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Abstract 

Parsing is the process of structuring a l inear depiction in 
accordance with a g iven grammar. The “linear depiction” may 
be a language sentence, a computer program, a weaving pattern, 
a sequence of biological strata, a part of music, actions in a ritual 
performance, in short any linear chain in which the preceding 
elements in some way confine the next element. Parsing with 
finite automata networks implies, in one way, the conversion of 
a regular expression into a minimal deterministic finite 
automaton, while parsing with neural networks involves parsing 
of a n atural language sentence. This research paper presents a 
twofold investigation on the various parsing techniques with (i) 
neural networks and (ii) finite automata networks. Consequently, 
the present research paper depicts a comprehensive comparison 
among a number of parsing techniques with neural networks 
followed by another in depth comparison flanked by a number 
of parsing techniques with finite automata networks. 
Keywords: Neural networks, Finite automata networks, 
Parsing, Regular expressions, Natural language processing. 

1. Introduction & Background 

The present twofold study shows a d etailed comparison 
between various parsing techniques with (i) neural 
networks and (ii) finite automata networks. Accordingly, 
a comparison has been made among parsing methods by 
Bhargava and Purohit [5-6] with a range of parsing 
techniques for similar purpose. Next section 1.1 provides 
a comparison among parsing techniques with neural 
networks, followed by another comparison among various 
parsing methods with finite automata networks. 

1.1 Parsing with Neural Networks 

Parsing is a usual task within computational linguistics, 
characteristically attempted by using statistical algorithms 
and a set of linguistic information; a good example is the 
use of probabilistic parsing (see, e.g. [15], [31], [45], and 
[64]). In probabilistic parsing, probabilities are extracted 
from a parsed corpus for the purpose of choosing the most 

likely regulation when more than one regulation could be 
relevant during the course of a parse (see, e.g. [17], [23], 
[33], [39], [46], [49], [60], and [63]). 
Also for parsing a natural language, increasing 
inquisitiveness is generated by neural network parsers 
(see, e.g. [28], [32], [37], [41], and [47]). The major 
problem that occurs with neural networks is that they 
cannot take labeled trees as input. Neural networks 
typically utilize an internal representation consisting of a 
distributed pattern of activation across a number of nodes. 
Using such a representation to handle parse trees focuses 
upon two dissimilar strategies: (i) The parse tree may be 
encoded into network’s internal distributed representation, 
and decoded back on request by a s eparate network; 
holistic parsers are examples of this approach [32], and 
(ii) The parse tree may be represented explicitly with 
specific output units specifying the relationships between 
the input words and output constituents. This explicit 
representation may again find two forms:  
• The separate constituents may utilize different output 

units to produce the entire parse tree such as Hebbian 
parser [28]. 

• Otherwise, they may reuse output units such as 
Simple Synchrony Network [41]. 

Therefore, parsing and natural language processing with 
neural networks faces in general an inconsistency 
between using fixed-sized, comparatively inflexible 
neural network architectures, on one hand, and the 
limitless generative capacity of language models 
described by recursive grammars, on the other hand. A 
widespread approach to triumph over this inconsistency 
has been the use of recurrent neural networks in various 
studies: [19-21], [26], [30], [40], [54], and [59]. Recurrent 
neural networks (RNN) have a convinced capacity to 
represent past inputs or contexts in hidden units of the 
network, and thus are in a limited way capable to deal 
with structures of variable size. 
In addition, almost all the approaches for parsing with 
natural languages use some type of neural network 
architecture and some typical statistical function for 
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obtaining a parse decision (see, e.g. [7-9], [15], [42], and 
[45]). Such a statistical function (for parse decision) 
requires a significant amount of time for its execution; 
however, Bhargava and Purohit [6] have made an attempt 
by removing the need of any such statistical function thus 
reducing the overall parsing time. 

