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Abstract 
In this paper we introduce an application of genetic algorithms 
(GAs) with the problem of drawing  of level planar graph or 
hierarchical planar graph, and explore the potential use of GAs to 
solve this particular problem. Given a l evel planar graph, we 
want to find a geometric position of every vertex (layout) in a 
straight-line grid drawing without any edge-intersection. Here we 
introduce a simple hybrid GA, which nicely draws level planar 
graph of moderate size.  The paper shows that the GAs can help 
find an layout of levels and hierarchical planar graphs without 
any crossing edges. 

Keywords: Genetic algorithms, graph drawing, hierarchical 
graphs, level graph, clustered graph. 

1. Introduction 

Hierarchical planar graph embedding (sometimes called 
level planar graphs) is widely recognized as a v ery 
important task in diverse fields of research and 
development. Examples include VLSI Design and plant 
layout [9], graphical user interfaces for visualization for 
information [2], software and information engineering, 
project management, visual languages [5], subroutine-call 
graphs, Interpretative Structural Modeling [13], 
organization charts, hierarchical relationships, system 
theory and other research fields. Designing web sites, and 
visualizing the content of the World Wide Web [4]. See 
An example of a hierarchical graph of UML level- cluster 
diagram in Figure 1.  

Many applications imply a partition of the vertices into 
levels that have to be visualized by placing the vertices that 

belonging to the same level on a horizontal line. The 
corresponding graphs are called level graphs, and the 
drawing of the networks that correspond to this category of 
graphs means the drawing of level graphs [17]. In fact, 
early articles in this area state that "the most crucial 
problem as far as readability of a graph is that of edge 
crossing" [7]. 

 

Fig. 1 An example of a hierarchical graph, UML level- 
cluster diagram 

Usually, we use one of some aesthetic criteria (such as 
drawing area minimization, minimizing the number of edge 
crossings, symmetry, bends minimization or distributing 
the vertices uniformly) in order to make the layout of a 
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graph readable and understandable [20, 26]. Reducing the 
number of edge crossings or distributing the vertices 
uniformly have been proposed, and evaluating goodness of 
drawing based on these criteria has been reported [3, 19].   

Numerous deterministic heuristics for the static 
hierarchical layout problem follow the layer-by-layer 
sweep scheme: the vertices of each layer are reordered to 
reduce crossings while holding the vertex orderings on the 
other layers. Various strategies have been proposed for 
reordering [18]. The most commonly used are the sorting 
methods and the averaging heuristics which include the 
popular barycenter heuristics from Sugiyama [25], the 
median heuristics [14], and their variants. Sorting methods 
exchange vertices using crossing numbers in a way similar 
to classical sorts. Averaging heuristics are based on the 
idea that edge crossings tend to be minimized when 
connected vertices are placed facing each other. 
Consequently, vertices are arranged according to their 
neighbour average positions e.g. the arithmetic mean or the 
median. Abello [1] highlighted the main tasks behind the 
computation of hierarchical graph maps and provided 
several examples. 

The use of integer coordinates in embedding a graph on 
the grid has many advantages such as speed, accuracy, and 
it guarantees automatically that the resultant picture has 
fairly good properties. A straight line drawing is a grid 
drawing if each vertex is at a grid point, and the edges are 
represented as straight-line segments between their 
endpoints without any edge-intersection. See example of 
straight-line drawings by Eades, Feng, and Lin [12] in 
Figure 2. 

 

Fig. 2 Straight-line drawings  of hierarchical clustered graph [12]. 
 

Previously, there have been two main concepts for 
combining leveling and clustering. Sugiyama and Misue 
[24] present an algorithm for drawing compound graphs 
on horizontal levels. Compound graphs are a 
generalization of clustered graphs that also allow edges 

between two clusters or between a cluster and a vertex. A 
similar algorithm is proposed by Sander [23]. Both 
algorithms extend the classical level drawing algorithm of 
Sugiyama, Tagawa, and Toda [25]. The vertices are drawn 
on horizontal levels, and the clusters are drawn as nested 
rectangles. After partitioning the vertices into levels, 
permutations of each level are computed for minimizing 
edge crossings. Finally, horizontal coordinates are assigned 
to the vertices and clusters. 

This paper introduces application of genetic algorithms 
(GAs) with the problem of planar hierarchical graph 
drawing in a rectangular grid and explore the potential use 
of GAs to solve this particular problem. Our algorithm has 
been inspired by the ideas from Refs.[14, 21, 22]. 

The remainder of the paper is organized as follows. In 
section 2, displays the problem with some definitions and 
preliminaries.  I n section 3, introduces proposed hybrid 
GA. The representations of chromosomes, the selection, 
and the evaluation function are investigated in section 4.  
In section 5, introduces the genetic operations.  Section 6 
is abstract the  parameters and results.  Finally, conclusions 
in section 7.   

