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Abstract 

This article describes linear and nonlinear Artificial Neural 
Network(ANN)-based predictors as Autoregressive Moving 
Average models with Auxiliary input (ARMAX) process for 
Signal to Interference plus Noise Ratio (SINR) prediction in 
Direct Sequence Code Division Multiple Access (DS/CDMA) 
systems. The Multi Layer Perceptron (MLP) neural network 
with nonlinear function is used as nonlinear neural network and 
Adaptive Linear (Adaline) predictor is used as linear predictor. 
The problem of complexity of the MLP and Adaline structures 
is solved by using the Minimum Mean Squared Error (MMSE) 
principle to select the optimal numbers of input and hidden 
nodes by try and error role. Simulation results show that both 
of MLP and Adaline optimal neural networks can track the 
effect of deep fading due to using a 1.8 GHZ carrier frequency 
at the urban mobile speeds of 10 km/h, 50 km/h and 120 km/h 
with tolerable estimation errors. Therefore, the neural network-
based predictor is well suitable SINR-based predictor in closed-
loop power control to combat multi path fading in CDMA 
systems. 
 
Keywords: Neural Networks, DS/CDMA, Multi Path 
Fading Channel, Closed-Loop Mobile Power Control, 
SINR Prediction, Neural Network Optimization. 
 

1. Introduction 

In present mobile communication systems there are many 
new technologies emerging to improve transmission and 
reception techniques of digital symbols over a fading 
channel. These new technologies include smart antenna 
[1], transmitter/receiver diversity [4], interference 
cancellation [2], and power control [3]. Closed-loop power 
control and feedback procedure is crucial in the uplink 
transmission (from mobile to base station) to control 
mobile's signal transmission power by sending power 
control commands from base station to either lower or 
higher transmitting power level for each user 
independently to keep the received power level from each 

mobile unit equal and constant in the average [5], [6], [7]. 
There are two problems encountered in the power control 
scheme. One is the time varying statistics of fading loss 
and interference since they are hard to estimate. The other 
is the round-trip delay which made degrade the system 
performance or even lead to instability of the closed-loop 
power control system [8], [9]. A robust power control 
algorithm based on linear quadratic control theory and 
Kalman filter is proposed in [10], [11]. On the other hand, 
to learn the time-varying channel fading and interference, 
several adaptive minimum variance controllers [12],[13] 
have been developed with superior performance to the 
conventional power control methods [14]. Power control 
based on the Fuzzy control approach can be found in [15].  
The capacity and quality of service (QOS) of CDMA 
systems greatly depends on the mobile power control 
function. While an open-loop power control can solve the 
near-far and shadowing problems [16], [17], the closed-
loop power control can combat multi path fading [18]. The 
inherent problem in a closed-loop power control algorithm 
is feedback delay. The utility optimization and target SINR 
tracking can be achieved at the same time by using the 
adaptive algorithm through the net utility function based on 
QOS for the purpose of resource management of wireless 
communication networks [19]. In this situation the 
information of power control command is outdated and not 
reliable. We need to predict the value of signal strength or 
SIR at the time that the power control commands should 
actually take place [21], [20]. The closed-loop power 
control with predictive SINR estimation is illustrated in 
Fig.1. The estimator in the base station can either estimate 
the received signal strength or the SINR [22], [23], [24]. In 
addition power control based on SINR is more suitable 
than that based on signal strength because CDMA is 
interference limited [25], [26]. A hybrid and modified 
Elmann neural networks and Heinonen-Neuvo prediction 
were proposed in [27], [28] to predict signal strength and 
they used Predictive Minimum Description Length 
(PMDL) method to find the optimal neural Network [29], 
[30].  
In this paper the structure of MLP predictor is first 
optimized off-line and the performance of all mentioned 
structures are evaluated in terms of bias and mean squared 
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error (MSE) then use the optimal predictor with on-line 
learning and adaptation in the real situation[31],[32]. In 
section 2 a daptive predictors and back propagation 
algorithm in ANN are discussed. In section 3 a Rayleigh 
fading channel simulator and SINR estimator technique are 
described. In section 4 we discuss the topology of feed 
forward neural network-based power prediction and the 
applied learning algorithm. The optimized neural predictor 
is found off-line and applied to predict SINR in a Rayleigh 
fading channel. An illustrative simulation is demonstrated 
in section 5. Finally we conclude this paper with a few 
remarks and discussion in section 6. 
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SIR measurement

