
CPU and Memory Utilization by improving performance
in network by Live Migration technology

Igli TAFA1, Elinda KAJO2, Hakik PACI3, Elma Zanaj4, Aleksandër Xhuvani5

Polytechnic University of Tirana, Information Technology Faculty,Computer Engineering Department
Tiranë, Albania.

Abstract
The aim of this paper is to improve the performance of
network communication between some Virtual Machines in
LAN by modifying a script in Xen. Also in this paper we
have tested the utilization of CPU and Memory during the
live migration phase. After these tests we have concluded
that there is no dependency between Memory of Virtual
Machines and CPU Consumed. These experiments are
performed in Xen Hypervisor, because it offers para-
virtualization approach which support more flexibility for
all Guest Operating Systems.
Keywords: Virtual machines, Network Performance, Xen,
Para-Virtualization, Guest Operating System.

1. Introduction

Virtualization is a global technique which
simultaneously can execute more than one machine
independently. A strong tool used by this technique is
Live Migration. It means transferring application,
memory pages, CPU-status, network-status etc from
one machine to others. All these possibilities are
offered by the Hypervisor, which is built in the Bare
Hardware or above the Host-Operating System. There
are a lot of hypervisors such as, VM-Ware
Workstation, ESX-Server, Virtual-Box etc. Most of
them are close source or in some cases, they do not
offer diversity in resource management. One of the
most popular hypervisors is Xen. In this paper all the
tests are performed with this hypervisor. The reasons
of using Xen Hypervisor are :

 It is based on Para-Virtualization approach
which offers more flexibility in Resource
Management.

 It is an open-source system which gives the
possibility to introduce our additional tools
in different kinds of experiments such as:
load balancing with memory ballooning
approach [1] , CPU-performance of
activities, Memory Compression [2] etc.

Xen operates above the bare hardware (Fig. 1). Also
Host Operating System is built on the bare hardware,
and it is called Dom0. Above Xen are located the

Guest Operating Systems, or Virtual Machines. These
machines are aware of Physical Resources connected
with the hardware machine. They call DomU and can
communicate with each-other as if been in the
physical machines connected by a network. So in
these machines we should configure respectively their
IP address.
As it looks from the fig.1 the Hypervisor is located
above the bare hardware. In order to modify the
hypervisor we should compile the Kernel of Host
Operating System. Above it there are the virtual
machines and on the top there are the applications.
One of the main problems in Xen is the overhead. It
is caused from live migration techniques. Xen uses a
memory sharing mechanism, called the grant
mechanism. This mechanism is used to share I/O
buffers between Guest Operating Systems memory
resident on Hypervisor. In [3] is presented an
improvement mechanism which reduces the number
of grant issue and provides a unified interface for
memory sharing using IOMMU hardware between
guest domains and I/O devices.

Fig.1 This is the architecture of Xen Hypervisor

Xen can support up to 100 virtual machines, but
practically this number reduces dramatically. To
achieve a good performance Xen can support up to 16
virtual machines. In Xen every machine has it`s own
dedicated memory. For instance if we have 4 GB
RAM and we have built 3 virtual machines above
Xen, each machine should take just 1 GB of memory
from RAM, because in generally 1 GB RAM is
dedicated for the Host Machine.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 236

mailto:itafaj@gmail.com
mailto:e_kajo@yahoo.com2,%20hakikpaci@gmail.com

Inside a P hysical Machine we can built a Cluster
system. It means that a large number of virtual
machines (more than 2) can communicate with each
other in a synchronization form. The cluster system
means that one of the selected computers from a
group is master computer and it is responsible to
manageable a lot of activities between slave
computers. This approach gives a better performance,
notably when we are introduced to High Computing
Applications such as large matrices multiplication.
One tool which reduces communication speed is
network interfaces and protocol communications. If
the slave computers are communicating with 10/100
Mb ethernet the total performance will degrade. But if
we use gigabit ethernet communication speed the
time will reduce so the performance will increase.
Most of the communication protocols between
applications in different hosts are TCP and UDP. As
we know, UDP is more flexible and faster than TCP,
but these analyses don’t take in consideration the use
of Cluster system in Xen. In this way the master-slave
system, introduced as the Virtual Machines and
Cluster system above Xen are called Virtual Cluster.
At this moment the main problem is Single Point of
Failure Server. If the physical machine goes down i.e
from breakdown AC or System Bugs all the Virtual
Cluster will fail.
In this paper we have to combination the physical and
virtual clusters. We want to test the CPU performance
in load balancing during the generation of requests
from the source machine to the target one, Physical
and Virtual Memory Utilization in case of warning
failure and all network activities. The failure may
happen accidentally i.e from AC breakdown, or
natural reasons such as: fire, earthquake, tsunami etc,
or it can be forecasted from us. We can analyze only
the second case.
Cluster system should give high availability features
such as: Backup Storages (HD, DVD, Tape, RAID
technique, SAN etc), Backup of Power Resources
(UPS, Inverter, Second AC line connection), Backup
Data Broadcast Lines etc.
This paper is organized as follows. In the second
section is introduced the Live Migration technique. In
the third section we have presented the Experimental
Phase. In the forth section are given the conclusions
and future works, and in the fifth section are the
references.