2. Preliminaries 

If the given graph G = (V, E) is a directed acyclic graph 
(DAG), or after all cycles have been removed, the vertex 
set V is partitioned into levels V1, V2,…, Vk . All vertices 
of the same level Vi are later drawn on the horizontal line li 
= { (x, i) | x ∈ N}. The level number is identical to the y-
coordinate of the vertex. The result of the level assignment 
step is a level graph: A k-level graph G = (V, E,φ) is a 
graph (V, E) with a leveling φ: V→{1, . . . , k} that 
partitions the vertex set into k disjoint levels V1, V2,…, Vk 
, Vi = φ -1(i), such that each edge (u,v) ∈ E has a positive 
span φ(v) - φ(u) > 0, i. e., all edges point downwards. 
Edges are called proper if their span is 1 and long span 
edges otherwise. G is proper if all its edges are proper. 
Figure 4 i s proper level graphs of G in Figure 3, where 
dummy vertices are drawn black.  
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Fig. 3  Example of level graphs.  
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Fig. 4 Proper level graphs.  
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Hierarchical acyclic digraph ),,,( kEVH λ= , consists of a 
directed graph ),( EVG =  with a vertex set V and an edge 
set E and L = { L1, L2, …, Lk} be a set of  k layers and a 
given partition V1, V2,…, Vk of V on L in classes with 
respectively n1, n2, ..., nk vertices. A positive number 

,k and, for each vertex ,u  an integer 
},...,,2,1{)( ku ∈λ with the property that if ,),( Evu ∈  then 

)()( uv λλ > . For ki ≤≤1  the set })(:{ iuu =λ  is the ith 
layer of G and denoted by Li . 

The span of an edge ),( vu  is ).()( uv λλ −  An edge of 
span greater than one is called long edge; and a 
hierarchical graph with no long edges is called proper 
hierarchical graph. The layers L1 and Lk are called 
boundary layers of H. If all source vertices are in layer L1 
and all sink vertices are in layer Lk, in this case H is called 
a boundary s-t hierarchical graph. 

A hierarchical graph is conventionally drawn with layer Li 
on the horizontal line y=i. If  t he graph is proper, then 
edges are drawn as closed line segments. Thus a p roper 
hierarchical graph is assigns a point P(u)=(px(u), py(u)) to 
each vertex Vu ∈ . The drawing convention implies that 
py(u)=λ(u) and so effectively the only role of a d rawing 
algorithm is to choose px(u).  

 

 

 

 

 

 

 

 

 

In a level graph, we define the longest level that is the level 
in which the number of vertices is greater than or equal the 
number of vertices belong to any other level. Note that the 
longest level is not necessarily unique. For example, 
Figure 3, shows a level graph with four levels, and second 
level  is the longest levels, it h as four vertices. but in 
Figure 4, shows a l evel graph with two levels are the 
longest levels, each one has five vertices. 

GAs are a class of randomized optimization heuristics 
based loosely on the biological paradigm of natural 
selection. While the exact mechanisms behind natural 
evolution are not very well known, some aspects have been 
studied in considerable depth. The general principle 

underlying GAs is that of maintaining a population of 
possible solutions, which are often called chromosomes.  It 
is believed that chromosomes are the information carriers 
and that the evolution process works at the chromosome 
level through reproduction. The reproduction can be made 
by either combining chromosomes from the parents to 
produce offspring, a process called crossover, or by a 
random change occurring in the chromosome pattern, 
termed mutation. 

Population size is the number of chromosomes used to 
represent a set of solutions to the problem. In our problem 
a population is a set of graph layouts. The population 
undergoes an evolutionary process that imitates the natural 
biological evolution. In each generation better 
chromosomes have greater possibilities to reproduce, while 
worse chromosomes have greater possibilities to die and to 
be replaced by new individuals.  

A GA first creates an initial population of solutions. The 
solutions are then evaluated, using an application-specific 
criteria of fitness, to characterize them from most fit to 
least fit. A subset of the population is selected, using 
criteria that tend to favour the most fit solutions. This 
subset is then used to produce a new generation of 
offspring solutions. Finally, a number of solutions in this 
new generation are subjected to random mutations. The 
processes of selection, crossover and mutation are then 
repeated. A drawback of GAs is that the optima of these 
problems are generally unknown and it is therefore 
difficult to assess their performance. Another drawback is 
that GAs need a simple fitness function with a reasonably 
fast evaluation to distinguish between "good" and "bad" 
chromosomes, but this is often not possible. GAs are 
usually slow, especially because the fitness function 
evaluation takes a long time. 

In graph drawing the evaluation function depends on the 
aesthetic criteria used, our evaluation function is discussed 
in greater detail in the next section. 