Power control
Decision 

Loop Delay 
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Rayleigh fading 
channel Transmit power

∆p

∑

∑

Return channel 
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 Fig.1 Closed-loop power control model   

2. Adaptive Predictors 

The structure of the Adaptive Filter is shown in block 
diagram form in Fig.2. In consists of two basics parts:(1) a 
transversal filter with adjustable tap weights whose values 
at time n are denoted )(,),(),( 21 nwnwnw M and (2) 
a mechanism for adjusting these tap weights in an adaptive 
manner [33], [34]. During the filtering process if the tap an 
additional response, called the desired response, is 
supplied along with the usual tap inputs.  
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 Fig. 2 Adaptive Filter in predictor application with SINR input 
 

In effect, the desired response provides a f rame of 
reference for adjusting the tap weights of filter. We may 
thus write: 

( )
)()()1(

ˆ)1()(

nnnSINR

nNRISnSINRne

SINRw

SINR
H−+=

−+=

   (1) 
The term )()( nn SINRw H  is the inner product of the tap-
weight vector )(nw  and the tap-input vector )(nSINR . 
The expanded form of the tap-weight vector is described 

[ ])(,),(),()( 21 nwnwnwn M
T =w  and that of the tap-

input vector by 
[ ])1(,),1(),()( +−−= MnSINRnSINRnSINRn SINR . If 

the tap-input vector )(nSINR  and the described are 
jointly stationary, then the mean squared error )(nJ  At 
time n is a quadratic function of the tap-weight vector, so 
we can write, 

)()()()()( nnnnn RwwwppwσJ HHH2
d +−−=   (2) 

Where 2
dσ  is variance of the desired response d(n) or 
)1( +nSINR , p is cross correlation vector between the 

tap-input vector ( )nSINR  and the desired response, and R 
is correlation matrix of the tap-input vector. According to 
the method of steepest descent, the updated value of the 
tap weight vector at time n+1 is computed by us ing 
recursive relation, 

[ ])(
2
1)()1( nnn ∇−+=+ µww

     (3) 
Where µ  is step size parameter or weighting constant. 
We get the following value for the gradient vector, 

)(22
)(
)()( n

n
nn Rwp

w
J

+−=
∂
∂

=∇
      (4) 

We may compute the updated value of the tap weight 
vector )1( +nw by using recursive relation as the 
deterministic gradient algorithm. 

[ ] ,2,1,0)()()1( =−+=+ nnnn Rwpww µ     (5) 
If it were possible to make exact measurement of the 
gradient vector at each iteration, and if the step-size 
parameter µ is suitably chosen, then the tap-weight 
vector computed by us ing the method steepest descent 
would indeed converge to the optimum weiner solution. 
In multi path fading channel, however, exact 
measurements of gradient vector are not possible, and the 
gradient vector must be estimated from the available data 
in mobile DS/CDMA signals. In other words, the tap-
weight vector is updated in accordance with an algorithm 
that adapts to incoming data. One such algorithm is 
Least-Mean-Square (LMS) algorithm. A significant 
feature of the LMS algorithm its simplicity. It does not 
require measurements of the pertinent correlation 
functions, nor does it require matrix inversion. The 
simplest choice of estimator for R and p is to use 
instantaneous estimates that are based on s ample values 
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of the tap-input vector and desired response, as defined by 
respectively, 

)()()(ˆ nnn HSINRSINRR =           (6) 
And 

)1()()(ˆ += nSINRnn SINRp       (7) 
Correspondingly, the instantaneous estimate of the 
gradient vector is as follows: 

)(ˆ)()(2)1()(2)(ˆ nnnnSINRnn wSINRSINRSINR H++−=∇     (8) 
Substituting the estimates of gradient vector n∇  the 
steepest-descent algorithm as described, 

( ))(ˆ)()1()()(ˆ)1(ˆ nnnSINRnnn wSINRSINRww H−++=+ µ   (9) 
Equivalently, we may write the results in the form of 
apair relations as follows 

)()(ˆ)1()( nnnSINRne SINRw H−+=    (10) 
And 

)()()(ˆ)1(ˆ nennn SINRww µ+=+     (11) 
The LMS algorithm is used in neural network as back 
propagation learning [35]. The diagram of the weight 
adaptation in neural network by ba ck propagation 
learning algorithm is shown in Fig.3.  
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 Fig.3 Diagram of back propagation learning algorithm 
 