1.2 Parsing with Finite Automata Networks 

Regular expressions and finite automata are two 
dissimilar representations for regular languages: Regular 
expressions (a finite or infinite set of strings of alphabet 
characters), on one hand, generate regular languages 
while, on the other hand, finite automata (graphs) accept 
regular languages. Apparently, regular expressions and all 
variants of finite automata (NFA with or without ε-
transitions, or DFA) are equivalent because all of them 
represent the same language, that is, a regular language. 
Thereby, all of them are convertible into each other [34]. 
Parsing with finite automata networks implies in a way 
the conversion process of a regular expression into finite 
automata because of the following two sequential 
processes: (i) regular expression is parsed for its validity, 
and if valid (ii) it is  converted into finite automata using 
the parsing aspects of finite automata construction. So, 
hereinafter we’ll refer to the conversion process as 
parsing with finite automata networks. 
In the literature related to the conversion problem, it has 
been found that there exist many different algorithmic 
approaches for converting a regular expression into some 
variant of a finite automaton; Watson [58] enumerated 
various algorithmic approaches for the conversion 
problem. Algorithmic approaches to convert a regular 
expression into some variant of a finite automaton 
include: 
• The algorithms to convert regular expression into 

NFA with or without ε-transitions (see, e.g. [1], [10-
11], [27], [35-36], [43], [53], [62], and [65]) and 

• The algorithms to convert regular expression into 
DFA using intermediate NFAs (see, e.g. [2-4], [14], 
[16], [25], [34], [55-57], and [61]).  

In addition, Daciuk et al. [18] discussed a parsing 
algorithm to convert a set of strings into a minimal, 
deterministic, acyclic finite-state automaton. Later, 
Carrasco and Forcada [13] presented another algorithm to 
modify any minimal finite-state automaton so that a string 
is added to or removed from the language accepted by it. 
Recently, Carrasco et al. [12] presented another algorithm 
that allowed the incremental addition or removal of 
unranked order trees to a minimal frontier-to-root 
deterministic finite-state tree automaton. Unfortunately, 
all the above studies had limitations as they represented 
only a finite set of strings. To overcome this limitation, 
Bhargava and Purohit [5] proposed an algorithm which 
converted a regular expression into a DFA directly, that is 
without the use of any intermediate NFA and as there was 

no NFA construction by the proposed algorithm, the time 
complexity of the proposed algorithm was also reduced 
by a significant amount. 
The contents of this paper are arranged as follows. 
Section 2 first briefs the results of Bhargava and Purohit’s 
[6] algorithm on parsing with neural networks followed 
by an experimental survey on comparison among the 
parsing methods with neural networks. Next section 3 
again, first concisely describes the results of Bhargava 
and Purohit’s [5] algorithm on parsing with finite 
automata networks followed by another experimental 
investigation on comparison among the parsing methods 
with finite automata networks. Last Section 4 details the 
conclusions of the present research paper. 

2. Experimental Survey on Parsing with 
Neural Networks 

Bhargava and Purohit [6] proposed an algorithm for 
parsing with neural networks and applied it over a huge 
number of random test sentences of natural language. For 
this they used a simulated grammar set, consisting of 200 
valid connection paths (a connection path has been used 
during parsing as either an initial parse tree or a parse 
tree to be added as a connection path). Then they 
executed the experiment for a s et of 100 test sentences 
taken randomly from the environment. The detailed 
results of this experiment are shown in Table 1. After the 
completion of the first experiment the Grammar set 
consists 232 (200 old + 32 new) valid connection paths, 
with the importance (A connection path is most important 
if its frequency is highest, less important if its frequency is 
lesser, and least important if its frequency is least.) of 
each connection path during parsing. Bhargava and 
Purohit [6] repeated the experiment with a set of 200 
random test sentences, and after the experiment the 
Grammar set consists 295 (232 old + 63 new) valid 
connection paths. Then the experiment was repeated again 
with a set of 150 r andom test sentences, and after the 
experiment the Grammar set consists 345 (295 old + 50 
new) valid connection paths.  
The experiment was repeated again and again, for 20 
different sized sets of randomly selected test sentences 
and the results of all the experiments are shown in Table 
1. A total of 6125 r andom test sentences has been 
considered, out of which 5204 s entences (4985 valid 
which were parsed and 219 invalid which were not 
parsed) have produced the predicted results; while the 
other 921 sentences (649 valid which were not parsed and 
272 invalid which were parsed) have produced an 
unexpected result. A “^” sign in the third column of the 
table suggests that the corresponding increase in the set 
Grammar is not in accordance with the previous increase; 
this is due to the random test sentences that were taken 
during experiments.  
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Table 1: Detailed analysis table depicting observed versus predicted 
results. 
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(I) (II) (III) (IV) (I+IV)/
N 

