
Hybrid GA for Straight-Line Drawings of Level Clustered
Planar Graphs

Ahmed A. A. Radwan 1, Mohamed A. El-Sayed 2∗ and Nahla F. Omran 3

1 Department of Computer Science, Faculty of Science, Minia University,
Minia, Egypt

2 Department of Mathematics, Faculty of Science, Fayoum University,
Fayoum, Egypt

3 Department of Mathematics, Faculty of Science, South Valley University,
Qena, Egypt

∗ Corresponding author.

Abstract
In this paper we introduce an application of genetic algorithms
(GAs) with the problem of drawing of level planar graph or
hierarchical planar graph, and explore the potential use of GAs to
solve this particular problem. Given a l evel planar graph, we
want to find a geometric position of every vertex (layout) in a
straight-line grid drawing without any edge-intersection. Here we
introduce a simple hybrid GA, which nicely draws level planar
graph of moderate size. The paper shows that the GAs can help
find an layout of levels and hierarchical planar graphs without
any crossing edges.

Keywords: Genetic algorithms, graph drawing, hierarchical
graphs, level graph, clustered graph.

1. Introduction

Hierarchical planar graph embedding (sometimes called
level planar graphs) is widely recognized as a v ery
important task in diverse fields of research and
development. Examples include VLSI Design and plant
layout [9], graphical user interfaces for visualization for
information [2], software and information engineering,
project management, visual languages [5], subroutine-call
graphs, Interpretative Structural Modeling [13],
organization charts, hierarchical relationships, system
theory and other research fields. Designing web sites, and
visualizing the content of the World Wide Web [4]. See
An example of a hierarchical graph of UML level- cluster
diagram in Figure 1.

Many applications imply a partition of the vertices into
levels that have to be visualized by placing the vertices that

belonging to the same level on a horizontal line. The
corresponding graphs are called level graphs, and the
drawing of the networks that correspond to this category of
graphs means the drawing of level graphs [17]. In fact,
early articles in this area state that "the most crucial
problem as far as readability of a graph is that of edge
crossing" [7].

Fig. 1 An example of a hierarchical graph, UML level-
cluster diagram

Usually, we use one of some aesthetic criteria (such as
drawing area minimization, minimizing the number of edge
crossings, symmetry, bends minimization or distributing
the vertices uniformly) in order to make the layout of a

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 229

graph readable and understandable [20, 26]. Reducing the
number of edge crossings or distributing the vertices
uniformly have been proposed, and evaluating goodness of
drawing based on these criteria has been reported [3, 19].

Numerous deterministic heuristics for the static
hierarchical layout problem follow the layer-by-layer
sweep scheme: the vertices of each layer are reordered to
reduce crossings while holding the vertex orderings on the
other layers. Various strategies have been proposed for
reordering [18]. The most commonly used are the sorting
methods and the averaging heuristics which include the
popular barycenter heuristics from Sugiyama [25], the
median heuristics [14], and their variants. Sorting methods
exchange vertices using crossing numbers in a way similar
to classical sorts. Averaging heuristics are based on the
idea that edge crossings tend to be minimized when
connected vertices are placed facing each other.
Consequently, vertices are arranged according to their
neighbour average positions e.g. the arithmetic mean or the
median. Abello [1] highlighted the main tasks behind the
computation of hierarchical graph maps and provided
several examples.

The use of integer coordinates in embedding a graph on
the grid has many advantages such as speed, accuracy, and
it guarantees automatically that the resultant picture has
fairly good properties. A straight line drawing is a grid
drawing if each vertex is at a grid point, and the edges are
represented as straight-line segments between their
endpoints without any edge-intersection. See example of
straight-line drawings by Eades, Feng, and Lin [12] in
Figure 2.

Fig. 2 Straight-line drawings of hierarchical clustered graph [12].

Previously, there have been two main concepts for
combining leveling and clustering. Sugiyama and Misue
[24] present an algorithm for drawing compound graphs
on horizontal levels. Compound graphs are a
generalization of clustered graphs that also allow edges

between two clusters or between a cluster and a vertex. A
similar algorithm is proposed by Sander [23]. Both
algorithms extend the classical level drawing algorithm of
Sugiyama, Tagawa, and Toda [25]. The vertices are drawn
on horizontal levels, and the clusters are drawn as nested
rectangles. After partitioning the vertices into levels,
permutations of each level are computed for minimizing
edge crossings. Finally, horizontal coordinates are assigned
to the vertices and clusters.