According to the method of back propagation learning 
algorithm, the weight updated as follows, 

)()()(ˆ)1(ˆ nnnn SINRww µδ+=+     (12) 
Where )(nδ  is learning signal or local error and we can 
write  

))(()()( nunen ψδ ′=      (13) 
Where ))(( nuψ ′ is the derivative of the activate 
function ))(( nuψ . We can chose the sigmoid function as 
the activate function ( ))(tanh))(( nunu =ψ  in neural 
network. So we can write  

( )( )2
)1(ˆ1))(( +−=′ nNRISnuψ     (14) 

and by s ubstituting the ))(( nuψ ′  in the back 
propagation algorithm as described in (12) ,  

( ) )()1(ˆ1)()(ˆ)1(ˆ
2

nnNRISnenn SINRww 




 +−+=+ µ

   (15) 
We use back propagation algorithm in offline and online 
learning as will be described in section 4. 

3. Rayleigh fading power signal and SINR 
estimator 

3.1 Rayleigh fading channel model. 

One of the most commonly used methods to simulate a 
Rayleigh fading channel is described in [36] and is referred 
to as the Jake's method. A simplified channel simulator 
often assumes the superposition of plane waves, whose 
arrival angle are uniformly distributed and associated with 
different Doppler shifts, ranging from the minimum to the 
maximum specified by the mobile speed [37]. The Jake's 
method assumes that the line-of-sight component is absent. 
When the number of paths is large enough, the base band 
signal received from a m ultipath fading channel is 
approximately a complex Gaussian process and it invoke 
central limit theorem. We can write the amplitude 
fluctuation of the base band signal as follows 
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22
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221)(   (16) 

Here )(tβ  is amplitude fluctuation, L is the number of 

paths and )(tlψ  has a uniform distribution in [ ]π2,0 , 
and sl T<<τ (

sT  is the sample duration) in frequency- 
nonselective channel. In this paper, we implement 
Rayleigh fading simulator using 34 paths [36], [38]. Here 
we consider a slow fading channel and the fading factor is 
constant within the symbol duration. The simulated 
Rayleigh fading channel with a maximum Doppler-spread 

HZf D 50=  during a 200 ms period is shown in Fig.4. 
The fading channel described in Fig.4 can be experienced 
by a mobile which is traveling at 30 km/h when the 
carrier frequency is GHZfc 8.1=  and transmitting data 
at a symbol rate of 60 kbps. We can see in Fig.4. received 
signal fluctuation frequently drops far below its average 
level due to Rayleigh fading. 

3.2   SINR estimation or measurement 

The base station dispreads the received base band signal 
by the conjugate of the kth user’s spreading sequence and 
integrated over M chips. 
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Fig.4.simulated Rayleigh fading ( Hzf D 50= , sTs µ625.15= ) 

The jth user’s signal strength is attenuated by the factor 
M/1  (cross correlation between spreading sequences) 

after dispreading by the kth user's spreading sequences 
[39], [40], [41]. The SINR of the kth user during one 
symbol period can be expressed as follows 

( ) ( )

( ) ( )nnA
M

nA
n

k
kj

jj

kk
k

22

2

1 σβ

β
γ

+
=

∑
≠

  (17) 

Here ( )nkβ  is the fading channel coefficient and ( )nkσ   is 
the standard deviation of the Additive White Gaussian 
Noise (AWGN) experienced by the kth user. The data 
symbols are oversampled to obtain a larger number of 
observations. To simulate the uplink fading channels, an 
independent and uncorrelated Rayleigh fading for each 
user ( ) 12,,2,1, =knkβ  is generated using the Jake's 
method as described. 

 
Fig.5 SINR in Rayleigh fading ( Hzf D 17= ,with K=12) 

The maximum Doppler spread is varied for each user from 
17Hz to 170Hz to reflect different user's mobility. 

hkmkvHzvf kkD /.10,67.1 ==  (18) 

We add the AWGN with the variance dBn 72 =σ below the 
signal power level (SNR=7dB).SINR measurement is 
performed in every time slot that corresponds to one power 
control interval msTp 667.0= . The simulated fading 
envelope for a v ehicle with speed of 120km/h and its 
corresponding SINR are shown in Fig.5. We used all data 
symbols in the time slot to estimate the SINR. The chip 
rate is assumed McpsRc 84.3=  as given in the 3G 
specification for uplink data channel. Therefore, 40 binary 
symbols per time slot are available for the SINR 
estimation. 