2. Live Migration technique

As we wrote above this technique is a strong tool for
transferring application, memory pages, CPU-status,
network-status etc from one machine to the others.
The live migration can be realized in two ways: Pre-

copy and Post-copy approach [4]. In [4] post-copy
iterative approach has a better performance then pre-
copy approach. This happen because initially it
transfers just CPU status between machines, then
Memory free pages and Dirty pages. In [2], it is used
a “zero-aware” algorithm approach which improves
the total performance of live-migration. A necessary
condition for live migration approach between virtual
machines is accessing of them on the shared storages.
System images are built in the storages. If a v irtual
machine fails, automatically a copy of this machine is
migrated to other virtual machines. This migration is
managed by the Hypervisor layer.
Cluster system is a physical computer’s system which
is connected with each other in LAN (Local Area
Network). In figure (2) we present a cluster computer
system. There are three physical hosts with some
virtual machines inside (VM1,…VM5). Based on this
figure if any physical machine fails immediately, all
the information of this machine is transferred across
the network to other physical hosts. As we wrote
above, this approach is valid in the controller failure
approach, but if the fail is suddenly (accindental
reasons) nothing is transferred.
 In figure 2 each machine uses a p ortion of Data –
Center, SAN (Storage Area Network), which is called
virtual data center and can be used by every virtual
machine. Some applications in the data center can be
moved from one portion of virtual SAN to another
one.
Another approach in live migration is the
management of CPU performance. If one virtual
machine is performing a lot of tasks, hypervisor
moves some of these tasks from the specified
machine to another machine with a lower load.

Host 1 Host 2 Host 3

VM3VM1 VM2 VM4 VM5

SAN

Fig. 2 Five virtual machines and three physical hosts in the cluster
system connected with SAN

Another key topic in Live Migration approach is the
detection of hotspots. In [5] is implemented a
sandpiper architecture which detects hotspot by
gathering information from two tools, black box and
gray box.
Sandpiper implements a hotspot detection algorithm
that determines when to migrate virtual machines.
Also it determines where to migrate and how much

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 237

allocation should be used for the memory machine
after this migration.
The hotspot detection component employs a
monitoring and profiling engine that gathers usage
statistics on various virtual and physical servers and
constructs profiles of resource usage.

3. Experimental phase

We will perform some experiments based on two
objectives:

3.1 Check the CPU performance
3.2 Check the network performance

In 3.1 we will check the CPU performance:

 Between two virtual machines on a physical
host

 Between two virtual machines in different
hosts in the same LAN

 Activities in which Virtual Machine`s
Memory increases and decreases

In 3.2 we will check the Network performance in
Cluster Physical System machines:

 CPU Performance between two virtual
machines in different physical hosts.

 Additive time causes from Warning Failure
approach in a specific physical host.

The parameters for all experiments are as follows:

1. Architecture x86 32 bit machine.
2. Computer model HP Dual Core with HT
3. RAM 4 GB.
4. Dom0 Ubuntu 10.04 Server.
5. DomU1 Ubuntu 10.10 Desktop.
6. DomU2 Windows XP.
7. Xen Hypervisor version 4.0.1.
8. Apache installed in DomU1 version 2.2.16
(LAMP package).
9. Apache installed in DomU2 (WAMP Server
2.1a).
10. Heartbeat benchmark installed in Dom0.
11. Httperf benchmark installed in DomU1.
3.1 Check the CPU performance

3.1.1 CPU performance between two virtual
machines on a physical host

The evaluation of CPU performance between two
virtual machines in a physical host starts with the
installation of httperf benchmark in DomU1 and

WAMP Server 2.1a in DomU2. DomU1 sends 1000
requests in second in the Apache DomU2 machine,
with a total number of 10000 requests. Each request
is a file index.html = 5 MB. This file is located in /etc
directory.

