linguistics, Morristown, NJ. pp. 17-24.

[24] Glushkov, V. M. [1961]. “The abstract theory of
automata”. Uspekhi Mathematicheskikh Nauk (UMN). vol.
16, no. 5(101), pp. 3-62.

[25] Greenlaw, R. and H. Hoover [1998]. Fundamentals of the
Theory of Computation: Principles and Practice. Morgan
Kaufmann Publishers, Inc. Elsevier, San Francisco, USA.

[26] Grüning, A. [2007]. “Elman backpropagation as
reinforcement for simple recurrent networks”. Neural
Computation. vol. 19, no. 11, pp. 3108-3131.

[27] Gurari, E. [1989]. An Introduction to the Theory of
Computation. Computer Science Press. Ohio State
University, Columbus, Ohio.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 286

http://www-igm.univ-mlv.fr/~berstel/LivreCodes/index.html
http://www-igm.univ-mlv.fr/~berstel/LivreCodes/index.html
http://en.wikipedia.org/w/index.php?title=Eitan_Gurari&action=edit&redlink=1
http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk.html
http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk.html

[28] Hadley, R. F. and M. B. Hayward [1997]. “Strong semantic
systematicity from hebbian connectionist learning”. Minds
and Machines. vol. 7, no. 1, pp. 1-37.

[29] Hagenah, C. and A. Muscholl [1998]. “Computing epsilon-
free NFA from regular expressions in o(n.log²(n)) time”. In
Proceedings of the 23rd International Symposium on
Mathematical Foundations of Computer Science. Lecture
Notes in Computer Science no. 1450. Springer-Verlag,
London. pp. 277-285.

[30] Hammer, B. and P. Tiňo [2003]. “Recurrent neural
networks with small weights implement definite memory
machines”. Neural Computation. vol. 15, no. 8, pp. 1897-
1929.

[31] Henderson, J. [2003]. “Neural network probability
estimation for broad coverage parsing”. In Proceedings of
the 10th Conference on E uropean Chapter of the
Association for Computational Linguistics - Volume 1.
Association for Computational Linguistics, Morristown,
NJ. pp. 131-138.

[32] Ho, E. K. S. and L. W. Chan [1999]. “How to design a
connectionist holistic parser”. Neural Computation. vol. 11,
no. 8, pp. 1995-2016.

[33] Holmes, J. and W. Holmes [2002]. Speech Synthesis and
Recognition. 2nd edn. Taylor & Francis, Inc. Bristol, PA,
USA.

[34] Hopcroft, J. E. and J. Ullman [1979]. Introduction to
Automata Theory, Languages and Computation. Addison-
Wesley Longman Publishing Company, Inc. Boston, MA,
USA.

[35] Hromkovic J., S. Seibert, and T. Wilke [2001]. ”Translating
regular expressions into small ε-free nondeterministic finite
automata”. Journal of Computer and System Sciences. vol.
62, no. 4, pp. 565-588.

[36] Ilie L. and S. Yu [2003]. “Follow automata”. Information
and Computation. vol. 186, no. 1, pp. 140-162.

[37] Kemke, C. [2002]. “A constructive approach to parsing
with neural networks - the hybrid connectionist parsing
method”. In Proceedings of the 15th Conference of the
Canadian Society for Computational Studies of
Intelligence, AI 2002. Lecture notes in Computer Science
no. 2338. Springer-Verlag, Berlin/Heidelberg, New York.
pp. 310-318.

[38] Kiefer, B., H. Krieger, J. Carroll, and R. Malouf [1999]. “A
bag of useful techniques for efficient and robust parsing”.
In Proceedings of the 37th Annual Meeting of the ACL on
Computational Linguistics. Association for Computational
Linguistics, Morristown, NJ. pp. 473-480.

[39] Kiyono, M. and J. Tsujii [1994]. “Combination of symbolic
and statistical approaches for grammatical knowledge
acquisition”. In Proceedings of the 4th Conference on
Applied Natural Language Processing. Association for
Computational Linguistics, Morristown, NJ. pp. 72-77.

[40] Kolen, J. and S. Kremer [2001]. A Field Guide to
Dynamical Recurrent Networks. IEEE Press. New York.

[41] Lane, P. C. R. and J. B. Henderson [2001]. “Incremental
syntactic parsing of natural language corpora with simple
synchrony networks”. IEEE Transactions on Knowledge
and Data Engineering. vol. 13, no. 2, pp. 219-231.

[42] Lavie, A. [1994]. “An integrated heuristic scheme for
partial parse evaluation”. In Proceedings of the 32nd
Annual Meeting on Association for Computational

Linguistics. Association for Computational Linguistics,
Morristown, NJ. pp. 316-318.

[43] Leiss, E. [1980]. “Constructing a finite automaton for a
given regular expression”. ACM Special Interest Group on
Algorithms and Computation Theory (ACM SIGACT
News). vol. 12, no. 3, pp. 81-87.

[44] Malouf, R., J. Carrol, and A. Copestake [2000]. “Efficient
feature structure operations without compilation”. Natural
Language Engineering Journal. vol. 6, no. 1, pp. 29-46.

[45] Manning, C. D. and H. Schütze [1999]. Foundations of
Statistical Natural Language Processing. Cambridge, Mass.
[u.a.] : MIT Press.

[46] Mayberry III, M. R. and R. Miikkulainen [2005]. “Broad-
coverage parsing with neural networks”. Neural Processing
Letters. vol. 21, no. 2, pp. 121-132.