4. Neural network-based predictor and 
optimization   

4.1   MLP and Adaline predictors  

Neural networks are well suited to be utilized as nonlinear 
predictive filters because of their distinguished 
approximation and generalization capabilities [42]. 
Consider a f eed forward multilayer perceptron as a 
predictive filter with one hidden layer. This MLP predictor 
with p input nodes and q h idden nodes 

)1(,),1(),( +−− pnSINRnSINRnSINR   is illustrated in 
Fig.6. The single node in the output layer represents the 
one-step-ahead prediction. The hyperbolic tangent sigmoid 
functions are used as the nonlinear transfer function of the 
hidden nodes and the transfer function of the output node 
is linear. The number of input nodes p and the number of 
hidden nodes should be optimized. There are two 
principles to find the optimal predictor and optimal p and q 
numbers. We use Adaline neural network as linear 
predictive filter. It has k input 
nodes )1(,),1(),( +−− knSINRnSINRnSINR   and the 
single node in output layer. So it represents one-step-ahead 
prediction as illustrated in Fig.7. The transfer function in 
output node in Adaline predictor is linear. There are many 
ways to maximize the predictor generalization as will be 
described in part 4.2.  

4.2   MLP and Adaline Predictors Optimization 

From the network structure’s point of view, we may select 
the optimal number of input and hidden nodes, or assume 
partial connection between different nodes and apply some 
pruning methods to eliminate very small weights in order 
to simplify the network structure [43], [44]. The number of 
hidden nodes q, in MLP model, and the number of input 
nodes in MLP and Adaline should be optimized. There are 
two principles to find the optimal predictor. Two criteria, 
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minimum mean squared error (MSE) and minimum 
description length (MDL) criteria [30], [45] are used for 
filter design parameter selection. In this paper we used 
MSE principle to find the optimal structure or the length of 
predictor because MDL is actually a criterion to used for 
finding the order of the autoregressive (AR) process and 
our Rayleigh fading channel predictor is not an AR process 
therefore MDL criteria cannot be expected to give exact 
results. MSE principle is given as  

[ ]∑
−

=

+−+=
1

0

2
)1()1(ˆ1 N

n
nSINRnNRIS

N
MSE    (19) 

Here Nnnx ,,2,1),( =  are the samples values of the 
time series to be predicted. We have 

( ) ( ) qijnSINRwnu
p

j
jii ,,2,1

1
=−=∑

=

  (20) 

( ) ( )[ ]nunz ii tanh=      (21) 

( ) ( ) 0
1

1ˆ vnzvnNRIS
q

i
ii +=+ ∑

=

    (22) 

We divided ( ){ }nSINR  into 
d
Nk =max

 consecutive 

segments where d represents the length of prediction and 

maxk  is an integer number. 

We train each network with p inputs and q hidden nodes 
using the back propagation learning algorithm [46] to 
minimize the mean squared error in each segment 

[ ]∑
−

=

+−+=
1 2

)1()1(ˆ
kd

kdn
kd nSINRnNRISES    (23) 

Then we use the obtained optimal weights and bias to 
predict the points 

1)1(,,1,),1( −++=+ dkkdkdnnSINR   in the following 
subsequent (k+1)th segment to maintain the actual mean 
squared prediction error 

[ ]∑
−

=
+++ +−+=
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kkk nSINRnNRIS

d
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In this prediction the parameters of the predictor are 
determined and updated using the past data. The 
predictions of the data points in the very first segment are 
taken as zero. This procedure is continued until the mean 
squared errors for all the segments are found. Then we 
calculate the total actual mean squared error as 

( ) ( ) ( )∑
−

=
+−

==
1

1
1

max

max

1
1,,
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k
kperper E

k
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Fig.6 The structure of MLP neural network based predictor. 
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Fig.7 The structure of Adaline neural network based predictor 

We find different perE  for the network with the p input 
nodes and q h idden nodes. We repeated the above 
procedure many times because the conventional back 
propagation is a deterministic optimization algorithm, and 
we found different mean squared errors in every trail. The 
final mean squared error of each mode was selected as the 
averaged mean squared error of all the experiments. when 
we repeated the above procedure for B times we got 

( ) ( )∑
=

==
B

b
perperper bE

B
BdqpEE

1

1,,,    (26) 

Here b is the bth repetition. We select the network with the 
minimum perE  as the optimal predictor structure. 
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Fig.8. MSE of different MLP models at the speed of 10km/h. 