3.1.2 CPU performance between two virtual
machines on different physical hosts

The same test is performed between DomU1 in the
first machine and DomU2 of the second machine
connected with gigabit interface. Those two
computers are connected with twisted pair model line.
The second physical machine is a clone of the first
one. All the results are displayed in table 1.

Table 1 CPU processing between 2 VM in the same host and
different hosts in LAN

Average time
of CPU

processing

Rate CPU
processing

Between 2
VM in the

same
physical

host

Between 2
VM in the
different
physical

host

2,6 ms 80,1% Yes No

2,4 ms 79,9 % No Yes

As it looks there is a slight difference between the
average time of CPU processing inside a physical
machine and between different machines in a LAN.

3.1.3 CPU performance by increasing and
decreasing of Memory in Virtual Machine

The third topic in CPU performance evaluation is the
testing of CPU activities by increasing and decreasing
the utilization of memory in virtual machine. Thus we
will test the DomU1 Web Server. In apache 2.2.16
into the Web-server machine we have included test.c
module. This module will serve as a tool in order to
increase and decrease the virtual memory machine.
At first we are located at /etc/apache2/apache.conf,
then we have to install a tool: tool-sin apxs2 and
compile it b y command apxs2 –c –I –a mod_test.c.
We can configure apache as multithreading process.
Then we configure test file in /etc/ apache2/httpd.conf
<Location /test>
 SetHandler test-handler
</Location>
<Location /process_mem>
 SetHandler process_mem-handler

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 238

</Location>
<Location /increase_mem>
 SetHandler increase-handler
</Location>
<Location /decrease_mem>
 SetHandler decrease-handler
</Location>
The function test-handler will show something in
web-pages. For every call in the increase-handler
function, virtual memory of Apache grows up to 5
MB. The IP address of DomU1 is 192.168.1.1 and
that of DomU2 is 192.168.1.2. In DomU2 is installed
WAMP. From DomU1 we call 5 times the DomU2
by benchmark Httperf with command
http://192.168.1.2/increase_mem and memory used
by DomU2 will increase up to 25 MB. So this
benchmark should manage memory utilization and
CPU consumption in the Physical host. In the same
way if we call http://192.168.1.2/decreas_mem , the
virtual memory in DomU2 would decrease with 5
MB per time. We evaluate Response time and Page
Fault Number by MemAccess Benchmark. We have
presented all the results in table 2:

Table 2 Test results in Apache DomU2 based on two benchmarks
Httperf and MemAccess with 5 MB for every iteration in

mem_increase function for test.c module

Memory
Utilization in

Appache
DomU2

Response
time

Page Fault
number

CPU
Consuming

5 MB 0,036 ms 0 44 %

10 MB 0,040 ms 0 44 %

15 MB 0,047 ms 0 44 %

20 MB 0,059 ms 0 44 %

25 MB 0,941 ms 0 44 %

From the table 2 we take Response time, Page Fault
numbers and CPU consuming if memory in apache
web server increases from 5 MB to 25 M B. As it
show the CPU consuming has a static value,
evaluated to 44 %. Also there is no page faults and
the response time has slightly growth. We got these
results because memory utilization is too small
comparison to each of Virtual Memory. Remember
that DomU1 memory is 512 M B and DomU2
memory is 256 M B. If we repeat again the

experiments by using httperf benchmark by modified
test.c module from 5 MB to 100 MB and calling the
increase_mem function for 5 times, we will get other
results, which are presented in table 3.

Table 3 The results in Apache DomU2 based on two benchmarks

Httperf and MemAccess with 100 MB for every iteration in
mem_increase function for test.c module