0 - 200 - - - - - 

1 100 232 70 27 3 0 0.70 

2 200 295 135 42 12 11 0.73 

3 150 345 106 29 8 7 0.75 

4 50 365 30 8 8 4 0.68 

5 250 395^ 188 36 13 13 0.80 

6 450 555 379 43 9 19 0.88 

7 300 652 238 25 27 10 0.83 

8 350 740^ 281 29 24 16 0.85 

9 325 869 256 40 14 15 0.83 

10 125 909 87 27 7 4 0.73 

11 425 1079^ 369 31 13 12 0.90 

12 75 1091^ 65 8 1 1 0.88 

13 175 1139 138 19 13 5 0.82 

14 500 1259^ 427 35 19 19 0.89 

15 475 1438 404 45 6 20 0.89 

16 600 1650 517 42 28 13 0.88 

17 525 1828 457 51 4 13 0.90 

18 550 1934^ 476 34 27 13 0.89 

19 225 2016 160 42 13 10 0.76 

20 275 2103 202 36 23 14 0.79 

Total 6125 2103 4985 649 272 219 0.85 

The results shown in the detailed analysis table are in fact 
extremely hopeful, particularly in the absence of any 
statistical function. Bhargava and Purohit [6] have started 
with the set size 200 of  Grammar and only after 20 
experiments, with 6125 random test sentences, it became 
2103. Thus the size of the set Grammar would go on 
increasing and, after the passage of a huge number of test 
sentences, the set Grammar would become so rich that the 
results obtained would match with the results expected, 

most of the times. The size of set Grammar increases 
approximately at a rate of n/3, where n is the number of 
random test sentences. Figure 1 shows the behavior of set 
Grammar with respect to the number of input test 
sentences. 

Fig. 1 Set Grammar after 20 experiments. 

Figure 2 provides another view of the extracted 
information from Table 1. In this chart a comparison, 
based over all the 20 e xperiments, is shown among the 
number of test sentences, the number of sentences 
producing predicted results, and the number of sentences 
producing unpredicted results (All those sentences which 
are either correct and parsed correctly or incorrect and 
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not parsed, lead to the predicted results while all other 
sentences lead to unpredicted results.). 

 

Fig. 2 Comparison among input test sentences, sentences producing 
predicted results, and sentences producing unpredicted results. 

Though a small sample from the environment was taken 
during experiments, the results were really encouraging; 
85% of the times, Bhargava and Purohit [6] reached to the 

predictions while 15% of the times they failed with 
respect to predictions. There are basically two reasons for 
such a failure. 
(i) Unbounded nature of the natural language still 

allowed so many valid sentences which were not 
covered by Grammar as shown in the 5th column of 
the detailed analysis table (Table 1). In this column, 
there exist 649 such test sentences which are valid 
but, because of the limitation of the set Grammar, 
they are not parsed. 

(ii) Ambiguous nature of the natural language still 
allowed so many invalid sentences which were 
covered by Grammar as shown in the 6th column of 
the detailed analysis table (Table 1). In this column, 
there exist 272 such test sentences which are invalid 
but, because of the ambiguous nature of the natural 
language represented by the set Grammar, they are 
parsed. 