 

Fig.9. MSE of different MLP models at the speed of 60km/h. 

 
Fig.10 MSE of different MLP models at the speed of 120km/h 

5. Simulation Results 

5.1 Off-line optimization of MLP 

Due to the time-varying and mobile speed-dependent 
characteristics of the power response of the Rayleigh 
fading channel, it is  not practical to optimize predictor 
structure for a p ower signal covering the whole speed 
range [47], [49]. Therefore, we only consider the 
optimization of the network structures under three extreme 
conditions when the vehicle speed is 10, 60, 120 km/h. The 
additive noise is zero mean white Gaussian noise. We 
use { })1(,),1(),()( +−−= pnSINRnSINRnSINRn SINR   from 
a segment of a received SINR, as shown in Fig.6 and Fig.7. 
This time series has 600 samples and the segment length d 
here is 200. In MLP predictor, the computational 
complexity will increase drastically by increasing the 
number of hidden nodes. A large number of hidden nodes 
is rarely used, and we change q in a s mall range, i.e. , 
q=1,2,3. The mean squared errors of different MLP 
structure for different vehicle speeds 10 km/h , 60 km/h 
and 120 km/h are given in Fig.8 , Fig.9 and Fig.10, 
respectively. The MLP with 5 input nodes and 2 hidden 
nodes turns out to be the best structure for the speed of 10 
km/h. Similarly at the speed of 60 km/h the optimal MLP 
has 4 input nodes, and 3 h idden nodes and for vehicle's 
speed of 100km/h it has 9 input nodes and 3 hidden nodes. 
The MSE of all models candidates in Adaline at the speed 
of 10, 60, 120 km/h are given in Figs. 11, 12, 13, 
respectively. It is easy to find that the optimal Adaline has 
nine input nodes at the speed of 10 km/h, and for vehicle’s 
speed of 60 km/h it has 5 input nodes, and with 18 input 
nodes turns out to be the best structure for the speed of 120 
km/h. 

 

Fig. 11.  MSE of different Adaline models at the speed of 10km/h 
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Fig.12 MSE of different Adaline models at the speed of 60km/h 

 

Fig.13 MSE of different Adaline models at the speed of 120km/h 

5.2 Real time prediction with on-line adaptation  

The optimal predictor obtained from the off-line procedure 
was then used with on- line adaptation because the fading 
signals were highly nonstationary [48]. We use an on-line 
back propagation algorithm to adapt new data quickly and 
adequately forgetting the old data .The structure of MLP 
and Adaline predictors are first optimized off-line using the 
procedure described above. The obtained optimal 
predictors are then used for prediction of SINR at the 
speeds of 10, 60, 120km/h.  . The output of the optimal 
predictors at the speeds of 5 k m/h and 60km/h and 
120km/h are shown in Figs. 14, 15, 16, respectively and 
the results show that the optimal MLP neural predictor can 
predict SINR with MSE values of about 0.02, 0.25 and 0.4 
at the urban mobile speeds of 10 km/h, 60 km/h and 120 
km/h respectively. The results show that the optimal MLP 
and Adaline predictors can predict SINR with the same 
MSE values of about 0.02, 0.25 at the urban mobile speeds 
of 10, 60 km/h, respectively. But by increasing the mobile 
velocity until 120km/h, the MSE value for Adaline 

predictor is 0.2 and this value for MLP predictor is 
approximately 0.4.  

 

Fig.14 The prediction output of SINR at the speed of 10 

km/h along with the actual SINR.  

 
Fig.15 The prediction output of SINR at the speed of 60 

km/h along with the actual SINR. 

 
Fig.16 The prediction output of SINR at the speed of 

100km/h along  
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6. Conclusion 

We presented a MLP neural network-based single-step 
ahead SINR prediction scheme for reverse link power 
control in DS/CDMA systems. The neural predictor was 
optimized off-line using the MMSE method. The 
simulation results show that the Adaline predictor can 
estimates SINR with the same error as MLP when the 
user has the velocity of 5 km/h and 60 km/h but by 
increasing the velocity up-to 120 km/h the mean squared 
error of MLP is two times more than Adaline predictor.  
This makes the Adaline predictor (with lower complexity) 
more suitable than MLP for closed-loop power control. 
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