Memory
Utilization in

Appache
DomU2

Response
time

Page Fault
number

CPU
Consuming

25 MB 0,941 ms 0 44 %

125 MB 7,967 ms 5 45 %

225 MB 15, 225 ms 9 45 %

325 MB 29,167 ms 21 47 %

425 MB 169,054 ms 22 47 %

From table 3 we see that response time is increases
dramatically from 0,941 ms in 25 M B memory
utilization to 169 ms in 425 MB memory utilization.
This increase has occurs because memory utilization
exceeds the Virtual memory needed from DomU2. As
we wrote above, Memory of Virtual Machine in
DomU2 is 256 MB. For the same reasons Page Fault
increases dramatically when memory utilization
exceeds 256 M B of virtual memory in DomU2.
According to table 3 we see that Page Fault grew up
from 9 Page fault to 21 page fault. When it reach to
256 MB memory size the page fault number has
stability, because there is no matter how much
memory is used above 256 MB limit size.
If we compare CPU utilization in table 3 and table 2,
it is in the same level, approximately 45% (From 44
% to 47 %). This is because the exceeding of memory
utilization does not affect significantly (or it has a
slight effect) in CPU utilization. Now we have
finished the experiments in evaluation of CPU
performance.
3.2 Check the Network Performance

3.2.1 CPU Performance between two virtual

machines in different physical hosts.

The second objective is to check the network
performance in a cl uster system between three
computers in the same LAN. There are two virtual
machines in the client computer 1 and client
computer 2.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 239

http://192.168.1.2/increase_mem
http://192.168.1.2/decreas_mem

The third computer will serves as a Storage
Computer. Three computers are connected by UTP
CAT 7 cable with Gigabit Ethernet. All computers
have the same parameters and they can communicate
with each other by UDP protocol with Gigabit
Ethernet Switch. We used UDP protocol because:

• We are not interested in the reliability of sent
information.

• Time sent and time response from one
source machine to target one is more flexible
and faster. These packets monitoring from
Heartbeat benchmark and generated from
Httperf benchmark.

Storage Computer will be associated with two
problems:

I. There is a lower performance than SAN
Storage (Storage Area Network)
II. There are no protection mechanisms,
because there is no RAID Drive installed, which
means there is no backup mechanism.
In figure 3 is shown the architecture of three
computers connected by switch.

Computer 1 Computer 2

Storage
Computer

Switch

U0 U1U0U1

Fig. 3 The architecture of Cluster Systems with Physical Hosts and
Virtual Machines above them.

The images of Virtual Machines should be put inside
the Storage Computer. In the third computer we set
up the iSCSI protocol. We use yast2 iscsi-server
command. To test the installation, we have to execute
the command cat /proc/net/iet/volume and we should
get the volume name. During the installation of iSCSI
protocol in remaining computers by command yast2
iscsi-client.
In the storage computer and hosts computers we have
installed Ubuntu Server 10.04. In Guest Clients
computers we have installed Ubuntu 10.10 Desktop
and Win XP 32 bit. In DomU1 is installed Apache
packet 2.0.3 and DomU2 is installed My-SQL-Server
5.0.9. Compile Xen and Dom0 for each computer.
At first we have to test the CPU performance between
2 Virtual Machines in different hosts computers.

We are using again the Httperf benchmark which now
will generate 100, 200, 300, 400, 500 requests per
second. CPU performance will show in Tab 4.

Table 4 CPU performance between two virtual machine in
different hosts in the same LAN

Requests Number for second CPU Performance

100 request/second 66,7 %

200 request/second 66,8 %

300 request/second 68,2 %

400 request/second 68,9 %

500 request/second 69,5 %

From table 4, note that CPU performance increases
slightly when the number of requests generated from
DomU1 in host 1 to DomU2 in host2 are increases
from 100 requests to 500 requests per second.

3.2.2 Additive time caused from Warning
Failure approach in a specific physical host.

The final experiment is the modification of init.d stop
script in the storage computer. This script will
upgrade the performance of live migration between
DomU1 in host 1 and DomU2 in host 2. In the
Storage computer we have installed My SQL Server
5.0.9. Also we should configure init.d stop script.
This configuration will improve the live migration
performance in two direction:
A. Virtual Machine will continue to migrate
after a failure in the neighbour host into LAN
B. Xen Hypervisor installed on Storage
Computer just detects the fail host, executes init.d
stop script to all virtual machines which are located
above the Physical host remaining. Thus the image of
CPU Status and Memory Images will be transferred
by Pre-copy or Post-copy iterative approaches to the
healthy virtual machines. Immediately, physical
machines will disconnect with failed physical
machine, which means that they will not attempt to
communicate with this machine in the future. We
should emphasize that this situation can occur if the
warning failure has introduced before. In other cases
this mechanism doesn’t give any solution. In our
example we give a warning failure for host 1
machine. It means that DomU1 in host 1 will transfer
immediately to DomU1 of host 2. Thus the
communications would being between DomU1 and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 240