This paper introduces application of genetic algorithms
(GAs) with the problem of planar hierarchical graph
drawing in a rectangular grid and explore the potential use
of GAs to solve this particular problem. Our algorithm has
been inspired by the ideas from Refs.[14, 21, 22].

The remainder of the paper is organized as follows. In
section 2, displays the problem with some definitions and
preliminaries. I n section 3, introduces proposed hybrid
GA. The representations of chromosomes, the selection,
and the evaluation function are investigated in section 4.
In section 5, introduces the genetic operations. Section 6
is abstract the parameters and results. Finally, conclusions
in section 7.

2. Preliminaries

If the given graph G = (V, E) is a directed acyclic graph
(DAG), or after all cycles have been removed, the vertex
set V is partitioned into levels V1, V2,…, Vk . All vertices
of the same level Vi are later drawn on the horizontal line li
= { (x, i) | x ∈ N}. The level number is identical to the y-
coordinate of the vertex. The result of the level assignment
step is a level graph: A k-level graph G = (V, E,φ) is a
graph (V, E) with a leveling φ: V→{1, . . . , k} that
partitions the vertex set into k disjoint levels V1, V2,…, Vk
, Vi = φ -1(i), such that each edge (u,v) ∈ E has a positive
span φ(v) - φ(u) > 0, i. e., all edges point downwards.
Edges are called proper if their span is 1 and long span
edges otherwise. G is proper if all its edges are proper.
Figure 4 i s proper level graphs of G in Figure 3, where
dummy vertices are drawn black.

1 2 3

4 5 6

8 9 10

11 12

Fig. 3 Example of level graphs.

7

Fig. 4 Proper level graphs.

1

7

3

4 5 6

8 9 10

11 12

2

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 230

Hierarchical acyclic digraph),,,(kEVH λ= , consists of a
directed graph),(EVG = with a vertex set V and an edge
set E and L = { L1, L2, …, Lk} be a set of k layers and a
given partition V1, V2,…, Vk of V on L in classes with
respectively n1, n2, ..., nk vertices. A positive number

,k and, for each vertex ,u an integer
},...,,2,1{)(ku ∈λ with the property that if ,),(Evu ∈ then

)()(uv λλ > . For ki ≤≤1 the set })(:{ iuu =λ is the ith
layer of G and denoted by Li .

The span of an edge),(vu is).()(uv λλ − An edge of
span greater than one is called long edge; and a
hierarchical graph with no long edges is called proper
hierarchical graph. The layers L1 and Lk are called
boundary layers of H. If all source vertices are in layer L1
and all sink vertices are in layer Lk, in this case H is called
a boundary s-t hierarchical graph.

A hierarchical graph is conventionally drawn with layer Li
on the horizontal line y=i. If t he graph is proper, then
edges are drawn as closed line segments. Thus a p roper
hierarchical graph is assigns a point P(u)=(px(u), py(u)) to
each vertex Vu ∈ . The drawing convention implies that
py(u)=λ(u) and so effectively the only role of a d rawing
algorithm is to choose px(u).

In a level graph, we define the longest level that is the level
in which the number of vertices is greater than or equal the
number of vertices belong to any other level. Note that the
longest level is not necessarily unique. For example,
Figure 3, shows a level graph with four levels, and second
level is the longest levels, it h as four vertices. but in
Figure 4, shows a l evel graph with two levels are the
longest levels, each one has five vertices.

GAs are a class of randomized optimization heuristics
based loosely on the biological paradigm of natural
selection. While the exact mechanisms behind natural
evolution are not very well known, some aspects have been
studied in considerable depth. The general principle

underlying GAs is that of maintaining a population of
possible solutions, which are often called chromosomes. It
is believed that chromosomes are the information carriers
and that the evolution process works at the chromosome
level through reproduction. The reproduction can be made
by either combining chromosomes from the parents to
produce offspring, a process called crossover, or by a
random change occurring in the chromosome pattern,
termed mutation.

Population size is the number of chromosomes used to
represent a set of solutions to the problem. In our problem
a population is a set of graph layouts. The population
undergoes an evolutionary process that imitates the natural
biological evolution. In each generation better
chromosomes have greater possibilities to reproduce, while
worse chromosomes have greater possibilities to die and to
be replaced by new individuals.