A genetic algorithm must have the following five basic 
components: 

1. A genetic representation of solutions to the 
problem 

2. A way to create an initial population of solutions. 
3. An evaluation function rating solutions in terms of 

their fitness. 
4. Genetic operators that alter the genetic composition 

of children fitness. 
5. Values for the parameters of genetic algorithms. 

There are several parameters to be fixed. First, we have to 
decide how to represent the set of possible solutions. In 
"pure" genetic algorithms only bit string representations 
were allowed, but we allow any representation that makes 

Fig. 5 Proper level planar graphs 
embedding.  
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Fig. 6 Proper hierarchical planar 
graphs embedding.  
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efficient computation possible. Second, we have to choose 
an initial population. We use initial populations created by 
random selection. Third, we have to design the genetic 
operations, which alter the composition of children during 
reproduction. The two basic genetic operations are the 
mutation operation and the crossover operation. Mutation 
is an unary operation, which increases the variability of the 
population by making point wise changes in the 
representation of the individuals. Crossover combines the 
features of two parents to form two new individuals by 
swapping corresponding segments of parent’s 
representations. It turns out that the main problem in 
genetic graph drawing algorithms is to find efficient 
crossover operations. 

3. Proposed hybrid genetic algorithm 

 Let );,...,,( 21 EVVVG k= be a g iven proper level graph 
with n vertices. An embedding of a l evel graph can be 
aesthetic if we draw the graph by making the following 
two main steps: 
First step: we are divide the graph into set of paths {W1, 
W2, … , Wnp }, where np is the number of the  individual 
paths of G, each path is contains at most one node in  level 

iV , 1≤i≤k . If found more than one node in the next 
(previous) level are neighbored of the current node in the 
current level, we select one from them such that it was not 
selected as before.  I f there are dummy vertices among 
these nodes , one of  them is  favored to select. Remove 
this path from the graph and repeat this process until 
remove all nodes. The  p rocesses of dividing and 
clustering are begin according to longest level which 
contain largest number of dummy vertices. The number np 
of clusters is greater than or equal to  the number of nodes 
in longest level.  Figure 7, shows a six paths, np=5 of  
proper level graph in Figure 4 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Second step: We are rearrangement the paths using GA, 
where no pair of edges intersect.  therefore the out put is 

proper level planar graph on grid with size k-1 × np-1. 
Figure 8, shows a solution of proper level graph in Figure 
7, and Figure 9 is show the output  l evel planar graphs 
embedding on grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Representations of chromosomes and fitness 
function 

Our algorithm draws hierarchical planar graphs in a 
rectangular grid with area k-1 × np-1. Each vertex is 
located in a Cartesian point of the grid and all edges are 
drawn as straight lines.  

To represent a graph with n vertices and m edges,  we use 
a k-1 × np-1 matrix to indicate the positions of the vertices 
and a 2 × m matrix to indicate the edges by storing pairs of 
vertices. The corresponding end points are then found from 
the vertices matrix. Figure 10, shows the representation used 
of a sample example, Figure 7, P(3)=(0, 0),  P(4)=(5, 1)  and  
P(10)=(2, 2) .    

Representing a solution of planar graph drawing problem 
into a chromosome is a key issue when using genetic 
algorithms. Chromosomes are the strings or arrays of 
genes (a gene is the smallest building block of the 
solution). A chromosome can be represented by a string of 

Fig. 7 Proper level graph and it’s a partial paths.  
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Fig. 8.  a GA solution of G in Figure 7. 
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Fig. 9 Input  level planar graphs and its output embedding 
on grid.  
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integers with length np, a gene, gj  is represent the position 
0≤ x ≤np-1  of  path Wj in grid, 1≤ j ≤np, and the genes 
have different values in the chromosome. For example ,in 
Figure 10, the set of nodes { v3, v5, v14, v11} belong to 
Path W1 , x-coordinate values are equal to 0, but y-
coordinate value is fixed of each vertex in G through our 
algorithm according to its level. Hence , the  chromosome 
depend on x-value which changed between the paths, 
where each Path Wj take certain value for its  nodes. Figure 
11 is show the general form of the chromosome. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here We describe the following operations: selection 
process, and fitness  function, in our algorithm. The 
selection process directs the genetic algorithm towards 
promising regions in the search space. One of the selection 
method is used the linear normalization suggested by 
Davis [11] together with elitism. In our problem instead of 
using stepwise decreasing constant our selection depends 
on the number of crossing and coincide edges, i.e. the 
chromosome which has less number will be in the top. this 
method can be parameterized to give a desired emphasis to 
the best chromosomes. It uses elitist selection, i.e., the best 

chromosome is always chosen as such to the next 
generation. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Evaluation function f  (also called the fitness function) 
based on well-known measurable aesthetic criteria for 
graphs: Minimize edge crossings. The number of edge 
crossings is minimized to zero in the drawing grid, α=0.  