However as Bhargava and Purohit [6] moved towards 
putting more and more random test sentences to the 
algorithm, the set Grammar would start becoming rich 
thus reducing the chances of a valid sentence to be 
rejected, and hence would effectively manage the risks 
involved with unbounded nature of natural language. The 
ambiguous nature of the natural language, on the other 
hand, would require some semantic knowledge base for 
its exclusion. 
As far as we know, Empty-First-Daughter (EFD) parsing 
methods [50] using indexing techniques, were the most 
time efficient for parsing a natural language. Penn and 
Popescu [51], Kiefer et al. [38], Elmasri and Navathe 
[22], Malouf et al. [44], Ramakrishnan et al. [52] and 
Ninomiya et al. [48] enumerated four EFD parsers (the 
non-indexed EFD parser, the path-indexed parser, the 
non-indexed EFD parser using quick-check and the 
combination of path indexing and quick-checking) and 
they also have shown that the above four parsers were the 
most time efficient in their kinds. However, when we 
compared the parsing time of the Bhargava and Purohit’s 
[6] parser with the parsing times of the four EFD parsers, 
we found that the Bhargava and Purohit’s [6] parser 
further shortened the parsing time hence, showing its 
supremacy over the above four EFD parsers. For the 
above comparison, we used a test set containing 40 
sentences of lengths from 2 to 9 words (5 sentences for 
each length) over the five parsers and recorded the 
parsing time for each of them. Table 2 shows a detailed 
comparison between the parsing times of Bhargava and 
Purohit’s [6] method and the four EFD parsers. 

 

 

Table 2: Comparison between average parsing times (msec). 
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(msec) (msec) (msec) (msec) (msec) 

2 0.9 0.9 1.0 0.9 0.8 11.1 

3 4.0 4.4 3.9 4.4 3.4 12.8 

4 15.5 16.4 14.9 16.0 12.3 17.5 

5 46.2 46.9 44.2 46.5 34.7 21.5 

6 103.8 102.5 98.1 100.8 76.1 22.4 

7 184.8 186.9 176.0 180.7 133.9 23.9 

8 311.4 313.5 301.0 295.3 212.8 28 

9 594.6 562.7 554.7 551.7 301.4 45.4 

Bhargava and Purohit [6] provided a parser which 
reduced the parsing time by more than 45% when the 
number of words per sentence was 9. As practically in all 
the languages most of the sentences contain 9 or more 
words, Bhargava and Purohit’s [6] parsing method is 
simply matchless among its neighbors for similar parsing 
with respect to the reduction in parsing time (As the 
sentence size goes more than 9, parsing time will become 
more shortened). 
As shown in Figure 3, which is a graphical representation 
of Table 2, we find that Bhargava and Purohit’s [6] parser 
reduces the parsing time effectively, particularly in the 
cases when the sentences are bigger in size. For sentences 
having more than 5 words, Bhargava and Purohit’s [6] 
parser outperforms all the four EFD parsers thereby 
showing its supremacy over the others.  

 

Fig. 3 Comparison between parsing times of various methods. 
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Finite Automata Networks 
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applied it over 150 regular expressions of 15 di fferent 
sizes n, and for this, 10 di fferent and random regular 
expressions were taken of each size n. Then, the average 
time taken in the conversion for each value of n was 
obtained and is shown in Table 3. 

Table 3: Comparison table between n, n.logen, n.log2n and time taken 
by Bhargava and Purohit’s [5] algorithm. 

n “n” n.logen n.log2n n2 

Average 
Time taken 

by 
Bhargava 

and 
Purohit’s 

[5] 
algorithm 

1 1 0 0 1 1 

5 5 8.05 11.61 25 26.2 

10 10 23.03 33.22 100 46 

15 15 40.62 58.60 225 65.8 

20 20 59.92 86.44 400 92.4 

25 25 80.47 116.10 625 110.6 

30 30 102.04 147.21 900 127.4 

35 35 124.44 179.53 1225 148.4 

40 40 147.56 212.88 1600 167 

45 45 171.30 247.13 2025 190 

50 50 195.60 282.19 2500 221 

75 75 323.81 467.16 5625 318.6 

100 100 460.52 664.39 10000 426.4 

150 150 751.60 1084.32 22500 608.2 

200 200 1059.66 1528.77 40000 804 

As shown in Table 3, Bhargava and Purohit’s [5] 
algorithm took a little more time than n.log2n for 1 ≤ n ≤ 
10; it coincided with the time n.log2n for 10 ≤ n ≤ 20; and 
then it became better by taking less time than n.log2n for 
n > 20. In addition, the algorithm’s time complexity 
becomes better than n.logen when n ≥ 75. Hence, 
Bhargava and Purohit’s [5] algorithm takes O(n.log2n) 
time. Besides, for larger values of n (n ≥ 75) it becomes 

more time-efficient and shows a time complexity of 
O(n.logen) as shown in Figure 4. 