A GA first creates an initial population of solutions. The
solutions are then evaluated, using an application-specific
criteria of fitness, to characterize them from most fit to
least fit. A subset of the population is selected, using
criteria that tend to favour the most fit solutions. This
subset is then used to produce a new generation of
offspring solutions. Finally, a number of solutions in this
new generation are subjected to random mutations. The
processes of selection, crossover and mutation are then
repeated. A drawback of GAs is that the optima of these
problems are generally unknown and it is therefore
difficult to assess their performance. Another drawback is
that GAs need a simple fitness function with a reasonably
fast evaluation to distinguish between "good" and "bad"
chromosomes, but this is often not possible. GAs are
usually slow, especially because the fitness function
evaluation takes a long time.

In graph drawing the evaluation function depends on the
aesthetic criteria used, our evaluation function is discussed
in greater detail in the next section.

A genetic algorithm must have the following five basic
components:

1. A genetic representation of solutions to the
problem

2. A way to create an initial population of solutions.
3. An evaluation function rating solutions in terms of

their fitness.
4. Genetic operators that alter the genetic composition

of children fitness.
5. Values for the parameters of genetic algorithms.

There are several parameters to be fixed. First, we have to
decide how to represent the set of possible solutions. In
"pure" genetic algorithms only bit string representations
were allowed, but we allow any representation that makes

Fig. 5 Proper level planar graphs
embedding.

1

4

12 11

7

3

6

10 9 8

5

2

Fig. 6 Proper hierarchical planar
graphs embedding.

8 9

1

6 4 5 7

3 2

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 231

efficient computation possible. Second, we have to choose
an initial population. We use initial populations created by
random selection. Third, we have to design the genetic
operations, which alter the composition of children during
reproduction. The two basic genetic operations are the
mutation operation and the crossover operation. Mutation
is an unary operation, which increases the variability of the
population by making point wise changes in the
representation of the individuals. Crossover combines the
features of two parents to form two new individuals by
swapping corresponding segments of parent’s
representations. It turns out that the main problem in
genetic graph drawing algorithms is to find efficient
crossover operations.

3. Proposed hybrid genetic algorithm

 Let);,...,,(21 EVVVG k= be a g iven proper level graph
with n vertices. An embedding of a l evel graph can be
aesthetic if we draw the graph by making the following
two main steps:
First step: we are divide the graph into set of paths {W1,
W2, … , Wnp }, where np is the number of the individual
paths of G, each path is contains at most one node in level

iV , 1≤i≤k . If found more than one node in the next
(previous) level are neighbored of the current node in the
current level, we select one from them such that it was not
selected as before. I f there are dummy vertices among
these nodes , one of them is favored to select. Remove
this path from the graph and repeat this process until
remove all nodes. The p rocesses of dividing and
clustering are begin according to longest level which
contain largest number of dummy vertices. The number np
of clusters is greater than or equal to the number of nodes
in longest level. Figure 7, shows a six paths, np=5 of
proper level graph in Figure 4 .

Second step: We are rearrangement the paths using GA,
where no pair of edges intersect. therefore the out put is

proper level planar graph on grid with size k-1 × np-1.
Figure 8, shows a solution of proper level graph in Figure
7, and Figure 9 is show the output l evel planar graphs
embedding on grid.

4. Representations of chromosomes and fitness
function

Our algorithm draws hierarchical planar graphs in a
rectangular grid with area k-1 × np-1. Each vertex is
located in a Cartesian point of the grid and all edges are
drawn as straight lines.

To represent a graph with n vertices and m edges, we use
a k-1 × np-1 matrix to indicate the positions of the vertices
and a 2 × m matrix to indicate the edges by storing pairs of
vertices. The corresponding end points are then found from
the vertices matrix. Figure 10, shows the representation used
of a sample example, Figure 7, P(3)=(0, 0), P(4)=(5, 1) and
P(10)=(2, 2) .

Representing a solution of planar graph drawing problem
into a chromosome is a key issue when using genetic
algorithms. Chromosomes are the strings or arrays of
genes (a gene is the smallest building block of the
solution). A chromosome can be represented by a string of

Fig. 7 Proper level graph and it’s a partial paths.

11 12

1 3 2

7 4 5 6

8 9 10

1

7

3

4 5 6

8 9 10

11 12

2

11 12

1 3 2

7 4 5 6

8 9 10

Fig. 8. a GA solution of G in Figure 7.