DomU2 above the host 2. This mechanism was made
possible from init.d stop script in Storage Computer.
If init.d stop script is not modified it does not give
any improvement performance, because if host 1
fails, the live migration technology would be not
possible. The migration mechanism will transfer to
Second Host and all services in Host 1 should restart
again. Also the interruption time should take in
consideration.To evaluate the time response in the
network before and after live migration, from the
shared storage computer, we send ICMP packets onto
DomU1 Host1 and DomU2 Host2 by command:
ping –c 1000 -i 0.01 u1 ping –c 1000 -i 0.01 u2
To monitor the network performance we can use a
benchmark called Heartbeat. We sent 1000 packets
for an interval time equal to 10 seconds (100 packets
for a second). For these 10 seconds we will simulate
the warning failure of DomU1 and will repeat the
experiment for DomU2 failure. For both cases the
results are the same because the machines are clones.
So the experiment will concentrate only on the first
phase. If DomU1 fails the live migration total time
from this machine to DomU2 will increases slowly.
All this results are shown in table 5.

Table 5 Time migration with the warning failure machine
approach.

Total

Migration
Time before

failure by
modifying
init.d stop
script in

Xen

Total
Migration
Time after
failure by
modifying
init.d stop
script in

Xen

Total
Migration

Time before
failure
without

modifying
init.d stop
script in

Xen

Total
Migration
Time after

failure
without

modifying
init.d stop
script in

Xen
10 seconds 10 seconds

+ 0,0456 sec
10 seconds 10 seconds

+ 2,062 sec

From Table 5 we present that the total time migration
by modifying script is slower compares with no
modification init.d stop script. In the first case,
penalty time is approximately 40 ms but in the second
case it is approximately 2 sec which means 50 times
slower. In this way the performance in the second
case is 50 times worst than the first case.

4. Conclusions and future Work

There are 5 conclusions from this paper:

I. The efficiency of CPU utilization does not
change significantly if the packets are generated in
the same physical host between two virtual machines
or in different hosts in the same LAN. This is the
merit of Xen para-virtualization [6], [7] technology
Hypervisor.

II. The CPU consumption does not affect
directly the memory growth. This is happen because
Xen creates an isolation layer [3]. The memory
ballooning approach is performed by including a test
script in the apache module. In ballooning memory
approach we use two functions: mem_increase and
mem_decrease
III. Response time and Page Fault Number
increases if memory utilization grows up.
IV. The CPU performance increases slightly if
the request’s number from one VM to another one is
increased.
V. The additive time caused from a warning
failure in Live Migration approach is decreased
significantly if we modify the init.d stop script in Xen
Hypervisor.

To monitor the network performance we used the
Heartbeat benchmark. To generate the request’s
messages from one VM to another we used the
Httperf benchmark. To monitor the memory
utilization we used the MemAccess benchmark.

In the future work we will test the network
performance, memory performance and CPU
performance in WAN by using post-copy and pre-
copy iteratively approach.

5. References

[1] Weiming Zhao, Zhenlin Wang, “Dynamic Memory
Balancing for Virtual Machines”
[2] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, Xiaodong Pan
Hai Jin, Li Deng, Song Wu, Xuanhua Shi, Xiaodong Pan,
“Live Virtual Machine “Migration with Adaptive Memory
Compression”
[3] Kaushik Kumar Ram, Jose Renato Santos, Yoshio
Turner, “Redisignin Xen`s Memory Sharing Mechanism for
Safe and Efficient I/O Virtualization
[4] Michael Hines, Umesh Deshpande and Kartik Gopalan, “
Post-Copy Live Migration of Virtual Machines”
[5] Timothy Wood, Prashant Shenov, Arun Venkataramani,
“Black-Box and Gray-Box strategies for virtual machine
migration”
[6] en.wikipedia.org/wiki/Paravirtualization
[7] Andrew Tanenbaum, “Modern Operating System, Third
Edition, Chap 8, p.574,”.

Igli TAFA. He is a pedagogue in Polytechnic University, in
Computer Engineering Department. In 2008 he has finished
the Master Thesis and now is PhD student. His PhD topic
according to Virtual Machines direction.
Elinda KAJO (MECE). She is a pedagogue in Polytechnic
University, in C omputer Engineering Department. She has
finished the PhD thesis at 2004 in Object Oriented
Programming direction.
Hakik PACI. He is a pedagogue in Polytechnic University, in
Computer Engineering Department. He is a PhD student. His
PhD topic according to Oracle DB System direction.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 241