GAs are usually slow, especially because the fitness 
function evaluation takes a long time. The algorithm 
spends most of its computation time in evaluating the 
chromosomes. One of the problematic issues is the 
counting of the number of edge crossings. There is a well-
known method based on cross productions to check 
whether two line segments intersect [10, pp. 889-890]. 
More advanced methods are introduced by Bentley and 
Ottmann [6] and Chazelle and Edelsbrunner [8]. In order 
to reduce the run time of the execution our GA, we have 
used a method of our own for counting the number of edge 
crossing. We keep track of the movements of paths, and 
update the number of edge crossings only when a path is 
moved. This method outperforms the Bentley and Ottman's 
algorithm in the present situation. 

5. Crossover and mutation operations 

The crossover operation transforms two chromosomes into 
two new chromosomes. The algorithm has two types of 
crossover operations. Crossover1 works as follows. Let  
the parent chromosome P1: g1, g2, , …, g np , which is 
stores the paths numbers. First it r andomly chooses an 
integer number or more of path Wi , 1≤ i ≤ np,  o f the 
parent chromosome P1.  Similarly, the genes in P2 , and  a 
path W*

j  of  the parent chromosome P2,  i≠j. Exchange 
paths numbers  Wi  with W*

j  and Wj with W*
i, and the rest 

of the paths are kept unchanged of its orders in genes of  
the parent chromosomes P1 and P2 to obtain children: Ch1 
and Ch2.    The sample Crossover1 operation of Figure 12, 
uses 4 levels, with six paths. Consider the permutations :  

Fig. 10 The representation of G in Figure 7.  
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W1  W2 W3 . . . W np-1 Wnp 
g1 g2 g3  gnp-1 gnp 

 

(a) general form of  the chromosome 
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 (b) initial  chromosome of  example in figure 7 
 

Fig. 11 The representation of chromosome 
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P1 = (W1, W3, W2, W6, W5, W4) and  P2 = (W*3, W*6, 
W*5, W*4, W*2, W*1 ). If it randomly chooses i=2 , j= 5. 
Thus, Ch1=( W1, W3, W*5, W6, W*2, W4). Similarly,  
Ch2=( W*3, W*6, W2, W*4, W5, W*1). Clear that, the 
Child-2 is represent a solution of our case problem and 
good chromosome.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The other crossover operation in the algorithm  is called 
Crossover2 or cycle crossover:  Given parent permutations 
P1 and P2 , two child permutations are created by forming 
a cycle between P1 and P2. Consider the permutations : P1 
= (jhdefigcba) and  P2 = (hgebcjiadf). Starting from the 
first element in P1 , we see that j in P1 maps to h in P2 ,  h 
in P1 maps to g in P2 , g in P1 maps to i in P2 , and i in P1 
maps to j in P2 , completing the cycle. The elements in the 
cycle from P1 are placed in the child, producing     
Ch1=(jh***ig***).  The empty slots (*) are filled in by the 
elements of P2 at the corresponding positions. Thus, 
Ch1=(jhebcigadf) Similarly,  Ch2=(hgdefjicba). See Figure 
13. 

Groves et al. [16] introduced about a d ozen different 
mutation operations. We have used  t wo different 
mutations performed best in our tests. First, mutation1, 
choose a two genes randomly and exchange their position. 

Second, mutation2, the order of the genes is inverted 
between two random vertices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Parameters and results 

Selection: Our test advice to use large steps in the linear 
normalization. This means that the best chromosomes are 
strongly favored. This selection  i s decrease computation 
time to compute the fitness function with paths rather than 
the vertices in graph.   

Crossover and mutation rates: Increasing the mutation rate 
makes the search more efficient all the way to the level 20–
50 %. Still increasing the mutation rate over 50% again 
makes the results worse. The crossover rate 20% and 
mutation rate 20% are default values. The values of the 
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Fig. 12  A Sample of Crossover1  operation. 
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Fig. 13  A Sample of Crossover2  operation. 
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parameters of the algorithm are as follows:  Maximum 
Generations(MG): 1000, Population Size (PS): 10, 
Crossover Rate (CR): 0.2 and  Mutation Rate (MR): 0.2 . 
Our genetic algorithm was able to find layouts with no 
edge crossings in all the test level planar graphs.  

7. Conclusion 

In this study, an attempt is made to develop a new hybrid 
GA for straight-line grid drawings of level clustered planar 
graph drawing without any edge-intersection and explore 
the potential use of GAs to solve this particular problem. It 
is nicely draws level planar graph of moderate size. The 
operations of crossover and mutation are described, and 
tested on several level planar  graphs.   
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