1 2 3

4 5 6

8 9 10

11 12

7

Fig. 9 Input level planar graphs and its output embedding
on grid.

11 12

1 3 2

4 5 6

8 9 10

7

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 232

integers with length np, a gene, gj is represent the position
0≤ x ≤np-1 of path Wj in grid, 1≤ j ≤np, and the genes
have different values in the chromosome. For example ,in
Figure 10, the set of nodes { v3, v5, v14, v11} belong to
Path W1 , x-coordinate values are equal to 0, but y-
coordinate value is fixed of each vertex in G through our
algorithm according to its level. Hence , the chromosome
depend on x-value which changed between the paths,
where each Path Wj take certain value for its nodes. Figure
11 is show the general form of the chromosome.

Here We describe the following operations: selection
process, and fitness function, in our algorithm. The
selection process directs the genetic algorithm towards
promising regions in the search space. One of the selection
method is used the linear normalization suggested by
Davis [11] together with elitism. In our problem instead of
using stepwise decreasing constant our selection depends
on the number of crossing and coincide edges, i.e. the
chromosome which has less number will be in the top. this
method can be parameterized to give a desired emphasis to
the best chromosomes. It uses elitist selection, i.e., the best

chromosome is always chosen as such to the next
generation.

Evaluation function f (also called the fitness function)
based on well-known measurable aesthetic criteria for
graphs: Minimize edge crossings. The number of edge
crossings is minimized to zero in the drawing grid, α=0.

GAs are usually slow, especially because the fitness
function evaluation takes a long time. The algorithm
spends most of its computation time in evaluating the
chromosomes. One of the problematic issues is the
counting of the number of edge crossings. There is a well-
known method based on cross productions to check
whether two line segments intersect [10, pp. 889-890].
More advanced methods are introduced by Bentley and
Ottmann [6] and Chazelle and Edelsbrunner [8]. In order
to reduce the run time of the execution our GA, we have
used a method of our own for counting the number of edge
crossing. We keep track of the movements of paths, and
update the number of edge crossings only when a path is
moved. This method outperforms the Bentley and Ottman's
algorithm in the present situation.

5. Crossover and mutation operations

The crossover operation transforms two chromosomes into
two new chromosomes. The algorithm has two types of
crossover operations. Crossover1 works as follows. Let
the parent chromosome P1: g1, g2, , …, g np , which is
stores the paths numbers. First it r andomly chooses an
integer number or more of path Wi , 1≤ i ≤ np, o f the
parent chromosome P1. Similarly, the genes in P2 , and a
path W*

j of the parent chromosome P2, i≠j. Exchange
paths numbers Wi with W*

j and Wj with W*
i, and the rest

of the paths are kept unchanged of its orders in genes of
the parent chromosomes P1 and P2 to obtain children: Ch1
and Ch2. The sample Crossover1 operation of Figure 12,
uses 4 levels, with six paths. Consider the permutations :

Fig. 10 The representation of G in Figure 7.

 Vertices matrix, n=15

 0 1 2 3 4 5

0

1

2

3

5

11

1 3 2

7 4 6

8 9

10

12

15

13

14

Edges matrix, m=16 (directed from-to)

11 12

1 3 2

7 4 5 6

8 9 10

W1 W2 W3 W4 W5 W6

0 1 2 . . . np-2 np-1
W1 W2 W3 . . . W np-1 Wnp
g1 g2 g3 gnp-1 gnp

(a) general form of the chromosome

0 1 2 3 4 5
W1 W2 W3 W4 W5 W6
g1 g2 g3 g4 g5 g6

 (b) initial chromosome of example in figure 7

Fig. 11 The representation of chromosome

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 233

P1 = (W1, W3, W2, W6, W5, W4) and P2 = (W*3, W*6,
W*5, W*4, W*2, W*1). If it randomly chooses i=2 , j= 5.
Thus, Ch1=(W1, W3, W*5, W6, W*2, W4). Similarly,
Ch2=(W*3, W*6, W2, W*4, W5, W*1). Clear that, the
Child-2 is represent a solution of our case problem and
good chromosome.