[47] Miikkulainen, R. [1996]. “Subsymbolic case-role analysis
of sentences with embedded clauses”. Cognitive Science.
vol. 20, no. 1, pp. 47-73.

[48] Ninomiya, T., T. Makino, and J. Tsujii [2002]. “An
indexing scheme for typed feature structures”. In
Proceedings of the 19th International Conference on
Computational Linguistics (COLING-02). Association for
Computational Linguistics, Morristown, NJ. pp. 1248-
1252.

[49] Palm, A. [1999]. “The expressivity of tree languages for
syntactic structures”. The Mathematics of Syntactic
Structure: Trees and Their Logics. The theory of syntactic
domains, Technical Report no. 75, Department of
Philosophy, University of Utrecht. pp. 113-152.

[50] Penn, G. [1999c]. “A parsing algorithm to reduce copying
in Prolog”. In Arbeitspapier des Sonderforschungsbereichs
340. art. 137.

[51] Penn, G. and O. Popescu [1997]. “Head-driven generation
and indexing in ALE”. In ACL Workshop on
Computational Environments for Grammar Development
and Linguistic Engineering (ENVGRAM); ACL/EACL –
97, Madrid, Spain. pp. 62-69.

[52] Ramakrishnan, I.V., R. Sekar, and A. Voronkov [2001].
“Term indexing”. In Handbook of Automated Reasoning.
Elsevier Science Publishers B. V., Amsterdam, The
Netherlands. Vol. II., Chapter 26, pp. 1853-1964.

[53] Rytter, W. [1989]. “A note on op timal parallel
transformations of regular expressions to nondeterministic
finite automata”. Information Processing Letters. vol. 31,
no. 2, pp. 103-109.

[54] Sharkey, N. [1992]. Connectionist Natural Language
Processing. Intellect. Oxford, England.

[55] Sipser, M. [2006]. Introduction to the Theory of
Computation. 2nd edn. PWS Publishing.

[56] Stefano, C. R. [2009]. Formal Languages and Compilation.
Springer-Verlag. London.

[57] Taylor, R. G. [1998]. Models of Computation and Formal
Languages. Oxford University Press. New York.

[58] Watson, B. [1995]. “Taxonomies and toolkits of regular
language algorithms”. Ph.D. Thesis. Eindhoven University
of Technology, CIP-DATA Koninklijke Bibliotheek, Den
Haag.

[59] Wermter, S. and V. Weber [1997]. “SCREEN: Learning a
flat syntactic and semantic spoken language analysis using
artificial neural networks”. Journal of Artificial Intelligence
Research. vol. 6, no. 1, pp. 35-85.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 287

[60] Wintner, S. and N. Francez [1999]. “Efficient
implementation of unification-based grammars”. Journal of
Language and Computation. vol. 1, no. 1, pp. 53-92.

[61] Wood, D. [1987]. Theory of Computation: A Primer.
Addison-Wesley Longman Publishing Company, Inc.
Boston, MA, USA.

[62] Yamamoto, H. [2005]. “New finite automata corresponding
to semiextended regular expressions”. Systems and
Computers in Japan. vol. 36, no. 10, pp. 54-61.

[63] Zhang, Y. and S. Clark [2009]. “Transition-based parsing
of the Chinese treebank using a global discriminative
model”. In Proceedings of the 11th International
Conference on P arsing Technologies. ACL Workshops.

Association for Computational Linguistics, Morristown,
NJ. pp. 162-171.

[64] Zhifang, S., Z. Jun, and D. Wu [2000]. “An information-
theory-based feature type analysis for the modelling of
statistical parsing”. In Proceedings of the 38th Annual
Meeting on A ssociation for Computational Linguistics.
Association for Computational Linguistics, Morristown,
NJ. pp. 472-479.

[65] Ziadi, D. and J. M. Champarnaud [1999]. “An optimal
parallel algorithm to convert a regular expression into its
Glushkov automaton”. Laboratoire d'Informatique de
Rouen. vol. 215, no. 1-2, pp. 69-87.

Sanjay Bhargava is working as Assistant Professor
in Department of Computer Science, AIM & ACT,
Banasthali University, Banasthali (Raj.), India. He
obtained his Masters degree in Computer
Applications (MCA) from Gurukul Kangri University,
Hardwar (Uttaranchal), India. Later on he submitted
his Doctoral Thesis in Computer Science in year 2010 and waiting
for its evaluation and r esult. He has an affluent experience of
around 14 y ears of teaching computer science students varying
from BCA to M. Tech. (Computer Science). He taught many
different streams of theoretical computer science viz. Theory of
Computation, Modelling & Simulation, Artificial Intelligence,
Computer Graphics, Numerical Analysis, Discrete Mathematics,
Operating Systems, etc. He had presented a research paper in an
international conference & as on date his two research papers are
published in reputed journals – one of them is an international
journal while the other one i s an Indian journal. Further, his four
research papers are under review / consideration in reputed
international journals of computer science. Besides he i s also
reviewer in two reputed journals on theoretical computer science -
one is a national journal while the other is an international journal.

Prof. G. N. Purohit is presently working as Dean,
Department of Computer Science, AIM & ACT,
Banasthali University, Banasthali (Raj.), India. He has
a vast teaching experience of more than 4 decades &
also supervised numerous Ph. D. students. Moreover
his research contribution in the field of computer
science, graph theory & discrete mathematics is enormous. He
contributed several articles to reputed national & international
journals; & also participated in various conferences.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 288