 

Fig. 4 Comparison between n, n.logen, n.log2n, and the time taken by 
Bhargava and Purohit’s [5] algorithm. 

Consequently, the time complexity of Bhargava and 
Purohit’s algorithm [5] shows its dominance over the 
other methods for similar studies as shown in the Table 4. 
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Table 4: Comparison between the time complexities of various methods 
for parsing with finite automata networks 

Methods Conversion 
Type 

Time Complexity for 
Regular Expression 
conversion into DFA 
(Time k1 is needed for 
conversion of ε-free 
NFA into DFA while 
Time k2 is needed for 

conversion of NFA 
into DFA) 

Glushkov 
[24] 

a regular 
expression of size 
n into an ε-free 

NFA 

O(n2) + k1 

Hagenah and 
Muscholl 

[29] 

a regular 
expression of size 
n into an ε-free 

NFA 

O(n.log2(n)) + k1 

Hromkovic et 
al. 

[35] 

a regular 
expression of size 
n into an ε-free 

NFA 

O(n.log2n) + k1 

Rytter 
[53] 

a regular 
expression of size 

n into an NFA  

O(logen) + k2  
{using (n/logen) 

parallel processors} 

Bhargava and 
Purohit 

[5] 

a regular 
expression of size 

n into a DFA 

O(n.log2n)  
for n ≤ 74. One high-

speed 
processor O(n.logen)  

for n ≥ 75. 

As shown in Table 4, the first three methods by Glushkov 
[24], Hagenah and Muscholl [29], and Hromkovic et al. 
[35] respectively have a time complexity which is more 
than that of Bhargava and Purohit’s [5]. Rytter’s [53], 
however had shown a time complexity which is very 
close to that of Bhargava and Purohit’s [5] but the 
disadvantage with Rytter’s [53] method is the requirement 
of (n/loge n) processors unlike Bhargava and Purohit’s 
algorithm [5] which needs only one processor.  
Figure 5 provides another enhanced view of the above 
comparison among the time complexities. The time 
complexities by Glushkov [24], Hagenah and Muscholl 
[29], and Hromkovic et al. [35] are only intended for 
conversion of a regular expression into an ε-free NFA; 
however the actual complexity will be more than those 
indicated because of additional time required for 
conversion of NFA into DFA. Thereby the method by 
Bhargava and Purohit [5] is certainly an improvement 
over the above three methods. Further though Rytter 
method [53] converted a regular expression into an NFA 
in logen time, the major drawback of Rytter’s method 
[53] was the use of n/logen processors in comparison of 
Bhargava and Purohit’s [5] method which utilizes only 
one processor (For n=10 Rytter used 4 processors, for 
n=25 the number of processors was 8, for n=50 it was 13, 

for n=75 it was 17, and for n=100 it was 22 processors). 
Thus the ultimate time complexity by Rytter method [53] 
would be approximately same (because of additional time 
required to convert Rytter’s NFA into DFA) as of 
Bhargava and Purohit’s [5] method, except the advantage 
associated with Bhargava and Purohit’s [5] method of 
using only one processor. 
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with finite automata networks, at increasing values of n. 
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4. Conclusion & Future Work 

The present research paper provides a t wofold 
experimental survey on comparison between parsing 
methods with two different type of networks, viz. (i) 
neural networks, and (ii) finite automata networks. The 
most recent contributions by Bhargava and Purohit’s [5-6] 
for such parsing are taken into account for the purpose of 
comparison. The comparisons show that Bhargava and 
Purohit’s [5-6] contributions for the parsing are extremely 
significant and are also far away from other parsing 
methods with respect to time complexity and parsing 
time: the time complexity of Bhargava and Purohit [5] 
was proven to be the least while the parsing time by 
Bhargava and Purohit [6] was again proved to be the 
smallest.  
Though for the experimental survey, comparisons have 
been made only by taking into consideration a few 
comparable methods for each type of parsing, in future 
the survey study can become more affluent by adding 
more comparable methods into the comparison. 
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