The other crossover operation in the algorithm is called
Crossover2 or cycle crossover: Given parent permutations
P1 and P2 , two child permutations are created by forming
a cycle between P1 and P2. Consider the permutations : P1
= (jhdefigcba) and P2 = (hgebcjiadf). Starting from the
first element in P1 , we see that j in P1 maps to h in P2 , h
in P1 maps to g in P2 , g in P1 maps to i in P2 , and i in P1
maps to j in P2 , completing the cycle. The elements in the
cycle from P1 are placed in the child, producing
Ch1=(jh***ig***). The empty slots (*) are filled in by the
elements of P2 at the corresponding positions. Thus,
Ch1=(jhebcigadf) Similarly, Ch2=(hgdefjicba). See Figure
13.

Groves et al. [16] introduced about a d ozen different
mutation operations. We have used t wo different
mutations performed best in our tests. First, mutation1,
choose a two genes randomly and exchange their position.

Second, mutation2, the order of the genes is inverted
between two random vertices.

6. Parameters and results

Selection: Our test advice to use large steps in the linear
normalization. This means that the best chromosomes are
strongly favored. This selection i s decrease computation
time to compute the fitness function with paths rather than
the vertices in graph.

Crossover and mutation rates: Increasing the mutation rate
makes the search more efficient all the way to the level 20–
50 %. Still increasing the mutation rate over 50% again
makes the results worse. The crossover rate 20% and
mutation rate 20% are default values. The values of the

11 12

3 2 1

4 5 7 6

8 9 10

0 1 2 3 4 5
W1 W3 W2 W6 W5 W4

Parent 1

11 12

3 2 1

4 5 7 6

8 9 10

0 1 2 3 4 5
W3 W6 W5 W4 W2 W1

Parent 2

0 1 2 3 4 5
W1 W3 W5 W6 W2 W4

Child 1

11 12

3 1 2

4 5 6 7

8 9 10

12 11

2 3 1

7 4 5 6

8 9 10

0 1 2 3 4 5
W3 W6 W2 W4 W5 W1

Child 2 (good)

Fig. 12 A Sample of Crossover1 operation.

1 3 2

6 4 5 7

10 8 9

11 12

1 3 2

6 4 5 7

10 8 9

11 12

11 12

1 3 2

6 4 5 7

10 8 9

1 3 2

6 4 5 7

10 8 9

11 12

Parent 1 Parent 2

Child 1 Child 2 (good)

Parent 1
0 1 2 3 4 5

W2 W5 W4 W1 W6 W3

 0 1 2 3 4 5

W1 W5 W3 W2 W4 W6
Parent 2

0 1 2 3 4 5
W1 W5 W4 W2 W6 W3

Child 2 (good)

Child 1
0 1 2 3 4 5

W2 W5 W3 W1 W4 W6

Fig. 13 A Sample of Crossover2 operation.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 234

parameters of the algorithm are as follows: Maximum
Generations(MG): 1000, Population Size (PS): 10,
Crossover Rate (CR): 0.2 and Mutation Rate (MR): 0.2 .
Our genetic algorithm was able to find layouts with no
edge crossings in all the test level planar graphs.

7. Conclusion

In this study, an attempt is made to develop a new hybrid
GA for straight-line grid drawings of level clustered planar
graph drawing without any edge-intersection and explore
the potential use of GAs to solve this particular problem. It
is nicely draws level planar graph of moderate size. The
operations of crossover and mutation are described, and
tested on several level planar graphs.

References
[1] J. Abello, “Hierarchical graph maps”, Computers &

Graphics, Volume 28, Issue 3, June 2004, pp. 345-359.
[2] G. Di Battista, P. Eades, R. Tamassia and I. Tollis,

“Algorithms for Drawing Graphs: Annotated
Bibliography”, Computational Geometry, Theory
Applications, 4, 1994, pp. 235-282.

[3] C. Batini, L. Furlani and E. Nardelli, “What is a Good
Diagram? A Pragmatic Approach”, Proceeding Of the 4th
International Conference on Entity-Relationship Approach,
1985 , pp. 312-319.

[4] U. Brandes, V. Kääb, A. Läh, and D. Wagner, Dynamic
WWW structures in 3d. Journal of Graph Algorithms and
Applications 4(3), 2000, pp. 183–191.

[5] S. Bhatt and F. Leighton, “A Framework for Solving VLSI
Graph Layout Problems”, Journal of Computer and System
Systems Sciences 28, 1984, pp. 300-343.

[6] J. L. Bentley and T. A. Ottmann, “Algorithms for reporting
and counting geometric intersections”. IEEE Trans.
Comput. C-28,1979, pp. 643-647.

[7] M-J. Carpano, Automatic display of hierarchized graphs
for computer-aided decision analysis. IEEE Transactions
on Systems, Man and Cybernetics. SMC-10, 11. 1980, pp.
705-715.

[8] B. Chazelle and H. Edelsbrunner, “An optimal algorithm
for intersecting line segments in the plane”. J. ACM 39, 1 ,
1992, pp. 1-54.

[9] F. Chung, F. Leighton and A. Rosenberg, “Embedding
Graphs in Books: A Layout Problem with Applications to
VLSI Design”, SIAM Journal Discrete Mathematics, 8,
1987, pp. 33-58.

[10] T. H. Cormen, C. E. Leiserson and R. L. Rivest,”
Introduction to Algorithms”. The MIT Press, 1990.

[11] L. Davis, “A genetic algorithms tutorial”. Handbook of
Genetic Algorithms, L. Davis (ed.), Van Nostrand
Reinhold,1991, pp. 1-101.

[12] P. Eades, Q.-W. Feng, and X. Lin. Straight-line drawing
algorithms for hierarchical graphs and clustered graphs.
S. North, editor. Proceedings Graph Drawing, GD 1996,
volume 1190 of Lecture Notes in Computer Science.
Springer, 1997, pp. 113–128.

[13] P. Eades and X. Lin, “How to Draw a Directed Graph”,
Proceeding IEEE on Visual Languages, (VL ’89) , 1989,
pp. 13-17.

[14] T. Eloranta and E. Makinen. “TimGA - a genetic
algorithm for drawing undirected graphs”. Report Series
A-1996-10, University of Tampere, Department of
Computer Science, 1996, citeseer.nj.nec.com/
eloranta96timga.html

[15] P. Eades and N. Wormald. Edge crossings in drawings of
bipartite graphs. Algorithmica, 11, 1994, pp. 379-403.

[16] L. Groves, Z. Michalewicz, P. Elia and C. Janikow,
Genetic algorithms for drawing directed graphs.
Proceedings of the Fifth International Symposium on
Methodologies for Intelligent Systems, Elsevier North-
Holland,1990, pp. 268-276.

[17] M. Jünger and S. Liepert, "Level Planar Embedding in
Linear Time", Technical Report 99-374, Institut für
Informatik, Unversität zu Köln, 1999.

[18] M. Laguna, R. Marti, and V. Valls. Arc crossing
minimization in hierarchical digraphs with tabu search.
Computers and Operation Research, 24(12), 1997,
pp.1175-1186.

[19] H. Purchase, R. Cohen and M. James, “Validating Graph
Drawing Aesthetics”, Proceeding of Symposium on
Graph Drawing, GD ’95 (Lecture Notes in Computer
Sciences, 1027), Springer, 1996, pp. 435-446.

[20] A. A. A. Radwan, “A new Algorithm for Drawing Level
Graphs on a Grid with Minimum Width”, International
Journal of Applied Mathematics, vol. 12 No. 4, 2004, pp.
367-385.

[21] A. A. A. Radwan, M. A. El-Sayed, “Using Genetic
Algorithm for Drawing Triangulated Planar Graphs”,
Jour. Inst. Math. & Computer Sciences, (Comp. Sc.
Ser.)Vol. 15, No. 1 , 2004, pp. 137-147.

[22] A. Rosete, A. Ochoa, “G enetic Graph Drawing”,
Proceeding of the 13th International Conference of
Applications of Artificial Intelligence in Engineering,
Galway, 1998, pp.37-41, citeseer.nj.nec.com/
rosete98genetic.html

[23] G. Sander. Graph layout for applications in compiler
construction. Theoretical Computer Science, 217, 1999,
pp. 175–214.

[24] K. Sugiyama and K. Misue. Visualization of structural
information: Automatic drawing of compound digraphs.
IEEE Transactions on S ystems, Man, and Cybernetics,
21(4), July 1991, pp. 876–892.

[25] K. Sugiyama, S. Tagawa, and M. Toda. Methods for
visual understanding of hierarchical systems. IEEE
Trans. Syst., Man, Cybern., 11(2), 1981, pp.109-125.

[26] A. Yamaguchi and A. Sugimoto, “An Approximation
Algorithm for the Two-Layered Graph Drawing
Problems”, COCOON ’99, (Lecture Notes in Computer
Sciences, 1627) , 1991 , pp. 81-91.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 235

